Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

Your note will be visible on your profile and discoverable by anyone.
Your note is now live.
This note is visible on your profile and discoverable online.
Everyone on the web can find and read all notes of this public team.
See published notes
Unpublish note
Please check the box to agree to the Community Guidelines.
View profile
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
# 矩陣乘積與轉置 Matrix multiplication and transpose ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}$ ```python from lingeo import random_int_list, row_operation_process ``` ## Main idea When $A$ and $B$ are both $n\times n$ matrices, then $\det(AB) = \det(A) \det(B)$. Intuitively, this follows from the fact that _the determinants are the scaling factors_! A formal proof can be done by the elementary matrices. If both $A$ and $B$ are invertible, then they can be written as the products of elementary matrices $$ A = F_1\cdots F_k \text{ and } B = E_1\cdots E_h, $$ so $AB$ can be written as the product of elementary matrices $$ AB = F_1\cdots F_k E_1\cdots E_h. $$ Therefore, $$ \begin{aligned} \det(AB) &= \det(F_1)\cdots\det(F_k)\det(E_1)\cdots\det(E_h) \\ &= \big(\det(F_1)\cdots\det(F_k)\big)\big(\det(E_1)\cdots\det(E_h)\big) \\ &= \det(A)\det(B). \end{aligned} $$ On the other hand, it is known that $AB$ is invertible if and only if both $A$ and $B$ are invertible. Thanks to this nice property, we may derive the following facts. - If $Q$ is invertible, then $\det(Q^{-1})\det(Q) = \det(I_n) = 1$. - If $B = Q^{-1}AQ$ for some invertible $Q$, then $\det(B) = \det(A)$. As a consequence, we may define the **determinant** of linear function $f: V\rightarrow V$ by $$ \det(f) = \det([f]_\beta^\beta), $$ where $\beta$ can be any basis of $V$. For matrix transpose, $\det(A\trans) = \det(A)$. Intuitively, this follows from the fact that $$ \det(A\trans) = \Vol_C(A\trans) = \Vol_R(A) = \det(A), $$ since we have shown that the column parallelotope and the row parallelotop (surprisingly) have the same signed volumn. Again, formally we may prove by the elementary matrices. Let's make some observations first. - If $E$ is the elementary matrix for $\rho_i\leftrightarrow\rho_j$, then $E\trans = E$, so $\det(E\trans) = \det(E) = -1$. - If $E$ is the elementary matrix for $\rho_i: \times k$, then $E\trans = E$, so $\det(E\trans) = \det(E) = k$. - If $E$ is the elementary matrix for $\rho_i: +k\rho_j$, then $E\trans$ is the elementary matrix for $\rho_j: +k\rho_i$, so $\det(E\trans) = \det(E) = 1$. If $A$ is invertible, then we may write $A$ as the product of elementary matrices $$ A = F_1 \cdots F_k, $$ so $$ A\trans = F_k\trans \cdots F_1\trans $$ and $$ \begin{aligned} \det(A\trans) &= \det(F_k\trans)\cdots\det(F_1\trans) \\ &= \det(F_k) \cdots \det(F_1) \\ &= \det(F_1) \cdots \det(F_k) \\ &= \det(A). \end{aligned} $$ ## Side stories - inverse matrix - orthogonal matrix ## Experiments ##### Exercise 1 執行以下程式碼。 已知 $A = F_1\cdots F_k$ 及 $B = E_1\cdots E_h$ 都是一群單位矩陣的乘積。 <!-- eng start --> Run the code below. Suppose we know $A = F_1\cdots F_k$ and $B = E_1\cdots E_h$ are the product of some elementary matrices. <!-- eng end --> ```python ### code set_random_seed(0) print_ans = False n = 2 while True: A = matrix(n, random_int_list(n^2, 3)) B = matrix(n, random_int_list(n^2, 3)) if A.det() != 0 and B.det() != 0: break elems_A = row_operation_process(A, inv=True) elems_B = row_operation_process(B, inv=True) print("A = F1 ... Fk") pretty_print(A, LatexExpr("="), *elems_A) print("B = E1 ... Eh") pretty_print(B, LatexExpr("="), *elems_B) if print_ans: print("AB = F1 ... Fk E1 ... Eh") pretty_print(A * B, LatexExpr("="), *(elems_A + elems_B)) print("det(AB) =", (A*B).det()) elems_AT = [elems.transpose() for elems in elems_A[::-1]] print("A trans = Fk trans ... F1 trans") pretty_print(A.transpose(), LatexExpr("="), *elems_AT) print("det(A trans) =", A.transpose().det()) ``` ##### Exercise 1(a) 將 $AB$ 寫成基本矩陣的乘積,並求出 $\det(AB)$。 <!-- eng start --> Write $AB$ as the product of some elementary matrices and find $\det(AB)$. <!-- eng end --> --- ##### Exercise 1(a) - answer here By running the code above, we obtain that $$ A = F_1\cdots F_k . $$ $$ \begin{bmatrix} -3 & 3 \\ 1 & 2 \end{bmatrix}=\begin{bmatrix} -3 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}. $$ $$ B = E_1\cdots E_h. $$ $$ \begin{bmatrix} -3 & -3 \\ -1 & 3 \end{bmatrix}=\begin{bmatrix} -3 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}. $$ So, $$AB = F_1\cdots F_k E_1\cdots E_h =\begin{bmatrix} -3 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} -3 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}. $$ By calculation, $\det(A) = (-3)\times2-1\times3 = -9.$ $\det(B) = (-3)\times3-(-1)\times(-3) = -12.$ Therefore, $$ \det(AB) = \det(A)\det(B)=(-9)\times(-12)=108. $$ :::warning The question asks you to write $AB$ as the product of some elementary matrices. ::: --- ##### Exercise 1(b) 將 $A\trans$ 寫成基本矩陣的乘積,並求出 $\det(A\trans)$。 <!-- eng start --> Write $A\trans$ as the product of some elementary matrices and find $\det(A\trans)$. <!-- eng end --> --- ##### Exercise 1(b) - answer here By running the code above, we obtain that $$A=\begin{bmatrix} -3 & 3 \\ 1 & 2 \end{bmatrix}=\begin{bmatrix} -3 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}.$$ Thus, we know that $$A\trans=\begin{bmatrix} -3 & 1 \\ 3 & 2 \end{bmatrix}=\begin{bmatrix} -3 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}. $$ Therefore, $\det(A\trans) = (-3)\times2-3\times1 = -9.$ --- :::info What do the experiments try to tell you? (open answer) If $A$ is an invertible matrix, $\det(A)=\det(A\trans).$ $\det(AB) = \det(A)\det(B).$ ::: :::success Jephian: How about $\det(AB)$? ::: ## Exercises ##### Exercise 2 在總列數為 $3$ 的情況下, 寫下以下列運算的基本矩陣 $E$, 並解釋 $E\trans$ 所對應的列運算是什麼。 <!-- eng start --> Consider matrices with $3$ rows. Find the elementary matrix corresponding to each of the following properties. Then explain what is the corresponding row operation for $E\trans$. <!-- eng end --> ##### Exercise 2(a) 列運算 $\rho_i\rightarrow\rho_j$。 <!-- eng start --> The row operation $\rho_i\rightarrow\rho_j$. <!-- eng end --> --- ##### Exercise 2(a) - answer here Let $E= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}.$ $E\trans= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}=E.$ The corresponding row operation of $E\trans$ is $\rho_i\leftrightarrow\rho_j.$ :::warning Write the complete sentences. For example: The correspondiing row operation of $E\trans$ is ... . ::: --- ##### Exercise 2(b) 列運算 $\rho_i: \times k$。 <!-- eng start --> The row operation $\rho_i: \times k$. <!-- eng end --> --- ##### Exercise 2(b) - answer here Let $E= \begin{bmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1\end{bmatrix}.$ $E\trans= \begin{bmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1\end{bmatrix}=E.$ The correspondiing row operation of $E\trans$ is $\rho_i: \times k.$ :::warning Write the complete sentences. ::: --- ##### Exercise 2(c) 列運算 $\rho_i: +k\rho_j$。 <!-- eng start --> The row operation $\rho_i: +k\rho_j$. <!-- eng end --> --- ##### Exercise 2(c) - answer here Let $E= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & k \\ 0 & 0 & 1\end{bmatrix}.$ $E\trans= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & k & 1\end{bmatrix}.$ The correspondiing row operation of $E\trans$ is $\rho_j: +k\rho_i.$ :::warning Write the complete sentences. ::: --- ##### Exercise 3 若 $A$ 為一可逆矩陣。 證明 $\det(A^{-1}) = \det(A)^{-1}$。 <!-- eng start --> Suppose $A$ is an invertible matrix. Show that $\det(A^{-1}) = \det(A)^{-1}$. <!-- eng end --> --- ##### Exercise 3 - answer here Since $\det(AA^{-1})=\det(I)=1,$ by matrix multiplication, $\det(A)\det(A^{-1})=1.$ $\frac{1}{\det(A)}=[\det(A)]^{-1}=\det(A^{-1})$. --- ##### Exercise 4 若 $A$ 為一垂直矩陣($A\trans A = AA\trans = I_n$)。 證明 $\det(A) = \pm 1$。 <!-- eng start --> Suppose $A$ is an orthogonal matrix. Show that $\det(A) = \pm 1$. <!-- eng end --> --- ##### Exercise 4 - answer here Since $\det(A A\trans)=1=\det(A\trans A),$ by matrix multiplication, $\det(A\trans)\times\det(A)=1.$ Thus, by matrix transpose, $\det(A\trans)=\det(A).$ We get $[\det(A)]^{2}=1.$ Therefore, $\det(A)=\pm 1$. --- ##### Exercise 5 令 $V$ 為 $\mathbb{R}^3$ 中的一個二維空間, 而 $f:\mathbb{R}^3 \rightarrow \mathbb{R}^3$ 將向量 $\bv\in\mathbb{R}^3$ 投影到 $V$ 上。 求 $\det(f)$。 <!-- eng start --> Let $V$ be a $2$-dimensional subspace in $\mathbb{R}^3$ and $f:\mathbb{R}^3 \rightarrow \mathbb{R}^3$ is the projection sending any vector $\bv\in\mathbb{R}^3$ onto $V$. Find $\det(f)$. <!-- eng end --> --- ##### Exercise 5 - answer here $f$ is irreversible since it is a many-to-one function. Thus, $\det(f) = 0$ . :::warning For the solution below, $A\trans A$ is not invertible. ::: Another Explanation: Let $V = \vspan{\{\bu_1,\bu_2}\}$, and $\bu_1,\bu_2$ is perpendicular to each other, and their length are both $1$.\ Let $$ A = \begin{bmatrix} | & | & 0 \\ \bu_1 & \bu_2 & 0 \\ | & | & 0\end{bmatrix}. $$ According to the projection formula, $f$ can be written as $A(A\trans A)^{-1} A\trans$.\ Therefore, $$ \begin{array}{l} \det(f) &= \det( A(A\trans A)^{-1} A\trans ) \\ &= \det(A) \times \det(A\trans) \times \det( (A\trans A)^{-1} ) \\ & = 0\times \det( (A\trans A)^{-1} ) \\ & = 0. \end{array} $$ --- ##### Exercise 6 令 $V$ 為 $\mathbb{R}^3$ 中的一個二維空間, 而 $f:\mathbb{R}^3 \rightarrow \mathbb{R}^3$ 將向量 $\bv\in\mathbb{R}^3$ 鏡射到 $V$ 的對面。 求 $\det(f)$。 <!-- eng start --> Let $V$ be a $2$-dimensional subspace in $\mathbb{R}^3$ and $f:\mathbb{R}^3 \rightarrow \mathbb{R}^3$ is the reflection sending any vector $\bv\in\mathbb{R}^3$ to the other side of $V$. Find $\det(f)$. <!-- eng end --> ##### Exercise 7 令 $A$ 和 $B$ 皆為 $n\times n$ 矩陣。 依照以下步驟證明以下敘述等價。 - $AB$ 可逆。 - $A$ 和 $B$ 皆可逆。 (這題為證明 $\det(AB) = \det(A)\det(B)$ 的必要過程, 所以請不要用行列式值來證明。) <!-- eng start --> Let $A$ and $B$ be $n\times n$ matrix. Follow the given steps to show the two statements below are equivalent. - $AB$ is invertible. - $A$ and $B$ are both invertible. (This problem is a necessary step for proving $\det(AB) = \det(A)\det(B)$, so please do not use the previous equality to prove it. <!-- eng end --> ##### Exercise 7(a) 證明: 若 $\ker(B) \neq \{\bzero\}$,則 $\ker(AB) \neq \{\bzero\}$。 <!-- eng start --> Show that if $\ker(B) \neq \{\bzero\}$, then $\ker(AB) \neq \{\bzero\}$. <!-- eng end --> **[由蔡睿丞提供]** We know that : If ${\bf x} \in \ker(B)$, then $B {\bf x} = {\bf 0}$. Therefore, when ${\bf x} \in \ker(B)$, $AB {\bf x} = A {\bf 0} = {\bf 0}$. So we can conclude that: $\ker(B) \subseteq \ker(AB)$. This proves that : If $\ker(B) \neq \{\bzero\}$, then $\ker(AB) \neq \{\bzero\}$. ##### Exercise 7(b) 證明: 若 $\Col(A) \neq \mathbb{R}^n$,則 $\Col(AB) \neq \mathbb{R}^n$。 <!-- eng start --> Show that if $\Col(A) \neq \mathbb{R}^n$, then $\Col(AB) \neq \mathbb{R}^n$. <!-- eng end --> **[由蔡睿丞提供]** We know that: $\Col(A) = \{A {\bf x} : {\bf x} \in \mathbb{R}^n \}$ . and $\Col(AB) = \{AB {\bf x} : {\bf x} \in \mathbb{R}^n \}$ . Because $\Col(B) = \{B {\bf x} : {\bf x} \in \mathbb{R}^n \}$ . we can write $\Col(AB)$ as $\{A {\bf x} : {\bf x} \in \Col(B) \}$ . This implies $\Col(AB) \subseteq \Col(A)$. Therefore, if $\Col(A) \neq \mathbb{R}^n$, then $\Col(AB) \neq \mathbb{R}^n$ . ##### Exercise 7(c) 證明: 若 $A$ 和 $B$ 皆可逆,則 $AB$ 可逆。 <!-- eng start --> Show that if both $A$ and $B$ are invertible, then $AB$ is also invertible. <!-- eng end --> --- ##### Exercise 7(c) - answer here We know that $A$, $B$ are invertible, which means $A^{-1}$, $B^{-1}$ exists. $E=AA^{-1}=AEA^{-1}=ABB^{-1}A^{-1}=AB(B^{-1}A^{-1}).$ Therefore, $AB$ is invertible and $(AB)^{-1}=B^{-1}A^{-1}.$ --- :::info collaboration: 2 3 problems: 3 * 2a~c extra: 2 * 3,4,5,7(c) moderator: 1 <!-- qc: 1 --> :::

Import from clipboard

Paste your markdown or webpage here...

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template has been removed or transferred.
Upgrade
All
  • All
  • Team
No template.

Create a template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

Slide Example

API Docs

Edit in VSCode

Install browser extension

Contacts

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

Note content is identical to the latest version.
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully