Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

Your note will be visible on your profile and discoverable by anyone.
Your note is now live.
This note is visible on your profile and discoverable online.
Everyone on the web can find and read all notes of this public team.
See published notes
Unpublish note
Please check the box to agree to the Community Guidelines.
View profile
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
# 喬丹標準型 Jordan canonical form ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}$ ```python from lingeo import random_good_matrix ``` ## Main idea A **Jordan block** $J_{\lambda,m}$ is an $m\times m$ matrix $$ J_{\lambda,m} = \begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \ddots & \vdots \\ 0 & 0 & \lambda & \ddots & 0 \\ \vdots & ~ & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & 0 & \lambda \end{bmatrix}. $$ A Jordan block $J_{\lambda,m}$ has only one eigenvalue $\lambda$ with $\am(\lambda) = m$ and $\gm(\lambda) = 1$. Therefore, it is not diagonalizable whenever $m\geq 2$. ##### Theorem (Jordan canonical form) For any square matrix $A$ over $\mathbb{C}$ there is a basis $\beta$ such that $[f_A]_\beta^\beta$ is a block diagonal matrix whose diagonal blocks are Jordan blocks. A **generalized eigenvector** of $A$ with respect to $\lambda$ is a nonzero vector $\bv$ such that $$ (A - \lambda I)^k\bv = \bzero $$ for some $k$. Equivalently, $p(A)\bv = \bzero$ for $p(x) = (x - \lambda)^k$. Therefore, $m_{A,\bv}(x) \mid (x - \lambda)^k$ and $p(x)$ can be chosen as $m_{A,\bv}(x) = (x - \lambda)^d$ for some $d \leq n$ instead. Consequently, the set of all generalized eigenvectors of $A$ with respect to $\lambda$ are exactly the nonzero vectors in $$ F_\lambda = \ker(A - \lambda I)^n, $$ and we call $F_\lambda$ as the **generalized eigenspace** of $A$ with respect to $\lambda$. A subspace $W$ is called an $A$-invariant subspace if $$ \{A\bw: \bw\in W\} \subseteq W. $$ If $W$ is an $A$-invariant subspace, then the restriction $f_A\big|_W: W \rightarrow W$ defined as $f_A(\bw) = A\bw$ is a well-defined function with $\spec(f_A\big|_W) \subseteq \spec(f_A)$. Indeed, if $\alpha$ is a basis of $W$ and $\beta\supseteq\alpha$ is an extendsion of $\alpha$ as a basis of $\mathbb {R}^n$, then $$ [f_A]_\beta^\beta = \begin{bmatrix} A_W & B \\ O & C \end{bmatrix}, $$ where $A_W = [f_A\big|_W]_\alpha^\alpha$. Therefore, $F_\lambda$ is an $A$-invariant subspace. A foundation of the theorem of Jordan canonical form is the following. ##### Theorem (Generalized eigenspace decomposition) Let $A$ be an $n\times n$ matrix over $\mathbb{C}$ with distinct eigenvalues $\lambda_1,\ldots,\lambda_q$. Then $\{F_{\lambda_1}, \ldots, F_{\lambda_q}\}$ is linearly independent, and $$ \mathbb{R}^n = F_{\lambda_1} \oplus \cdots \oplus F_{\lambda_q}. $$ That is to say, if we pick a basis $\beta_{\lambda_i}$ of $F_{\lambda_i}$ for $i = 1,\ldots, q$ and set $\beta = \beta_{\lambda_1} \cup \cdots \cup \beta_{\lambda_q}$, then $$ [f_A]_\beta^\beta = \begin{bmatrix} N_1 & O & \cdots & O \\ O & N_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & O \\ O & \cdots & O & N_q \end{bmatrix}. $$ Here we may set $f_{\lambda_i}$ as the resetriction $f_A\big|_{E_{\lambda_i}}$ such that $N_i = [f_{\lambda_i}]_{\beta_i}^{\beta_i}$. Note that each $N_i$ only has a single eigenvalue $\lambda_i$ whose algebraic multiplicity is the size of $N_1$. In other words, $N_i - \lambda_i I$ is a matrix with a single eigenvalue $0$. An $n\times n$ matrix $A$ such that $A^k = O$ for some $k$ is called a **nilpotent matrix**, whose eigenvalues are $0$ with multiplicity $n$. The minimum integer $d\geq 0$ such that $A^d = O$ is called the **index** of $A$. Therefore, $N_i - \lambda_i I$ is a nilpotent matrix, and we are going to focus on these matrices. ##### Theorem (Nilpotent matrix decomposition) Let $N$ be an $n\times n$ nilpotent matrix. Then there is a basis $\beta$ of $\mathbb{C}^n$ such that $[f_N]_\beta^\beta$ is a block diagonal matrix whose diagonal blocks are nilpotent Jordan blocks. Let $N - \lambda I$ be an $n\times n$ nilpotent matrix of index $d$. The steps for finding such a basis are as follows: 1. Find a basis $\beta_{d-1}$ for $\Col(A^{d-1})\cap \ker(A)$. 2. Expand $\beta_{d-1}$ to $\beta_{d-1}\cup\beta_{d-2}$ as a basis of $\Col(A^{d-2})\cap\ker(A)$. Keep doing this until we find a basis $\beta_{d-1}\cup\cdots\cup\beta_0$ of $\Col(A^0)\cap\ker(A) = \ker(A)$. 3. Start with $\beta = \emptyset$. For $k = d-1, \ldots, 0$ and each vector $\bv\in\beta_k$, solve $A^{k}\bx = \bv$ for $\bx$. Then add $\bv = A^{d-1}\bx, A^{d-2}\bx, \ldots, \bx$ to $\beta$. ## Side stories - read the minimal polynomial from the Jordan canonical form ## Experiments ##### Exercise 1 執行以下程式碼。 <!-- eng start --> Run the code below. <!-- eng end --> ```python ### code set_random_seed(0) print_ans = False b = 4 h = 3 ms = [choice(list(range(1, h + 1))) for i in range(b)] max_ms = max(ms) D = block_diagonal_matrix([jordan_block(0,ms[i]) for i in range(b)]) n = sum(ms) Q = random_good_matrix(n,n,n,2) A = Q * D * Q.inverse() print("n =", n) pretty_print(LatexExpr("A ="), A) for i in range(1, h + 1): pretty_print(LatexExpr(r"\operatorname{nul}(A - 0I)^{%s} ="%i), (A^i).nullity()) if print_ans: print("Jordan canonical form:") pretty_print(D) print("minimal polynomial =", x^max_ms) ``` ##### Exercise 1(a) 求出 $A$ 的喬丹標準型。 <!-- eng start --> Find the Jordan canonical form of $A$. <!-- eng end --> ##### Exercise 1(b) 計算 $m_A(x)$。 <!-- eng start --> Find $m_A(x)$. <!-- eng end --> :::info What do the experiments try to tell you? (open answer) ... ::: ## Exercises ##### Exercise 2 令 $$ A = \begin{bmatrix} 3 & -17 & 23 & 1 & 5 \\ 1 & 18 & -21 & 0 & -5 \\ 5 & -3 & 5 & 3 & -1 \\ -10 & 69 & -90 & -6 & -17 \\ -19 & 56 & -69 & -13 & -7 \end{bmatrix}. $$ 已知 $A$ 的相異特徵值為 $2, 3$。 求出廣義特徵空間 $F_2$ 的一組基底 $\beta_2$、 及 $F_3$ 的一組基底 $\beta_3$、 並令 $\beta = \beta_2\cup\beta_3$。 求 $[f_A]_\beta^\beta$。 <!-- eng start --> Let $$ A = \begin{bmatrix} 3 & -17 & 23 & 1 & 5 \\ 1 & 18 & -21 & 0 & -5 \\ 5 & -3 & 5 & 3 & -1 \\ -10 & 69 & -90 & -6 & -17 \\ -19 & 56 & -69 & -13 & -7 \end{bmatrix}. $$ It is known that the distinct eigenvalues of $A$ are $2, 3$. Find a basis $\beta_2$ for the generalized eigenspace $F_2$ and a basis $\beta_3$ for a generalized eigenspace $F_3$ and let $\beta = \beta_2\cup\beta_3$。 Find $[f_A]_\beta^\beta$. <!-- eng end --> ##### Exercise 3 令 $$ A = \begin{bmatrix} -2 & -9 & -1 & 5 & -5 \\ 4 & 20 & 1 & -9 & 10 \\ -3 & -9 & -2 & 7 & -6 \\ -10 & -47 & -4 & 24 & -25 \\ -16 & -78 & -5 & 37 & -40 \end{bmatrix}. $$ 已知 $A$ 為一冪零矩陣。 求一基底 $\beta$ 使得 $[f_A]_\beta^\beta$ 是喬丹標準型。 <!-- eng start --> Let $$ A = \begin{bmatrix} -2 & -9 & -1 & 5 & -5 \\ 4 & 20 & 1 & -9 & 10 \\ -3 & -9 & -2 & 7 & -6 \\ -10 & -47 & -4 & 24 & -25 \\ -16 & -78 & -5 & 37 & -40 \end{bmatrix}. $$ It is known that $A$ is a nilpotent matrix. Find a basis $\beta$ such that $[f_A]_\beta^\beta$ is the Jordan canonical form. <!-- eng end --> ##### Exercise 4 凱力–漢米頓定理是證明喬丹標準型理論的關鍵之一。 然而假設已經知道每個複數矩陣都有喬丹標準型, 說明凱力–漢米頓定理在喬丹標準型的前提下是直觀的。 <!-- eng start --> The theory of Jordan canonical form is an essential key to the proof of the Cayley–Hamilton theorem. However, suppose for some reason we already know that every complex matrix has the Jordan canonical form. Show that under this assumption, the Cayley–Hamilton theorem can be proved easily. <!-- eng end --> ##### Exercise 5 令 $A$ 為一複數方陣。 說明 $e^A$ 會收斂。 <!-- eng start --> Let $A$ be a complex square matrix. Show that $e^A$ converges. <!-- eng end --> ##### Exercise 6 喬丹標準型的重要功用之一是判斷兩個矩陣是否相似。 在喬丹標準型的理論下不難發現以下敘述等價: 1. $A$ 和 $B$ 相似。 2. $A$ 和 $B$ 有相同的喬丹標準型。 判斷以下矩陣是否相似。 <!-- eng start --> One of the most important applications of the Jordan canonical form is to determine if two matrices are similar. By the theory, it is not hard to see the following are equivalent: 1. $A$ and $B$ are similar. 2. $A$ and $B$ have the same Jordan canonical form. Determine if the following pairs of matrices are similar. <!-- eng end --> ##### Exercise 6(a) $$ A = \begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}. $$ ##### Exercise 6(b) $$ A = \begin{bmatrix} 6 & -2 & -2 \\ 0 & 3 & 0 \\ 6 & -4 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 4 & -2 & 0 \\ 3 & 3 & 1 \\ -8 & 4 & 1 \end{bmatrix}. $$ ##### Exercise 7 令 $A$ 為一 $n\times n$ 矩陣且 $\lambda$ 為其一特徵值。 令 $F_\lambda$ 為其廣義特徵空間。 證明以下關於廣義特徵空間的性質。 <!-- eng start --> Let $A$ be an $n\times n$ and $\lambda$ one of its eigenvalues. Let $F_\lambda$ be the generalized eigenspace with respect to $\lambda$. Prove the following basic properties about the generalized eigenspace. <!-- eng end --> ##### Exercise 7(a) 證明 $F_\lambda$ 是一個 $A$-不變子空間。 提示:$A(A - \lambda I)^k = (A - \lambda I)^k A$。 <!-- eng start --> Show that $F_\lambda$ is an $A$-invariant subspace. Hint: $A(A - \lambda I)^k = (A - \lambda I)^k A$. <!-- eng end --> ##### Exercise 7(b) 令 $d$ 為 $(x - \lambda)$ 在 $m_A(x)$ 中的重數。 說明 $F_\lambda = \ker (A - \lambda I)^d$。 <!-- eng start --> Let $d$ be the multiplicity of $(x - \lambda)$ in $m_A(x)$. Show that $F_\lambda = \ker (A - \lambda I)^d$. <!-- eng end --> ##### Exercise 7(c) 令 $\alpha$ 為 $F_\lambda$ 的一組基底, 將其擴展為 $\mathbb{R}^n$ 的一組基底 $\beta$。 說明 $[f_A]_\beta^\beta$ 有以下型式 $$ [f_A]_\beta^\beta = \begin{bmatrix} N_\lambda & B \\ O & D \end{bmatrix}, $$ 其中 $N_\lambda$ 的特徵值均為 $\lambda$。 藉此說明 $\dim(F_\lambda) \leq \am(\lambda)$。 <!-- eng start --> Let $\alpha$ be a basis of $F_\lambda$. Extend it into a basis $\beta$ of $\mathbb{R}^n$. Show that $[f_A]_\beta^\beta$ has the form $$ [f_A]_\beta^\beta = \begin{bmatrix} N_\lambda & B \\ O & D \end{bmatrix}, $$ where $N_\lambda$ is a matrix whose eigenvalues are all equal to $\lambda$. Use this fact to show that $\dim(F_\lambda) \leq \am(\lambda)$. <!-- eng end --> ##### Exercise 7(d) 令 $A$ 的相異特徵值為 $\lambda_1, \ldots, \lambda_q$, 而 $F_{\lambda_1}, \ldots, F_{\lambda_q}$ 為它們的廣義特徵空間。 證明 $\{F_{\lambda_1}, \ldots, F_{\lambda_q}\}$ 線性獨立。 提示:令 $p_1(x)$ 為 $p_A(x)$ 中去掉所有 $(x - \lambda_1)$ 因式的多項式。 假設 $\bv_1 + \cdots + \bv_q = \bzero$ 且對於 $i = 1, \ldots, q$ 滿足 $\bv_i \in F_{\lambda_i}$。 將等號兩邊同乘 $p_1(A)$ 並利用 $m_{A,\bv}(x)$ 的性質來說明 $\bv_1 = \bzero$。 <!-- eng start --> Let $\lambda_1, \ldots, \lambda_q$ be the distinct eigenvalues of $A$ and $F_{\lambda_1}, \ldots, F_{\lambda_q}$ the corresponding eigenspaces. Show that $\{F_{\lambda_1}, \ldots, F_{\lambda_q}\}$ is linearly independent. Hint: Let $p_1(x)$ be the polynomial obtained from $p_A(x)$ by removing the factor $(x - \lambda_1)$. Suppose $\bv_1 + \cdots + \bv_q = \bzero$ with $\bv_i \in F_{\lambda_i}$ for $i = 1, \ldots, q$. Pre-multiply $p_1(A)$ to both sides and use some properties of $m_{A,\bv}(x)$ to show that $\bv_1 = \bzero$. <!-- eng end --> ##### Exercise 7(e) 令 $$ p_A(x) = (\lambda_1 - x)^{\am(\lambda_1)} \cdots (\lambda_q - x)^{\am(\lambda_q)} $$ 且對每個 $i = 1,\ldots, q$ 計算 $B_i = (A - \lambda_i I)^{\am(\lambda_i)}$。 證明 $$ \nul(B_1) + \cdots + \nul(B_q) \geq n $$ 且 $$ \mathbb{R}^n = F_{\lambda_1} \oplus \cdots \oplus F_{\lambda_q}. $$ <!-- eng start --> Let $$ p_A(x) = (\lambda_1 - x)^{\am(\lambda_1)} \cdots (\lambda_q - x)^{\am(\lambda_q)} $$ and let $B_i = (A - \lambda_i I)^{\am(\lambda_i)}$ for each $i = 1,\ldots, q$. Show that $$ \nul(B_1) + \cdots + \nul(B_q) \geq n $$ and $$ \mathbb{R}^n = F_{\lambda_1} \oplus \cdots \oplus F_{\lambda_q}. $$ <!-- eng end --> ##### Exercise 8 令 $A$ 為一冪零矩陣且其深度(index)為 $d$。 證明以下關於冪零矩陣的性質。 <!-- eng start --> Let $A$ be a nilpotent matrix with index $d$. Prove the following properties about a nilpotent matrix. <!-- eng end --> ##### Exercise 8(a) 已知 $\{\bv_1,\bv_2,\bv_3\}$ 為 $\ker(A)$ 中的線性獨立集。 若存在 $\bx_1$ 及 $\bx_2$ 使得 $A\bx_1 = \bv_1$ 且 $A\bx_2 = \bv_2$。 說明 $\{\bv_1,\bv_2,\bv_3,\bx_1,\bx_2\}$ 線性獨立。 <!-- eng start --> Suppose $\{\bv_1,\bv_2,\bv_3\}$ is an linearly independent set in $\ker(A)$. Suppose there are $\bx_1$ and $\bx_2$ such that $A\bx_1 = \bv_1$ and $A\bx_2 = \bv_2$. Show that $\{\bv_1,\bv_2,\bv_3,\bx_1,\bx_2\}$ is linearly independent. <!-- eng end --> ##### Exercise 8(b) 定義函數一系列函數 $$ \mathbb{R}^n \xrightarrow{f_1} \Col(A) \xrightarrow{f_2} \Col(A^2) \xrightarrow{f_3}\cdots \xrightarrow{f_d} \Col(A^d) = \{\bzero\} $$ 其中對任意 $k = 1,\ldots, d$ 都定義 $f_k(\bx) = A\bx$。 證明對任意 $k = 1,\ldots, d$ 都有 $$ \rank(A^{k - 1}) = \rank(A^k) + \dim(\Col(A^{k-1})\cap\ker(A)), $$ 也就是 $$ \dim(\Col(A^{k-1})\cap\ker(A)) = \rank(A^{k - 1}) - \rank(A^k) = \nul(A^k) - \nul(A^{k - 1}). $$ <!-- eng start --> Define a sequence of functions $$ \mathbb{R}^n \xrightarrow{f_1} \Col(A) \xrightarrow{f_2} \Col(A^2) \xrightarrow{f_3}\cdots \xrightarrow{f_d} \Col(A^d) = \{\bzero\} $$ such that $f_k(\bx) = A\bx$ for $k = 1,\ldots, d$. Show that $$ \rank(A^{k - 1}) = \rank(A^k) + \dim(\Col(A^{k-1})\cap\ker(A)) $$ for $k = 1,\ldots, d$. That is, $$ \dim(\Col(A^{k-1})\cap\ker(A)) = \rank(A^{k - 1}) - \rank(A^k) = \nul(A^k) - \nul(A^{k - 1}). $$ <!-- eng end --> ##### Exercise 8(c) 證明 $$ \rank(A^{k - 1}) - \rank(A^k) = \nul(A^k) - \nul(A^{k - 1}) $$ 會隨著 $k$ 變大而遞減(或不變)。 <!-- eng start --> Show that $$ \rank(A^{k - 1}) - \rank(A^k) = \nul(A^k) - \nul(A^{k - 1}) $$ decreases (or stays the same) when $k$ increases. <!-- eng end -->

Import from clipboard

Paste your markdown or webpage here...

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template has been removed or transferred.
Upgrade
All
  • All
  • Team
No template.

Create a template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

Slide Example

API Docs

Edit in VSCode

Install browser extension

Contacts

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

Note content is identical to the latest version.
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully