--- tags: courses title: GeoML --- # Practical machine learning with spatial data :::info **This document:** https://hackmd.io/@GeospatialCSC/GeoML **[Slides](https://drive.google.com/drive/folders/1q0-eSCFKcApzTql828Z2ZfDe8xFeFjXd?usp=sharing)** **[Exercise material](https://github.com/csc-training/GeoML)** **Computing environment:** www.puhti.csc.fi ::: ## Schedule :::spoiler Monday 7.11. **9:00-12:00** * Practicalities and Introduction * Lecture 1: Introduction to machine learning * Exercise 1: Image segmentation using k-means with scikit-learn **12.00-13:00** - Lunch break **13:00-16:15** * Lecture 2: Shallow machine learning models * Lecture 3: Preparing spatial data for machine learning * Exercise 2: Preparing vector data for regression ::: :::spoiler Tuesday 8.11. 9:00-12:00 * Exercise 3: Shallow regression with scikit-learn * Exercise 4: Image classification using shallow classifiers, grid search with scikit-learn * Lecture 4: Introduction to deep learning models 12.00-13:00 - Lunch break 13:00-16:15 * Lecture 5: Fully connected neural networks * Lecture 6: Puhti GPUs and batch jobs * Exercise 5: Fully connected regressor with keras ::: :::spoiler Wednesday 9.11. 9:00-12:00 * Exercise 6: Fully connected classifier with keras * Lecture 7: Convolutional neural networks (CNN) * Exercise 7: Data preparations for CNN 12.00-13:00 - Lunch break 13:00-16:00 * Exercise 8: CNN based image segmentation with keras * Lecture 8: GIS software supporting machine learning for spatial data. * Wrap-up and where to go from here ::: ## Practicalities -> https://hackmd.io/@GeospatialCSC/GeoML/README.md