Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

Your note will be visible on your profile and discoverable by anyone.
Your note is now live.
This note is visible on your profile and discoverable online.
Everyone on the web can find and read all notes of this public team.
See published notes
Unpublish note
Please check the box to agree to the Community Guidelines.
View profile
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
# 基底交換法則 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). {%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %} ```python from lingeo import random_int_list, random_good_matrix, find_pivots ``` ## Main idea It is attempting to define the _dimension_ of a subspace as the number of vectors in one of its basis. The following two sections considers the following questions: 1. Do different bases of a subspace contain the same number of vectors? 2. Can $\mathbb{R}^n$ contain a linearly independent set of infinitely many vectors? It turns out intuition wins! The answer is YES to 1 and NO to 2, and we will walk through these theoretical foundations of the dimension. ##### Basis exchange lemma (vector form) Let $\beta = \{ {\bf b}_1, \ldots, {\bf b}_d \}$ be a basis of a subspace $V$. Let ${\bf a}$ be a nonzero vector in $V$. Then there is a vector ${\bf b}\in\beta$ such that $\beta\cup\{{\bf a}\}\setminus\{{\bf b}\}$ is again a basis of $V$. Moreover, if ${\bf a} = c_1{\bf b}_1 + \cdots + c_d{\bf b}_d$, then ${\bf b}$ can be chosen as any ${\bf b}_i$ with $c_i\neq 0$. ##### Basis exchange lemma (set form) Let $\beta = \{ {\bf b}_1, \ldots, {\bf b}_d \}$ be a basis of a subspace $V$. Let $\alpha$ be a linearly independent set of (possibly infinitely many) vectors in $V$. Then $|\alpha|<|\beta|$ and there is a subset $\beta'\subseteq\beta$ such that $\beta\cup\alpha\setminus\beta'$ is again a basis of $V$ and $|\beta'| = |\alpha|$. ## Side stories - algorithm for exchanging the basis ## Experiments ##### Exercise 1 執行下方程式碼。 己知 ${\bf a}\in\operatorname{Col}(B)$。 令 ${\bf b}_1,\ldots,{\bf b}_3$ 為 $B$ 的各行向量。 令 $R$ 為 $B$ 的最簡階梯形式矩陣、 $\left[\begin{array}{c|c} {\bf e}_1 & R' \end{array}\right]$ 為 $\left[\begin{array}{c|c} {\bf a} & B \end{array}\right]$ 的最簡階梯形式矩陣。 ```python ### code set_random_seed(0) print_ans = False m,n,r = 4,3,3 B = random_good_matrix(m,n,r) R = B.rref() v = random_int_list(3, r=1) a = B * vector(v) aB = matrix(a).transpose().augment(B, subdivide=True) eRp = aB.rref() pivots = find_pivots(eRp) print("[ a | B ] =") show(aB) print("R =") show(R) print("[ e1 | R' ] =") show(eRp) if print_ans: print("Number of pivots for R and [ e1 | R' ] are %s; they are the same."%len(pivots)) print("The betaC for B is { b1, ..., b3 }.") print("The betaC for [ a | B ] is { a, " + ", ".join("b%s"%i for i in pivots[1:]) + " }.") print("a = " + " + ".join("%s u%s"%(v[i], i+1) for i in range(n)) ) for i in range(n): if i in pivots: print("{ a, " + ", ".join("b%s"%(j+1) for j in range(n) if j != i) + " } is a basis.") else: print("{ a, " + ", ".join("b%s"%(j+1) for j in range(n) if j != i) + " } is not a basis.") ``` :::warning - [x] 把你們的 `seed` 和題目的數字紀錄下來 ::: ##### Exercise 1(a) 判斷 $R$ 和 $\left[\begin{array}{c|c} {\bf e}_1 & R' \end{array}\right]$ 的軸數量是否一樣? 也就是 $B$ 和 $\left[\begin{array}{c|c} {\bf a} & B \end{array}\right]$ 所得出來的 $\beta_C$ 其包含的向量個數是否一樣? ***Ans:*** 令`set_random_seed(0)`, 可得 $$R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\\end{bmatrix}, \left[\begin{array}{c|c} {\bf e}_1 & R' \end{array}\right] = \left[\begin{array}{c|ccc} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\\end{array}\right], $$ $$\left[\begin{array}{c|c} \ba & B \end{array}\right] = \left[\begin{array}{c|ccc} -4 & 1 & 3 & 5 \\ 19 & -5 & -14 & -30 \\ -57 & 15 & 42 & 91 \\ -183 & 48 & 135 & 289 \\\end{array}\right]. $$ $R$ 的軸數量為 $3$, $\left[\begin{array}{c|c} {\bf e}_1 & R' \end{array}\right]$ 的軸數量也為 $3$, 因此 $R$ 和 $\left[\begin{array}{c|c} {\bf e}_1 & R' \end{array}\right]$ 的軸數量一樣。 ##### Exercise 1(b) 計算 $B$ 和 $\left[\begin{array}{c|c} {\bf a} & B \end{array}\right]$ 各算得出來的 $\beta_C$。 :::warning - [x] pivot=1,2,3 --> 軸在 $1,2,3$ 的位置 - [x] $\beta_C$ = \begin{bmatrix} 1 \\ -5 \\ 15 \\ 48 \end{bmatrix},\begin{bmatrix} 3 \\ -14 \\ 42 \\ 135 \\ \end{bmatrix},\begin{bmatrix} 5 \\ -30 \\ 91 \\ 289 \\ \end{bmatrix}。 --> $$\beta_C = \left\{\begin{bmatrix} 1 \\ -5 \\ 15 \\ 48 \end{bmatrix}, \begin{bmatrix} 3 \\ -14 \\ 42 \\ 135 \\ \end{bmatrix}, \begin{bmatrix} 5 \\ -30 \\ 91 \\ 289 \\ \end{bmatrix}\right\}. $$ - [x] 後面改法一樣 ::: ***Ans:*** 由 $B$ 的最簡階梯形式矩陣 $R$ 可以得知,軸在 $1,2,3$ 的位置,因此可以得知 其 $$\beta_C = \left\{\begin{bmatrix} 1 \\ -5 \\ 15 \\ 48 \end{bmatrix}, \begin{bmatrix} 3 \\ -14 \\ 42 \\ 135 \\ \end{bmatrix}, \begin{bmatrix} 5 \\ -30 \\ 91 \\ 289 \\ \end{bmatrix}\right\}. $$ 由 $\left[\begin{array}{c|c} \ba & B \end{array}\right]$ 的最簡階梯形式矩陣 $\left[\begin{array}{c|c} \be_1 & R' \end{array}\right]$ 可以得知,軸在 $1,2,4$ 的位置上,因此可以得知 其 $$\beta_C = \left\{\begin{bmatrix} -4 \\ 19 \\ -57 \\ -183 \end{bmatrix}, \begin{bmatrix} 1 \\ -5 \\ 15 \\ 48 \\ \end{bmatrix}, \begin{bmatrix} 5 \\ -30 \\ 91 \\ 289 \\ \end{bmatrix}\right\}. $$ ##### Exercise 1(c) 把 ${\bf a}$ 表示成 $B$ 的各行向量的線性組合。 ***Ans:*** 設 $c_1\bb_1 + c_2\bb_2 + c_3\bb_3 = \ba,c_1,c_2,c_3\in R$ 則 $$ \begin{aligned} c_1 + 3c_2 + 5c_3 &= -4, \\ -5c_1 - 14c_2 - 30c_3 &= 19, \\ 15c_1 + 4c_2 + 9c_3 &= -57, \\ 48c_1 + 135c_2 + 289c_3 &= -183. \end{aligned} $$ 因此可得 $c_1=-1,c_2=-1,c_3=0$。 另解 **[由林柏仰同學提供]** 把 $\ba$ 表示成 $B$ 的各行向量的線性組合。 執行程式碼後得到 $$ \left[\begin{array}{c|c} \ba & B \end{array}\right] = \left[\begin{array}{c|ccc} -4 & 1 & 3 & 5 \\ 19 & -5 & -14 & -30 \\ -57 & 15 & 42 & 91 \\ -183 & 48 & 135 & 289 \\ \end{array}\right] 。 $$ 以及 $\left[\begin{array}{c|c} \ba & B \end{array}\right]$ 的最簡階梯型 $\left[\begin{array}{c|c} e_1 & R' \end{array}\right]$ $$ \left[\begin{array}{c|c} e_1 & R' \end{array}\right] = \left[\begin{array}{c|ccc} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ \end{array}\right] 。 $$ 而因為 $\left[\begin{array}{c|c} e_1 & R' \end{array}\right]$ 的行向量間的關係和 $\left[\begin{array}{c|c} \ba & B \end{array}\right]$ 的行向量間的關係相同。 換句話說,若令 $\left[\begin{array}{c|c} \ba & B \end{array}\right]$ 的行向量依序為 $\{\ba,\bu_1,\bu_2,\bu_3\}$ ,並令 $\left[\begin{array}{c|c} e_1 & R' \end{array}\right]$ 的行向量依序為 $\{\br_1,\br_2,\br_3,\br_4\}$。 則若 $\br_1$ 可寫成 $\br_1 = c_2\br_2 + c_3\br_3 + c_4\br_4$ ,則 $\ba$ 也可寫成 $c_2\bu_2 + c_3\bu_3 + c_4\bu_4$。 而觀察 $\left[\begin{array}{c|c} e_1 & R' \end{array}\right]$ 會發現, $\br_1 = -1\br_2 - 1\br_3$ 。 故 $\ba$ 也可寫成 $\ba = -1\bu_2 - 1\bu_3$。 ##### Exercise 1(d) 用程式計算看看對於哪些 $i = 1,\ldots, 3$﹐ $\beta\cup\{{\bf a}\}\setminus\{{\bf b}_i\}$ 是 $\operatorname{Col}(B)$ 的基底。 ***Ans:*** 根據 1(c) 的答案,我們可知 $\ba = -1\bb_1 - 1\bb_2$ , 因此可得 $\beta\cup\{{\bf a}\}\setminus\{{\bf b}_1\},\beta\cup\{{\bf a}\}\setminus\{{\bf b}_2\}$ 為 $\operatorname{Col}(B)$ 的基底, 而 $\beta\cup\{{\bf a}\}\setminus\{{\bf b}_3\}$ 不是 $\operatorname{Col}(B)$ 的基底。 ## Exercises ##### Exercise 2 若 $\beta = \{ {\bf b}_1, {\bf b}_2, {\bf b}_3 \}$ 是子空間 $V$ 的一組基底。 已知 ${\bf a} = 4{\bf b}_2 + 5{\bf b}_3$。 令 $\beta_1 = \beta \cup \{{\bf a}\} \setminus \{ {\bf b}_3 \}$。 ##### Exercise 2(a) 將 ${\bf b}_3$ 寫成 $\beta_1$ 的線性組合﹐ 並說明 $\vspan(\beta) = \vspan(\beta_1) = V$。 :::warning - [x] 令 ${\bf a}\in V$ 是一個非零向量 <-- 這句可以刪掉,要是 $\ba = \bzero$ 怎辦 - [x] 前面加:由於 $\ba\in V$,所以 $\vspan(\{\ba,\bb_1,\bb_2,\bb_3\}) = V$。 - [x] 中英數空格 - [x] 向量粗體 - [x] 可知${\bf \beta_1} = {\bf \beta} = V$ --> 可知 $$ \vspan(\beta_1) = \vspan(\{\ba,\bb_1,\bb_2,\bb_3\}) = \vspan(\beta) = V. $$ ::: ***Ans*** 由於 $\ba\in V$,所以 $\vspan(\{\ba,\bb_1,\bb_2,\bb_3\}) = V$。 由 ${\bf a} = 4{\bf b}_2 + 5{\bf b}_3$ 得 ${{\bf b}_3 = \frac{1}{5}\ba - \frac{4}{5}{\bf b}_2} \in \vspan\{\ba,\bb_2\}$。 可知 $$ \vspan(\beta_1) = \vspan(\{\ba,\bb_1,\bb_2,\bb_3\}) = \vspan(\beta) = V. $$ ##### Exercise 2(b) 證明 $\beta_1$ 線性獨立﹐因此它是 $V$ 的一組基底。 :::warning - [x] 純量不用粗體 - [ ] 這個答案只是把定義寫一遍,並沒有解釋為什麼。 設 $c_1\bb_1 + c_2\bb_2 + c_3\ba = \bzero$ 則 ???。 由於 $\beta$ 獨立。 所以 ???。 因此 $\beta_1$ 獨立。 ::: ***Ans*** 設 $c_1\bb_1 + c_2\bb_2 + c_3\ba = \bzero$﹐ 已知 ${\bf a} = 4{\bf b}_2 + 5{\bf b}_3$ 代入原式 使得 $c_1\bb_1 + c_2\bb_2 + c_3(4{\bf b}_2 + 5{\bf b}_3)$ = $c_1\bb_1 + (c_2+4 c_3)\bb_2 + 5c_3\bb_3 = \bzero$。 由於 $\beta$ 獨立。 所以 $c_1 = c_2 + 4c_3 = 5c_3 = 0$ 並得到 $c_1 = c_2 = c_3 = 0$。 因此 $\beta_1$ 獨立。 ##### Exercise 3 令 $\beta = \{{\bf b}_1,\ldots,{\bf b}_n\}$ 為子空間 $V$ 的一組基底 而 $B$ 為一矩陣其行向量為 $\beta$ 的向量。 令 $R$ 為 $B$ 的最簡階梯形式矩陣。 若 $i$ 為 $R$ 的一個軸﹐ 則表示在 $R$ 上第 $i$ 行比前面幾行多了一列非零的元素﹐ 因此我們有以下等價敘述: 1. $i$ is a pivot of $R$. 2. ${\bf b}_i\notin \operatorname{span}(\{{\bf b}_1,\ldots,{\bf b}_{i-1}\})$. ##### Exercise 3(a) 令 ${\bf a}\in V$ 是一個非零向量 並計算 $\left[\begin{array}{c|c} {\bf a} & B \end{array}\right]$ 的 $\beta_C$。 說明 ${\bf a}$ 一定會落在 $\beta_C$ 裡﹐ 因此 $\beta_C$ 是 $V$ 的一組基底並且包含 ${\bf a}$。 :::warning - [x] 因此 $\beta_C$ 是 $V$ 的一組基底並且包含 ${\bf a}$。 <-- 這句就是要證明的。 因為 $\ba\neq\bzero$,所以 $\ba\notin\vspan(\emptyset)$。 根據題目的說明,$\ba$ 會對應到 $\left[\begin{array}{c|c} {\bf a} & B \end{array}\right]$ 的 $\beta_C$ 的軸,所以一定會被選在 $\beta_C$ 裡。 由於 $\beta_C$ 是 $\Col(\left[\begin{array}{c|c} {\bf a} & B \end{array}\right])$ 的基底。 又 $\ba\in V$,所以 ???。 因此 ??? 是 ??? 的一組基底。 ::: ***Ans*** 因為 $\ba\neq\bzero$,所以 $\ba\notin\vspan(\emptyset)$。 且根據題目的說明,$\ba$ 會對應到 $\left[\begin{array}{c|c} {\bf a} & B \end{array}\right]$ 的 $\beta_C$ 的軸,所以一定會被選在 $\beta_C$ 裡。 由於 $\beta_C$ 是 $\Col(\left[\begin{array}{c|c} {\bf a} & B \end{array}\right])$ 的基底,又 $\ba\in V$, 所以 $\Col(\left[\begin{array}{c|c} {\bf a} & B \end{array}\right]) = V$。 因此 $\beta_C$ 是 $V$ 的一組基底。 ##### Exercise 3(b) 令 $\alpha$ 是一群 $V$ 中有限個數的向量且線性獨立﹐ 且 $A$ 為一矩陣其各行向量為 $\alpha$ 中的向量。 並計算 $\left[\begin{array}{c|c} A & B \end{array}\right]$ 的 $\beta_C$。 說明 $\alpha\subseteq\beta_C$ 裡﹐ 因此 $\beta_C$ 是 $V$ 的一組基底並且包含 $\alpha$。 **[由林柏仰同學提供]** 答: 若 $\alpha$ 為 $V$ 中一群有限個數的向量且線性獨立。 且 $A$ 為一個行向量為 $\alpha$ 中的向量的矩陣。 則我們可得知 $\alpha$ 相當於 $A$ 行向量的基底。 觀察 $\left[\begin{array}{c|c} A & B \end{array}\right]$ ,我們會發現由於 $A$ 的行向量為一群線性獨立的向量。 故若將 $\left[\begin{array}{c|c} A & B \end{array}\right]$ 進行列運算已得到其最簡階梯型的矩陣 $\left[\begin{array}{c|c} R_A & R_B \end{array}\right]$ ,我們會發現 $R_A$ 中的每一行都會對應到軸。 換句話說, $\left[\begin{array}{c|c} A & B \end{array}\right]$ 行向量的基底 $\beta_C$ 必定包含 $A$ 的行向量,也就是 $\alpha$ 。 因此 $\alpha\subseteq\beta_C$ 。 因為 $B$ 的行向量 $\beta$ 為 $V$ 的一組基底,故 $\Col(B) = \vspan(\beta) = V$ 且 $\alpha$ 為 $V$ 中的一群有限個數且線性獨立的向量,故 $\vspan(\alpha)\subseteq\vspan(\beta)$ 。 同時 $\Col(A)\subseteq\Col(B)$ 為顯而易見的。 因此我們也可推斷出 $\vspan(\beta_C) = \Col([A|B]) = \Col(B) = V$ 。 換句話說, $\beta_C$ 為 $\vspan(\beta_C)$ 也就是 $V$ 的一組基底。 ##### Exercise 4 證明 basis exchange lemma (vector form)。 **[由林柏仰同學提供]** 答: 令 $\beta = \{\bu_1,\bu_2,\ldots,\bu_k\}$ 為 $V$ 中的一組基底。 並令 $\ba$ 為一向量且 $\ba$ 滿足 $\ba\in V$ 並且 $\ba$ 可寫成 $\ba = c_1\bu_1 + c_2\bu_2 + \ldots + c_k\bu_k$ 的形式。 若令 $\beta' = \{\ba,\bu_1,\bu_2,\ldots,\bu_k\}$ 。 我們會發現 $d_a\ba + d_1\bu_1 + d_2\bu_2 + \ldots + d_k\bu_k = \bzero$ 此等式有 $d_a = d_1 = \ldots = d_k = 0$ 以外的解的。 (只需令 $d_1 = -d_ac_1, d_2 = -d_ac_2, \ldots, d_k = -d_ac_k$ 即可。) 故 $\beta'$ 不為線性獨立。 且因 $\ba$ 為 $\beta$ 中的向量所寫出來的線性組合,故在 $\beta$ 中加入 $\ba$ 不會改變所張出的子空間。 換句話說, $V = \vspan(\beta) = \vspan(\beta')$ 而若令 $\beta''$ 相當於 $\beta'$ 去掉 $\bu_1$ 。 事實上在 $\beta'$ 中拿掉 $\beta$ 中的任一向量形成 $\beta''$,接下來的動作與結果(證明 $\beta''$ 為一基底)都會類似,而在此以去掉 $\bu_1$ 做說明。 此時 $e_a\ba + e_2\bu_2 + \ldots + e_k\bu_k = \bzero$ 只有當 $e_a = e_2 = \ldots = e_k = 0$ 才會有解。 因為此等式相當於 $e_a\bu_1 + (e_ac_2 + e_2)\bu_2 + (e_ac_3 + e_3)\bu_3 + \ldots + (e_ac_k + e_k)\bu_k = 0$ 。 因 $\beta$ 為線性獨立,故所有係數皆須等於 $0$ 才會有解,相當於上述成立。 故 $\beta''$ 為線性獨立。 此時因為 $\bu_1$ 可被 $\{\ba,\bu_2\,\bu_3,\ldots,\bu_k\}$ 做出來,故去掉 $\bu_1$ 不會影響所張出的子空間。 換句話說, $V = \vspan(\beta') = \vspan(\beta'')$ 。 ##### Exercise 5 利用 basis exchange lemma (vector form) 證明 basis exchange lemma (set form)。 **[由林柏仰同學提供]** 答: 令 $\beta = \{\bb_1,\bb_2,\ldots,\bb_d\}$ 為 $V$ 中的一組基底。 令 $\alpha$ 為 $V$ 中一群線性獨立的向量,這些向量可能有無窮多個 。 令 $\alpha' = \{\ba_1,\ba_2,\ldots,\ba_k\}$ 為 $\alpha$ 中的 $k$ 個向量,且 $\alpha'$ 也會是獨立集。 因為 $\alpha\subseteq V$ ,故 $\alpha$ 中的所有向量都可以寫成 $\beta$ 的線性組合。 因此 $\alpha'$ 裡的向量都可以寫成 $\beta$ 的線性組合。 此時依據向量版的基底交換法則,我們可在 $\beta$ 中找到一向量 $\bb_1$ ,並且 $\bb_1$ 滿足在 $\ba_1$ 寫成 $\beta$ 的線性組合時, $\bb_1$ 的係數不為 $0$ 。 故我們可將 $\ba_1$ 和 $\bb_1$ 交換並形成新的一基底 $\beta_1$ ,且 $\beta_1 = (\beta\cup\{\ba_1\})\setminus\{\bb_1\}$ 。 接下來,我們可以重複以上動作直到 $\alpha'$ 中的向量都被交換進去。 而在這個過程中,因為 $\alpha'$ 為獨立集,故 $\alpha'$ 中的任一向量 $\ba_i$ 都不能用 $\alpha'\setminus\{\ba_i\}$ 表示出來。 故我們在每次交換中都可以在 $\beta$ 中找到一向量交換出去。 而若將 $\beta$ 中被交換出去的所有向量看成一集合 $\beta'$ 。 最後我們會得到 $\beta_k =(\beta\cup\alpha')\setminus\beta'$ 為一基底。 :::info 數學不完整:1c, 1d, 2a, 2b, 3a, 3b, 4, 5 目前分數:4/5 :::

Import from clipboard

Paste your markdown or webpage here...

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template has been removed or transferred.
Upgrade
All
  • All
  • Team
No template.

Create a template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

Slide Example

API Docs

Edit in VSCode

Install browser extension

Contacts

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

Note content is identical to the latest version.
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully