loga(r)=R aR=r aloga(r)=r
aloga(r)×aloga(s)=aloga(r)+loga(s) aloga(r)×aloga(s)=rs 1.式和2.式同取loga loga(aloga(r)+loga(s))=loga(rs)$ loga(r)+loga(s)=loga(rs)
由loga(r)+loga(s)=loga(rs)同理可證 aloga(r)÷aloga(s)=aloga(r)−loga(s) aloga(r)÷aloga(s)=r÷s 1.式和2.式同取loga loga(aloga(r)−loga(s))=loga(r÷s)$ loga(r)−loga(s)=loga(r÷s)
loga(rt)=loga(r×r×r×⋯×r) 由loga(r)+loga(s)=loga(rs)可得 loga(r×r×r×⋯×r) =loga(r)+loga(r)+loga(r)+⋯+loga(r) =t×loga(r)
aloga(r)=r logb(aloga(r))=logb(r) 使用脫帽子公式 logb(aloga(r))=loga(r)×logb(a) logb(r)=loga(r)×logb(a) logb(r)÷logb(a)=loga(r)
換底公式 log(at)(r)=loga(r)÷loga(at)=loga(r)÷t
也是換底
or
By clicking below, you agree to our terms of service.
New to HackMD? Sign up