讀書會

@666

讀書

Public team

Community (0)
No community contribution yet

Joined on Feb 8, 2020

  • # 資料結構 ### Asymptotic Notation-Big "oh" #### f(n) = O(g(n)) iff $\exists$ positive const , $c$ and $n_{0}\ni$ $f(n)$ $\leq$ $cg(n)$ $n$,$n$ $\geq$ $n_{0}$ eg. * $3n+2 = O(n)$       $3n+2 \leq 4n$ for all n $\geq$ 2 * $10n^{2}+4n+2=O(n^{2})$   $10n^{2}+4n+2$ $\leq$ 11$n^{2}$ for all n>=10 * $3n+2=O(n^{2})$        $3n+2 \leq n^{2}$ for all n>=4 $g(n)$ should be a least upper bound
     Like  Bookmark
  • # 微積分-基礎數學篇 [TOC] ## 數 N: Natural自然數:$\left\{ ...1,2,3,... \right\}$ Z: Integer整數:$\{{...,-2,-1,0,1,2,3,...\}}$ Q: Quotient有理數:$\{{x\mid x=\frac{p}{q}\quad p,q \in Z,q\ne0 \}}$ R: Real實數: $N \subset Z \subset Q \subset R$ <font color="#dd0000">**$\sqrt{2}$無理數證明問題:為什麼假設有理數p,q必須互質?**</font> <font color="#00DD00">解答:</font> 因為如果$a\subset Z,b \subset Z$ ,$\frac{a}{b}$必定存在$p\subset Z,q \subset Z$互質的最簡分數$\frac{p}{q}$。 該證明最後的結果是a,b不論最簡化多少次永遠存在有最大公因數2 故反證 **完備性:數的集合收斂** $\frac{1}{^{2^{2}}}\quad
     Like  Bookmark