# 資料結構 ### Asymptotic Notation-Big "oh" #### f(n) = O(g(n)) iff $\exists$ positive const , $c$ and $n_{0}\ni$ $f(n)$ $\leq$ $cg(n)$ $n$,$n$ $\geq$ $n_{0}$ eg. * $3n+2 = O(n)$       $3n+2 \leq 4n$ for all n $\geq$ 2 * $10n^{2}+4n+2=O(n^{2})$   $10n^{2}+4n+2$ $\leq$ 11$n^{2}$ for all n>=10 * $3n+2=O(n^{2})$        $3n+2 \leq n^{2}$ for all n>=4 $g(n)$ should be a least upper bound