評估樣本數

決定樣本數可行方式

  1. collecting data from (an) almost the entire population
  2. choosing a sample size based on resource constraints
  3. performing an a-priori power analysis
  4. planning for a desired accuracy
  5. using heuristics
  6. explicitly acknowledging the absence of a justification.

設定效果量的可行方式

  1. what the smallest effect size of interest is
  2. which minimal effect size will be statistically significant
  3. which effect sizes they expect (and what they base these expectations on)
  4. which effect sizes would be rejected based on a confidence interval around the effect size
  5. which ranges of effects a study has sufficient power to detect based on a sensitivity power analysis
  6. which effect sizes are plausible in a specific research area.
  • 參考文獻

Lakens, D. (2022). Sample Size Justification. Collabra: Psychology, 8(1), 33267. https://doi.org/10.1525/collabra.33267

效果量的計算公式

實作目標

關鍵 假設條件決定效果量的設定方式, 顯著水準, 應達到的考驗力

Level 1 轉換研究資料為效果量

(1)從目標論文及公開資料,找出研究結果裡,計算效果量的必要元素。(2)解析研究者如何設定檢驗假設的條件。

  1. 確認效果量類別及計算公式
  2. 了解公式中的統計量數:平均數?標準誤?
  3. 分解用來計算統計量數的研究資料

目標論文的效果量報告資訊

Level 2 估計樣本數

從原論文預先註冊資訊,找出研究者決定樣本數的方法及理由。

  1. 決定預期效果量~參考如何評估及解讀效果量
  2. 指定需要的考驗力~參考設計有高考驗力的研究
  3. 使用合適的方法估計樣本數

可用資源

tags: EXPPSY_Book