評估樣本數
決定樣本數可行方式
- collecting data from (an) almost the entire population
- choosing a sample size based on resource constraints
- performing an a-priori power analysis
- planning for a desired accuracy
- using heuristics
- explicitly acknowledging the absence of a justification.
設定效果量的可行方式
- what the smallest effect size of interest is
- which minimal effect size will be statistically significant
- which effect sizes they expect (and what they base these expectations on)
- which effect sizes would be rejected based on a confidence interval around the effect size
- which ranges of effects a study has sufficient power to detect based on a sensitivity power analysis
- which effect sizes are plausible in a specific research area.
Lakens, D. (2022). Sample Size Justification. Collabra: Psychology, 8(1), 33267. https://doi.org/10.1525/collabra.33267
效果量的計算公式
實作目標
關鍵 假設條件決定效果量的設定方式, 顯著水準, 應達到的考驗力
Level 1 轉換研究資料為效果量
(1)從目標論文及公開資料,找出研究結果裡,計算效果量的必要元素。(2)解析研究者如何設定檢驗假設的條件。
- 確認效果量類別及計算公式
- 了解公式中的統計量數:平均數?標準誤?
- 分解用來計算統計量數的研究資料
目標論文的效果量報告資訊
- Hughes et al. (2021) 五大人格與社經狀態的關聯性 see Analysis plan: H1 ~ H3
- Kathawalla & Syed (2021) 美國穆斯林民眾的生活壓力與心理健康 see Data Analysis Plan
- Li et al. (2022) 影響紀錄報導筆法的口語因素 see Method: Prior Power analysis
- McCarthy et al. (2021) 敵意促發效應 see proposal “Sample Size Determination”
Level 2 估計樣本數
從原論文預先註冊資訊,找出研究者決定樣本數的方法及理由。
- 決定預期效果量~參考如何評估及解讀效果量
- 指定需要的考驗力~參考設計有高考驗力的研究
- 使用合適的方法估計樣本數
可用資源