jack4818
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # CryptoCTF 2021 | Challenge | Category | Solved by | | ----------- | -------------------- | ------------ | | Hamul | RSA | Lyutoon | | Robert | Carmichael $\lambda$ | Robin_Jadoul | | LINDA | Discrete logarithm | NeketmanX | | Trunc | Signature forgery | NeketmanX | | Double Miff | Algebra | NeketmanX | | Symbols | Misc | Q7 | | Onlude | Linear algebra | Q7 | | Hyper Normal| Misc | Q7 | <!-- Template for writeup --> ## Challenge Name ##### Score ### Challenge ### Solution ##### Flag ## Hamul ##### Score:83 ### Challenge RSA could be hard, or easy? - [hamul_e420933a0655ea08209d1fe9588ba8a3a6db6bf5.txz.txz](https://cr.yp.toc.tf/tasks/hamul_e420933a0655ea08209d1fe9588ba8a3a6db6bf5.txz) ```python #!/usr/bin/env python3 from Crypto.Util.number import * from flag import flag nbit = 64 while True: p, q = getPrime(nbit), getPrime(nbit) P = int(str(p) + str(q)) Q = int(str(q) + str(p)) PP = int(str(P) + str(Q)) QQ = int(str(Q) + str(P)) if isPrime(PP) and isPrime(QQ): break n = PP * QQ m = bytes_to_long(flag.encode('utf-8')) if m < n: c = pow(m, 65537, n) print('n =', n) print('c =', c) # n = 98027132963374134222724984677805364225505454302688777506193468362969111927940238887522916586024601699661401871147674624868439577416387122924526713690754043 # c = 42066148309824022259115963832631631482979698275547113127526245628391950322648581438233116362337008919903556068981108710136599590349195987128718867420453399 ``` ### Solution Since we can see that the generation of $PP$ and $QQ$ is special: ```python while True: p, q = getPrime(nbit), getPrime(nbit) P = int(str(p) + str(q)) Q = int(str(q) + str(p)) PP = int(str(P) + str(Q)) QQ = int(str(Q) + str(P)) if isPrime(PP) and isPrime(QQ): break ``` - If we let $x, y = len(str(p)), len(str(q))$, we will get: $P = 10^{x}p + q,\, Q = 10^{y}q + p$ - Also we let $x', y' = len(str(P)), len(str(Q))$, we will get: $PP = 10^{x'}P+Q,\, QQ=10^{y'}Q+P$ - After we put $P = 10^{x}p + q,\, Q = 10^{y}q + p$ into the above equation and calculate $N=PP*QQ$ we will find $N$ looks like in this form: $N = 10^{x+x'+y+y'}pq+...+pq$ - Since $x+x'+y+y'$ is big enough, so we know that $str(N)[:?]$ is actually $str(p*q)[:?]$ and as the same, $str(N)[?:]$ is actually $str(p*q)[?:]$ - After generating my own testcase, I find that $str(N)[:18] = str(p*q)[:?]$, $str(N)[-18:] = str(p*q)[-18:]$ and actually $len(str(p*q)) = 38$ so we just need brute force 2 number between the high-part and low-part. - So we can get $p*q$ and factor it to get $p$ and $q$. The next is simple decryption. ```sage from Crypto.Util.number import * from tqdm import tqdm def decrypt_RSA(c, e, p, q): phi = (p-1) * (q-1) d = inverse(e, phi) m = pow(c, d, p*q) print(long_to_bytes(m)) n = 98027132963374134222724984677805364225505454302688777506193468362969111927940238887522916586024601699661401871147674624868439577416387122924526713690754043 c = 42066148309824022259115963832631631482979698275547113127526245628391950322648581438233116362337008919903556068981108710136599590349195987128718867420453399 low = str(n)[-18:] high = str(n)[:18] pq_prob = [] for i in range(10): for j in range(10): pq_prob.append(int(high + str(i) + str(j)+ low)) for x in tqdm(pq_prob): f = factor(x) if (len(f) == 2 and f[0][0].nbits() == 64): p, q = f[0][0], f[1][0] break P = int(str(p) + str(q)) Q = int(str(q) + str(p)) PP = int(str(P) + str(Q)) QQ = int(str(Q) + str(P)) N = PP * QQ print(N == n) decrypt_RSA(c, 65537, PP, QQ) ``` ##### Flag > CCTF{wH3Re_0Ur_Br41N_Iz_5uP3R_4CtIVe_bY_RSA!!} ## Robert ##### 194 pts (19/444 solves) ### Challenge > Oh, Robert, you can always handle everything! `nc 07.cr.yp.toc.tf 10101` Upon connection, we see ``` ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + hi all, all cryptographers know that fast calculation is not easy! + + In each stage for given integer m, find number n such that: + + carmichael_lambda(n) = m, e.g. carmichael_lambda(2021) = 966 + ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | send an integer n such that carmichael_lambda(n) = 52: ``` where we can of course assume we will need to pass a certain number of rounds, and the numbers will grow. ### Solution Early on, we find [this math stackexchange post](https://math.stackexchange.com/questions/41061/what-is-the-inverse-of-the-carmichael-function), where we already make the comment > looks hard as, in general, this problem appears to be at least as hard as factoring $m$. We consider the possibility of factoring $m$ and applying a dynamic programming based approach to group the prime factors of $m$ among the prime factors of what would be $n$. In the end, this did not get implemented, as our intermediate attempts at cheesy solutions converge towards a simpler approach that solves the challenge. The first of these cheesy attempts comes from 3m4 -- while setting the basis for further server communication scripts -- where we simply cross our fingers and hope that $m + 1$ is prime, leading to $n = m + 1$ and $\lambda(n) = m$. While this clears up to 6 rounds on numerous occasions, it appears we'd need to either hammer the server really hard, or find something better. Somewhere during this period of running our cheesy script full of hope, dd suggests that we might be in a situations where $m$ is known to be derived from a semiprime originally, i.e. $m = \lambda(pq)$. Alongside this idea, an attempted solution exploiting that property is proposed, that unfortunately has several flaws and doesn't work against the server. Basing ourselves on this idea, we can however write the dumbest sage script imaginable for this problem: - Let $D$ be the set of divisors of $m$ - Enumerate all $(a, b) \in D^2$ - If $a + 1$ is prime, $b + 1$ is prime, *and* $\mathsf{lcm}(a, b) = m$: reply with $n = (a + 1)(b + 1)$ Clearly, *if* our assumed property that $m = \lambda(pq)$ holds, and $m$ does not grow too large to enumerate $D^2$, this should give us a correct solution. Without all too much hope, we run the following sage script (with the `DEBUG` command line argument for pwntools, so that we can observe the flag should it get sent at the end): ```sage import os os.environ["PWNLIB_NOTERM"] = "true" from pwn import remote io = remote("07.cr.yp.toc.tf", 10101) io.recvuntil(b"++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++") io.recvuntil(b"++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++") proof.arithmetic(False) def reverse_lambda(n): for x in divisors(n): for y in divisors(n): if lcm(x, y) == n and is_prime(x + 1) and is_prime(y + 1): return (x + 1) * (y + 1) try: while True: io.recvuntil(b"carmichael_lambda(n) = ") integer = ZZ(io.recvuntil(b":")[:-1]) print(f"[*] Reversed: {integer} ->", end=" ", flush=True) rev = reverse_lambda(integer) print(f"{rev}") io.sendline(str(rev).encode()) except EOFError: print("EOF") ``` Against our initial expectations, we easily clear more than 10 rounds. Slowing down on an occasional $m$ that might have been hard to factor or have a lot of different divisors, the script happily chugs along without the server closing the connection on it, eventually getting the flag after 20 rounds. ##### Flag > CCTF{Carmichael_numbers_are_Fermat_pseudo_primes} ## LINDA ##### Score: 169 (23/444 solves) ### Challenge > Dan Boneh loves to improve cryptosystems, you should be loving breaking them? `nc 07.cr.yp.toc.tf 31010` - [linda.txz](https://cr.yp.toc.tf/tasks/linda_a26f6987ed6c630297c2df0847ef258ad3810ca2.txz) ```python= #!/usr/bin/env python3 from Crypto.Util.number import * from math import gcd from flag import flag def keygen(p): while True: u = getRandomRange(1, p) if pow(u, (p-1) // 2, p) != 1: break x = getRandomRange(1, p) w = pow(u, x, p) while True: r = getRandomRange(1, p-1) if gcd(r, p-1) == 1: y = x * inverse(r, p-1) % (p-1) v = pow(u, r, p) return u, v, w def encrypt(m, pubkey): p, u, v, w = pubkey assert m < p r, s = [getRandomRange(1, p) for _ in '01'] ca = pow(u, r, p) cb = pow(v, s, p) cc = m * pow(w, r + s, p) % p enc = (ca, cb, cc) return enc def die(*args): pr(*args) quit() def pr(*args): s = " ".join(map(str, args)) sys.stdout.write(s + "\n") sys.stdout.flush() def sc(): return sys.stdin.readline().strip() def main(): border = "+" pr(border*72) pr(border, " .:::::: LINDA Cryptosystem has high grade security level ::::::. ", border) pr(border, " Can you break this cryptosystem and find the flag? ", border) pr(border*72) pr('| please wait, preparing the LINDA is time consuming...') from secret import p u, v, w = keygen(p) msg = bytes_to_long(flag) pubkey = p, u, v, w enc = encrypt(msg, pubkey) while True: pr("| Options: \n|\t[E]xpose the parameters \n|\t[T]est the encryption \n|\t[S]how the encrypted flag \n|\t[Q]uit") ans = sc().lower() if ans == 'e': pr(f'| p = {p}') pr(f'| u = {u}') pr(f'| v = {v}') pr(f'| w = {w}') elif ans == 's': print(f'enc = {enc}') elif ans == 't': pr('| send your message to encrypt: ') m = sc() m = bytes_to_long(m.encode('utf-8')) pr(f'| encrypt(m) = {encrypt(m, pubkey)}') elif ans == 'q': die("Quitting ...") else: die("Bye ...") if __name__ == '__main__': main() ``` ### Solution By interacting with the challenge, we can get public key parameters by sending `e`, get encrypted flag with `s`, encrypt our own messages with `t` and quit with `q`. Only the first two options will be relevant to the solution. Encryption here works like this: $p, u, v, w$ are public key parameters, message $m$ is encrypted as follows: $ca \equiv u^r \mod p$ $cb \equiv v^s \mod p$ $cc \equiv m*w^{r + s} \mod p$, where $r, s$ are uniformly random numbers from $[1;p]$. We can notice that despite $p$ being new on each connection, $p - 1$ is always smooth. Example: ``` p = 31236959722193405152010489304408176327538432524312583937104819646529142201202386217645408893898924349364771709996106640982219903602836751314429782819699 p - 1 = 2 * 3 * 11 * 41 * 137 * 223 * 7529 * 14827 * 15121 * 40559 * 62011 * 429083 * 916169 * 3810461 * 4316867 * 20962993 * 31469027 * 81724477 * 132735437 * 268901797 * 449598857 * 2101394579 * 2379719473 * 5859408629 * 11862763021 * 45767566217 ``` This is the key for solving this challenge, because after getting public key paramters and encrypted flag we can factor $p - 1$ by using trial division and [ECM](https://en.wikipedia.org/wiki/Lenstra_elliptic-curve_factorization), then use [Pohlig-Hellman algorithm](https://en.wikipedia.org/wiki/Pohlig%E2%80%93Hellman_algorithm) to compute $r, s$ as discrete logarithms of $ca, cb$ with bases $u, v$ respectively even without trying to find weaknesses in the keygen process. Then we can compute $m \equiv cc*w^{-(r + s)} \mod p$ and get the flag. Solution script: ```python= #!/usr/bin/env sage from minipwn import remote # mini-pwntools library to connect to server from Crypto.Util.number import long_to_bytes rem = remote("07.cr.yp.toc.tf", 31010) for _ in range(10): rem.recvline() rem.sendline('e') p = int(rem.recvline()[6:]) u = int(rem.recvline()[6:]) v = int(rem.recvline()[6:]) w = int(rem.recvline()[6:]) for _ in range(5): rem.recvline() rem.sendline('s') ca, cb, cc = map(int, rem.recvline()[7:-2].split(b', ')) r = discrete_log(Mod(ca, p), Mod(u, p)) # sage has built-in discrete logarithm function, which uses Pohlig-Hellman s = discrete_log(Mod(cb, p), Mod(v, p)) # algorithm and automatically determines and factors group order, which divides p - 1 m = cc * power_mod(w, -(r + s), p) % p print(long_to_bytes(m).decode()) ``` ##### Flag > CCTF{1mPr0v3D_CrYp7O_5yST3m_8Y_Boneh_Boyen_Shacham!} ## Trunc ##### Score: 334 (7 / 444 solves) ### Challenge > I wish I could say more, but I don't want to! `nc 02.cr.yp.toc.tf 23010` `nc 07.cr.yp.toc.tf 23010` - [TRUNC.txz](https://cr.yp.toc.tf/tasks/TRUNC_dd1e2d91b790125fdfc7596f0076fa476446d2fb.txz) ```python= #!/usr/bin/env python3 from Crypto.Util.number import * from hashlib import sha256 import ecdsa from flag import FLAG E = ecdsa.SECP256k1 G, n = E.generator, E.order cryptonym = b'Persian Gulf' def keygen(n, G): privkey = getRandomRange(1, n-1) pubkey = privkey * G return (pubkey, privkey) def sign(msg, keypair): nbit, dbit = 256, 25 pubkey, privkey = keypair privkey_bytes = long_to_bytes(privkey) x = int(sha256(privkey_bytes).hexdigest(), 16) % 2**dbit while True: k, l = [(getRandomNBitInteger(nbit) << dbit) + x for _ in '01'] u, v = (k * G).x(), (l * G).y() if u + v > 0: break h = int(sha256(msg).hexdigest(), 16) s = inverse(k, n) * (h * u - v * privkey) % n return (int(u), int(v), int(s)) def verify(msg, pubkey, sig): if any(x < 1 or x >= n for x in sig): return False u, v, s = sig h = int(sha256(msg).hexdigest(), 16) k, l = h * u * inverse(s, n), v * inverse(s, n) X = (k * G + (n - l) * pubkey).x() return (X - u) % n == 0 def die(*args): pr(*args) quit() def pr(*args): s = " ".join(map(str, args)) sys.stdout.write(s + "\n") sys.stdout.flush() def sc(): return sys.stdin.readline().strip() def main(): border = "+" pr(border*72) pr(border, " hi all, welcome to the high secure elliptic curve signature oracle!", border) pr(border, " Your mission is to sign the out cryptonym, try your best :) ", border) pr(border*72) keypair = keygen(n, G) pubkey, privkey = keypair while True: pr("| Options: \n|\t[P]rint the pubkey \n|\t[S]ign \n|\t[V]erify \n|\t[Q]uit") ans = sc().lower() if ans == 'p': pr("| pubkey =", pubkey.x(), pubkey.y()) elif ans == 's': pr("| send your hex message to sign: ") msg = sc() try: msg = bytes.fromhex(msg) except: die("| your message is not valid! Bye!!") if msg == cryptonym: die('| Kidding me? Bye') msg = msg[:14] sig = sign(msg, keypair) pr("| sign =", sig) elif ans == 'v': pr("| send your hex message to verify: ") msg = sc() try: msg = bytes.fromhex(msg) except: die("| your message is not valid! Bye!!") pr("| send the signature separated with comma: ") sig = sc() try: sig = [int(s) for s in sig.split(',')] except: die("| your signature is not valid! Bye!!") if verify(msg, pubkey, sig): if msg == cryptonym: die("| Good job! Congrats, the flag is:", FLAG) else: pr("| your message is verified!!") else: die("| your signature is not valid! Bye!!") elif ans == 'q': die("Quitting ...") else: die("Bye ...") if __name__ == '__main__': main() ``` ### Solution Here we have a ECDSA-like signature scheme: nonces $k$ and $l$ are generated in such a way, that they always have their 25 LSBs dependent only on private key, thus always the same, then $u$ and $v$ are obtained as $x$-coordinates of $k * G$ and $l * G$ respectively, where $G$ is a generator on the curve `secp256k1`, then $h$ = `sha256(msg)` and $s \equiv k^{-1}*(hu - vd) \mod n$ are computed, where $d$ is the private key and $n$ is the order of the curve. $(u, v, s)$ is a signature for $h$. Verification works as follows: again, $h$ = `sha256(msg)` is computed, then $k \equiv hus^{-1} \mod n$ and $l \equiv vs^{-1} \mod n$ are computed, after that $X$ is derived as $x$-coordinate of $k * G - l * P$, where $P = G * d$ is the public key. Signature verifies iff $X \equiv u \mod n$. During interaction with the service we can obtain the public key by sending `p`, sign any message (except `Persian Gulf`) by sending `s`, verify a signature for a message with `v`, and if the signature for `Persian Gulf` verifies, we are given the flag, and quit with `q`. This is an unintended solution, which doesn't exploit odd nonce generation during signature creation. If $h_1$ is a hash of some message $m$, and $h_2$ is the hash for `Persian Gulf`, we can write $h_2 \equiv m*h_1 \mod n$, and if $(u_1, v_1, s_1)$ is a valid signature for $h_1$, then $(u_1, v_1m, s_1m)$ is a valid signature for $h_2$. Proof: during verification of $h_1$ we have $k \equiv h_1u_1s_1^{-1} \mod n$ and $l \equiv v_1s_1^{-1} \mod n$. During verification of $h_2$ we have $k \equiv h_1mu_1(ms_1)^{-1} \equiv h_1mu_1m^{-1}s_1^{-1} \equiv h_1u_1s_1^{-1}\mod n$ and $l \equiv v_1m(s_1m)^{-1} \equiv v_1ms_1^{-1}m^{-1} \equiv v_1s_1^{-1}\mod n$, so $k, l$ are the same, thus $X$ is the same. And since $u$ is also the same, this signature will also verify. Implementation script: ```python= #!/usr/bin/env python3 from pwn import remote from ecdsa import SECP256k1 from hashlib import sha256 n = SECP256k1.order m1 = b'lol' # any other message is fine m2 = b'Persian Gulf' h1 = int(sha256(m1).hexdigest(), 16) h2 = int(sha256(m2).hexdigest(), 16) m = h2 * pow(h1, -1, n) % n r = remote("02.cr.yp.toc.tf", 23010) for _ in range(9): r.recvline() r.sendline('s') r.recvline() r.sendline(m1.hex()) u1, v1, w1 = eval(r.recvline()[8:]) u2, v2, w2 = u1, v1 * m % n, w1 * m % n for _ in range(5): r.recvline() r.sendline('v') r.recvline() r.sendline(m2.hex()) r.recvline() r.sendline(','.join(map(str, [u2, v2, w2]))) print(r.recvline().decode().strip().split()[-1]) r.close() ``` ##### Flag > CCTF{__ECC_Bi4seD_N0nCE_53ns3_LLL!!!} ## Double Miff ##### Score: 217 (16/444 solves) ### Challenge - A new approach, a new attack. Can you attack this curve? [double_miff.txz](https://cr.yp.toc.tf/tasks/double_miff_58336b2ad5ed82754ac8e9b3bdcc8f25623c909c.txz) ```python= #!/usr/bin/env python3 from Crypto.Util.number import * from secret import a, b, p, P, Q from flag import flag def onmiff(a, b, p, G): x, y = G return (a*x*(y**2 - 1) - b*y*(x**2 - 1)) % p == 0 def addmiff(X, Y): x_1, y_1 = X x_2, y_2 = Y x_3 = (x_1 + x_2) * (1 + y_1*y_2) * inverse((1 + x_1*x_2) * (1 - y_1*y_2), p) % p y_3 = (y_1 + y_2) * (1 + x_1*x_2) * inverse((1 + y_1*y_2) * (1 - x_1*x_2), p) % p return (x_3, y_3) l = len(flag) // 2 m1, m2 = bytes_to_long(flag[:l]), bytes_to_long(flag[l:]) assert m1 < (p // 2) and m2 < (p // 2) assert onmiff(a, b, p, P) and onmiff(a, b, p, Q) assert P[0] == m1 and Q[0] == m2 print(f'P + Q = {addmiff(P, Q)}') print(f'Q + Q = {addmiff(Q, Q)}') print(f'P + P = {addmiff(P, P)}') ``` ``` P + Q = (540660810777215925744546848899656347269220877882, 102385886258464739091823423239617164469644309399) Q + Q = (814107817937473043563607662608397956822280643025, 961531436304505096581595159128436662629537620355) P + P = (5565164868721370436896101492497307801898270333, 496921328106062528508026412328171886461223562143) ``` ### Solution We have a curve equation $ax(y^2 - 1) \equiv by(x^2 - 1) \mod p$ with unknown $a$, $b$, $p$; $P$ and $Q$ are some points on it, and we have $P + Q$, $Q + Q$ and $P + P$. We need to recover $x$-coordinates of $P$ and $Q$, since they contain parts of the flag. Addition here is commutative and associative, so we have $(P + P) + (Q + Q) = P + P + Q + Q = P + Q + P + Q = (P + Q) + (P + Q)$. We have 2 ways of representing $x$- and $y$-coordinates of $P + P + Q + Q$. Set $P + Q = (x_1, y_1)$, $Q + Q = (x_2, y_2)$, $P + P = (x_3, y_3)$, $P + P + Q + Q = (x_0, y_0)$. Then from addition formulas for $x$ we have $x0 \equiv \frac{(x_2+x_3)(1+y_2y_3)}{(1+x_2x_3)(1-y_2y_3)} \mod p$ and $x0 \equiv \frac{2x_1(1+y_1^2)}{(1+x_1^2)(1-y_1^2)} \mod p$, from where we get this: $$p|((1+x_1^2)(1-y_1^2)(x_2+x_3)(1+y_2y_3) - 2x_1(1+y_1^2)(1+x_2x_3)(1-y_2y_3))$$ Analogously from addition formulas for y we get $$p|((1+y_1^2)(1-x_1^2)(y_2+y_3)(1+x_2x_3)-2y_1(1+x_1^2)(1+y_2y_3)(1-x_2x_3))$$ We can compute gcd of 2 numbers above to get a small multiple of $p$ ($8p$ in this case), and from there we get $p = 1141623079614587900848768080393294899678477852887$. Recall that for any point on the curve we have $ax(y^2-1) \equiv by(x^2-1) \mod p$, from where we can compute $k \equiv \frac{a}{b} \equiv \frac{y(x^2 - 1)}{x(y^2-1)} \mod p$ by using any known point. Note that we also have $\frac{y}{y^2-1} \equiv k\frac{x}{x^2-1} \mod p$. Set $P = (x_4, y_4)$, and from addition formulas we get $x_3 \equiv \frac{2x_4(1+y_4^2)}{(1+x_4^2)(1-y_4^2)} \mod p$ and $y_3 \equiv \frac{2y_4(1+x_4^2)}{(1+y_4^2)(1-x_4^2)} \mod p$, from where we get $x_3y_3 \equiv \frac{4x_4y_4}{(x_4^2-1)(y_4^2-1)} \equiv 4k(\frac{x_4}{x_4^2 - 1})^2 \mod p$, and then $(\frac{x_4^2-1}{x_4})^2 \equiv \frac{4k}{x_3y_3} \mod p$. We have $\frac{x_4^2-1}{x_4} \equiv \pm l \mod p$, where $l \equiv (\frac{4k}{x_3y_3})^{\frac{p+1}{4}} \mod p$, since $p \equiv 3 \mod 4$. From here we get $x_4^2 \mp lx_4 - 1 \equiv 0 \mod p$. Discriminant in both cases is equal to $D \equiv l^2 + 4 \mod p$, and we get roots of both equations with $\frac{\pm l \pm \sqrt{D}}{2} \mod p$. Check each one of them, the one that results into printable text gives us the first half of the flag. Analogously we can recover $x$-coordinate of $Q$ and get second half of the flag. By concatenating them, we will have the full flag. Judging by the flag, though, this may be an unintended solution. Implementation script: ```python= #!/usr/bin/env python3 from Crypto.Util.number import isPrime, long_to_bytes from math import gcd x1, y1 = (540660810777215925744546848899656347269220877882, 102385886258464739091823423239617164469644309399) x2, y2 = (814107817937473043563607662608397956822280643025, 961531436304505096581595159128436662629537620355) x3, y3 = (5565164868721370436896101492497307801898270333, 496921328106062528508026412328171886461223562143) num1 = (1 + x1 ** 2) * (1 - y1 ** 2) * (x2 + x3) * (1 + y2 * y3) - 2 * x1 * (1 + y1 ** 2) * (1 + x2 * x3) * (1 - y2 * y3) num2 = (1 + y1 ** 2) * (1 - x1 ** 2) * (y2 + y3) * (1 + x2 * x3) - 2 * y1 * (1 + x1 ** 2) * (1 + y2 * y3) * (1 - x2 * x3) pmult = gcd(num1, num2) for i in range(2, 10): while pmult % i == 0: pmult //= i if isPrime(pmult): p = pmult break def recover_half(x, y): k = y * (x ** 2 - 1) * pow(x * (y ** 2 - 1), -1, p) % p l = pow(4 * k * pow(x * y, -1, p), (p + 1) // 4, p) D = (l ** 2 + 4) % p sqrtD = pow(D, (p + 1) // 4, p) for i in range(-1, 2, 2): for j in range(-1, 2, 2): num = (i * l + j * sqrtD) * pow(2, -1, p) % p text = long_to_bytes(num) if b'CCTF{' in text or b'}' in text: return text first_half = recover_half(x3, y3) second_half = recover_half(x2, y2) flag = (first_half + second_half).decode() print(flag) ``` ##### Flag > CCTF{D39enEr47E_ECC_4TtaCk!_iN_Huffs?} ## Symbols ##### Score: 70 ### Challenge > Oh, my eyes, my eyes! People still can solve this kind of cryptography? Mathematicians should love this one! ![](https://i.imgur.com/Twgx15P.png) ### Solution In this challenge, we are given an image of math symbols, from the first couple of symbols and the flag format, we can guess that the flag is the initials of these symbols in $\LaTeX$. By using Mathpix Snip, a tool that can convert images into LaTeX for inline equations, we can get most of the symbols and get the flag. ``` \Cap \Cap \Theta \Finv { \Pi \ltimes \aleph y _ \wp \infty \therefore \heartsuit _ \Lsh \aleph \Theta \eth \Xi } ``` ##### Flag: CCTF{Play_with_LaTeX} ## Onlude ##### Score: 95 ### Challenge > Encryption and Decryption could be really easy, while we expected the decryption to be harder! ```python= #!/usr/bin/env sage from sage.all import * from flag import flag global p, alphabet p = 71 alphabet = '=0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$!?_{}<>' flag = flag.lstrip('CCTF{').rstrip('}') assert len(flag) == 24 def cross(m): return alphabet.index(m) def prepare(msg): A = zero_matrix(GF(p), 11, 11) for k in range(len(msg)): i, j = 5*k // 11, 5*k % 11 A[i, j] = cross(msg[k]) return A def keygen(): R = random_matrix(GF(p), 11, 11) while True: S = random_matrix(GF(p), 11, 11) if S.rank() == 11: _, L, U = S.LU() return R, L, U def encrypt(A, key): R, L, U = key S = L * U X = A + R Y = S * X E = L.inverse() * Y return E A = prepare(flag) key = keygen() R, L, U = key S = L * U E = encrypt(A, key) print(f'E = \n{E}') print(f'L * U * L = \n{L * U * L}') print(f'L^(-1) * S^2 * L = \n{L.inverse() * S**2 * L}') print(f'R^(-1) * S^8 = \n{R.inverse() * S**8}') ``` ``` E = [25 55 61 28 11 46 19 50 37 5 21] [20 57 39 9 25 37 63 31 70 15 47] [56 31 1 1 50 67 38 14 42 46 14] [42 54 38 22 19 55 7 18 45 53 39] [55 26 42 15 48 6 24 4 17 60 64] [ 1 38 50 10 19 57 26 48 6 4 14] [13 4 38 54 23 34 54 42 15 56 29] [26 66 8 48 6 70 44 8 67 68 65] [56 67 49 61 18 34 53 21 7 48 32] [15 70 10 34 1 57 70 27 12 33 46] [25 29 20 21 30 55 63 49 11 36 7] L * U * L = [50 8 21 16 13 33 2 12 35 20 14] [36 55 36 34 27 28 23 21 62 17 8] [56 26 49 39 43 30 35 46 0 58 43] [11 25 25 35 29 0 22 38 53 51 58] [34 14 69 68 5 32 27 4 27 62 15] [46 49 36 42 26 12 28 60 54 66 23] [69 55 30 65 56 13 14 36 26 46 48] [25 48 16 20 34 57 64 62 61 25 62] [68 39 11 40 25 11 7 40 24 43 65] [54 20 40 59 52 60 37 14 32 44 4] [45 20 7 26 45 45 50 17 41 59 50] L^(-1) * S^2 * L = [34 12 70 21 36 2 2 43 7 14 2] [ 1 54 59 12 64 35 9 7 49 11 49] [69 14 10 19 16 27 11 9 26 10 45] [70 17 41 13 35 58 19 29 70 5 30] [68 69 67 37 63 69 15 64 66 28 26] [18 29 64 38 63 67 15 27 64 6 26] [ 0 12 40 41 48 30 46 52 39 48 58] [22 3 28 35 55 30 15 17 22 49 55] [50 55 55 61 45 23 24 32 10 59 69] [27 21 68 56 67 49 64 53 42 46 14] [42 66 16 29 42 42 23 49 43 3 23] R^(-1) * S^8 = [51 9 22 61 63 14 2 4 18 18 23] [33 53 31 31 62 21 66 7 66 68 7] [59 19 32 21 13 34 16 43 49 25 7] [44 37 4 29 70 50 46 39 55 4 65] [29 63 29 43 47 28 40 33 0 62 8] [45 62 36 68 10 66 26 48 10 6 61] [43 30 25 18 23 38 61 0 52 46 35] [ 3 40 6 45 20 55 35 67 25 14 63] [15 30 61 66 25 33 14 20 60 50 50] [29 15 53 22 55 64 69 56 44 40 8] [28 40 69 60 28 41 9 14 29 4 29] ``` ### Solution In this challenge, we are given the source code of an encryption scheme that uses matrix operations for encryption and decryption, the corresponding encrypted flag and some hints. For the encryption part, $$ E = L^{-1}Y = L^{-1}SX = L^{-1}LU(A+R) = U(A+R) $$ The three hints we have is $LUL$, $L^{-1}S^2L$ and $R^{-1}S^8$ Since $S=LU$, we can rewrite the second hint as $ULUL$, then we can get $U$ by dividing hint1. For the third hint $R^{-1}S^8$, we can rewrite it as $R^{-1}(LULU)^4=R^{-1}(h_1U)^4$, then we can get $R$. With $U$ and $R$ known, we can then recover the flag $A$ from $E$. ```python= from sage.all import * E = Matrix(GF(71),[[25,55,61,28,11,46,19,50,37,5,21], [20,57,39,9,25,37,63,31,70,15,47], [56,31,1,1,50,67,38,14,42,46,14], [42,54,38,22,19,55,7,18,45,53,39], [55,26,42,15,48,6,24,4,17,60,64], [1,38,50,10,19,57,26,48,6,4,14], [13,4,38,54,23,34,54,42,15,56,29], [26,66,8,48,6,70,44,8,67,68,65], [56,67,49,61,18,34,53,21,7,48,32], [15,70,10,34,1,57,70,27,12,33,46], [25,29,20,21,30,55,63,49,11,36,7]]) hint1 = Matrix(GF(71),[[50,8,21,16,13,33,2,12,35,20,14], [36,55,36,34,27,28,23,21,62,17,8], [56,26,49,39,43,30,35,46,0,58,43], [11,25,25,35,29,0,22,38,53,51,58], [34,14,69,68,5,32,27,4,27,62,15], [46,49,36,42,26,12,28,60,54,66,23], [69,55,30,65,56,13,14,36,26,46,48], [25,48,16,20,34,57,64,62,61,25,62], [68,39,11,40,25,11,7,40,24,43,65], [54,20,40,59,52,60,37,14,32,44,4], [45,20,7,26,45,45,50,17,41,59,50]]) hint2=Matrix(GF(71),[[34,12,70,21,36,2,2,43,7,14,2], [1,54,59,12,64,35,9,7,49,11,49], [69,14,10,19,16,27,11,9,26,10,45], [70,17,41,13,35,58,19,29,70,5,30], [68,69,67,37,63,69,15,64,66,28,26], [18,29,64,38,63,67,15,27,64,6,26], [0,12,40,41,48,30,46,52,39,48,58], [22,3,28,35,55,30,15,17,22,49,55], [50,55,55,61,45,23,24,32,10,59,69], [27,21,68,56,67,49,64,53,42,46,14], [42,66,16,29,42,42,23,49,43,3,23]]) hint3=Matrix(GF(71),[[51,9,22,61,63,14,2,4,18,18,23], [33,53,31,31,62,21,66,7,66,68,7], [59,19,32,21,13,34,16,43,49,25,7], [44,37,4,29,70,50,46,39,55,4,65], [29,63,29,43,47,28,40,33,0,62,8], [45,62,36,68,10,66,26,48,10,6,61], [43,30,25,18,23,38,61,0,52,46,35], [3,40,6,45,20,55,35,67,25,14,63], [15,30,61,66,25,33,14,20,60,50,50], [29,15,53,22,55,64,69,56,44,40,8], [28,40,69,60,28,41,9,14,29,4,29]]) U = hint2/hint1 R = (hint3/U/hint1/U/hint1/U/hint1/U/hint1).inverse() A = U.inverse()*E-R alphabet = '=0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$!?_{}<>' flag = '' for k in range(24): i, j = 5*k // 11, 5*k % 11 flag+=alphabet[A[i, j]] print('CCTF{'+flag+'}') ``` ##### Flag: CCTF{LU__D3c0mpO517Ion__4L90?} ## Hyper Normal ##### Score: 71 ### Challenge > Being normal is hard these days because of Corona virus pandemic! ```python= #!/usr/bin/env python3 import random from flag import FLAG p = 8443 def transpose(x): result = [[x[j][i] for j in range(len(x))] for i in range(len(x[0]))] return result def vsum(u, v): assert len(u) == len(v) l, w = len(u), [] for i in range(l): w += [(u[i] + v[i]) % p] return w def sprod(a, u): w = [] for i in range(len(u)): w += [a*u[i] % p] return w def encrypt(msg): l = len(msg) hyper = [ord(m)*(i+1) for (m, i) in zip(list(msg), range(l))] V, W = [], [] for i in range(l): v = [0]*i + [hyper[i]] + [0]*(l - i - 1) V.append(v) random.shuffle(V) for _ in range(l): R, v = [random.randint(0, 126) for _ in range(l)], [0]*l for j in range(l): v = vsum(v, sprod(R[j], V[j])) W.append(v) random.shuffle(transpose(W)) return W enc = encrypt(FLAG) print(enc) ``` ### Solution This challenge gives a strange encryption scheme. This encryption algorithm actually does this. For an input of length $l$, the algorithm first multiplies each character of the input by the corresponding index to obtain a vector $x$. Then the algorithm loops $l$ times, each time outputs a vector $v$. Each number in the vector $v$ is a random number between 0 and 126 multiplied by the corresponding number in the vector $x$. All these operations are performed modulo 8443. It is worth noting that `random.shuffle` on line 38 of the program actually has no effect on the output, because the `transpose` function returns a new object. Solving for the input is intuitive. For the i-th byte of the input, we simply iterate through all printable characters, multiply $i$ by those characters, and multiply 0 through 126 to get all possible results. If column $i$ of the program output happens to be a subset of the possible results generated by a character $c$, then the i-th byte of the input is likely to be $c$. ```python= #!/usr/bin/env python3 from string import printable p = 8443 with open('output.txt', 'r') as f: enc = eval(f.read()) results = [] for i in range(len(enc[0])): tmp = [] for j in enc: tmp.append(j[i]) results.append(tmp) flag = '' for idx, result in enumerate(results): for c in printable: possibilities = [ord(c)*i*(idx+1) % p for i in range(127)] if all([i in possibilities for i in result]): flag += c break print(flag) ``` ##### Flag: CCTF{H0w_f1Nd_th3_4lL_3I9EnV4Lu35_iN_FiN173_Fi3lD5!???}

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully