changed 4 years ago
Linked with GitHub

建構新的子空間

Creative Commons License
This work by Jephian Lin is licensed under a Creative Commons Attribution 4.0 International License.

\(\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}\)

from lingeo import random_good_matrix, column_space_matrix, left_kernel_matrix, kernel_matrix

Main idea

Let \(U\) and \(V\) be two subspaces in the same vector space.

In general, the set \(U\cup V\) is no more a subspace.
However, we may define the sum of \(U\) and \(V\) as \(U + V = \operatorname{span}(U \cup V)\), which is a subspace.
Suppose \(\beta_U\) and \(\beta_V\) are the bases of \(U\) and \(V\), respectively.
Then \(U + V = \operatorname{span}(\beta_U \cup \beta_V)\).
However, \(\beta_U \cup \beta_V\) is not necessarily independent.

Suppose \(\beta_U\) and \(\beta_V\) are finite.
Let \(A_U\) and \(A_V\) be the matrix whose columns are vectors in \(U\) and \(V\), respectively.
Then the \(\beta_C\) corresponding to \(\begin{bmatrix} A_U & A_V \end{bmatrix}\) is a basis of \(U + V\).

On the other hand, the intersection \(U \cap V\) is indeed a subspace.
Suppose \(\beta_U\) and \(\beta_V\) are the bases of \(U\) and \(V\), respectively.
Then \((\beta_U \cap \beta_V)\) is linearly independent but not necessarily spans \(U\cap V\).
(Even worse, it is quite possible that \(U \cap V = \emptyset\).)

Suppose we are able to matrices \(B_U\) and \(B_V\) such that \(U = \operatorname{ker}(B_U)\) and \(V = \operatorname{ker}(B_V)\).
Then \(U \cap V\) is the kernel of \(\begin{bmatrix} B_U \\ B_V \end{bmatrix}\).

By the expanding lemma, one may find a basis \(\beta_\cap\) of \(U\cap V\),
expand it to a basis \(\beta_U\) of \(U\),
expand it to a basis \(\beta_V\) of \(V\),
and show that \(\beta_\cup = \beta_U \cup \beta_V\) is a basis of \(U + V\).
Therefore, we have
\[\dim(U + V) = \dim(U) + \dim(V) - \dim(U \cap V). \]

[這裡定義有更新]
Suppose \(V_1, \ldots, V_k\) are some subspaces in the same vector space.
We say \(\{V_1, \ldots, V_k\}\) is linearly independent if
the only choice of \({\bf v}_1\in V_1, \ldots, {\bf v}_k\in V_k\) satisfying
\[{\bf v}_1 + \cdots + {\bf v}_k = {\bf 0} \]
is \({\bf v}_1 = \cdots = {\bf v}_k = {\bf 0}\).

The following two statments are equivalents:

  1. \(\{V_1, V_2\}\) is linearly independent.
  2. \(V_1 \cap V_2 = \{ {\bf 0} \}\).

However, even if \(V_1,V_2,V_3\) mutually have trivial intersections, \(\{ V_1, V_2, V_3 \}\) might not be linearly independent.

In the case that \(\{V_1,\ldots, V_k\}\) is linearly independent,
we call the subspace \(V_1 + \cdots + V_k\) the direct sum of them and
use the notation \(V_1 \oplus \cdots \oplus V_k\) instead to emphasize the linearly independence.

Side stories

  • basis of the sum and the intersection
  • example of trivial intersections but not linearly independent

Experiments

Exercise 1

執行以下程式碼。
\({\bf u}_1, {\bf u}_2\)\(A_U\) 的各行向量、
\({\bf v}_1, {\bf v}_2\)\(A_V\) 的各行向量。
\(U = \operatorname{Col}(A_U)\)\(V = \operatorname{Col}(A_V)\)
已知 \(R\)\(\begin{bmatrix} A_U & A_V \end{bmatrix}\) 的最簡階梯形式矩陣。

[程式碼有更新]

### code
set_random_seed(0)
print_ans = False
m,n,r = 4,3,3
A = random_good_matrix(m,n,r)
AU = A[:,:2]
AV = A[:,1:]
AUAV = AU.augment(AV, subdivide=True)

print("[ A_U | A_V ] =")
show(AUAV)
print("R =")
show(AUAV.rref())

BU = left_kernel_matrix(AU)
BV = left_kernel_matrix(AV)
BUBV = BU.stack(BV, subdivide=True)

if print_ans:
    print("dim( U + V ) =", r)
    print("basis of U + V = columns of")
    print(column_space_matrix(AUAV))
    print("dim( U cap V) =", 4 - r)
    print("basis of U cap V = columns of")
    print(kernel_matrix(BUBV))
Exercise 1(a)

\(U + V\) 的一組基底、
以及它的維度。

  • 假設 \(\beta_U\)\(\beta_V\) 是有限的,且令 \(A_U\)\(A_V\) 分別為其列是由 \(U\)\(V\) 中的向量所組成的矩陣,> 由於 \(\left[\begin{array}{c|c} A_U & A_V \end{array}\right]\) 的行空間就是 \(U + V\)
  • \(S = \{\bu_1,\bu_2,\bu_3,\bu_4\}\) > \(S = \{\bu_1,\bu_2,\bv_1,\bv_2\}\) (題目已經說這些向量的名稱了,其它向量名稱也跟著改一下)
  • \(\beta_c\) > \(\beta_C\)

\({\bf Ans:}\)

以下為運行程式碼後得到的數據:

\[\begin{aligned} \left[\begin{array}{c|c} A_U & A_V \end{array}\right] = \left[\begin{array}{cc|cc} 1 & 4 & 8 & 5 \\-5 & -19 & -44 & -30 \\ 15 & 57 & 133 & 91\\48 & 183 & 424 & 289\end{array}\right] , R = \left[\begin{array}{cc|cc} 1 & 0 & 0 & 1 \\0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1\\0 & 0 & 0 & 0\end{array}\right]. \end{aligned} \]

由於 \(\left[\begin{array}{c|c} A_U & A_V \end{array}\right]\) 的行空間就是 \(U + V\)
因此 \(\begin{bmatrix} A_U & A_V \end{bmatrix}\)\(\beta_C\)\(U+V\) 的一組基底。

\(S = \{\bu_1,\bu_2,\bv_1,\bv_2\}\) 為矩陣 \(\left[\begin{array}{c|c} A_U & A_V \end{array}\right]\) 各行向量, 而由 \(\left[\begin{array}{c|c} A_U & A_V \end{array}\right]\) 的最簡階梯形式 \(R\) 的領導係數位置可知: \[\begin{aligned} \beta_C = \{\bu_1,\bu_2,\bv_1\}, \end{aligned} \]

由上列敘述可得\(\{\bu_1,\bu_2,\bv_1\}\)\(U+V\) 的一組基底,\(\dim(U+V) = 3\)

Exercise 1(b)

\(\dim(U\cap V)\)

\({\bf Ans:}\)

\(\dim(U + V) = \dim(U) + \dim(V) - \dim(U \cap V)\) 可得 \(\dim(U \cap V) = \dim(U) + \dim(V) - \dim(U + V)\),

且由1(a)的運算結果可以得知 \(\dim(U+V) = 3\)

\(\dim(U \cap V) = 2 + 2 - 3 = 1\)

Exercise 1©

\(U\cap V\) 的一組基底。

  • 中英數間空格
  • \(ker\) > \(\ker\)
  • 左零解空間符號應該是 \(\ker(B_U\trans)\)
  • 的零解空間為 ??? > 的零解空間由 ??? 所生成

\({\bf Ans:}\)

\(B_U\)\(B_V\) 為滿足 \(U = \ker (B_U\trans)\) , \(V = \ker(B_V\trans)\) 的矩陣,
我們經運算得 \(U\)\(V\) 的左零解空間即可得到 \(B_U\)\(B_V\) \[\begin{aligned} B_U = \begin{bmatrix}1 & 0 & 1 & -\frac{{1}}{{3}}\\ 0 & 1 & \frac{{1}}{{3}} & 0\end{bmatrix}, B_V =\begin{bmatrix}1 & 0 & \frac{{64}}{{49}} & -\frac{{3}}{{7}}\\ 0 & 1 & \frac{{4}}{{147}} & \frac{{2}}{{21}}\end{bmatrix}, \end{aligned} \] \(B_U\)\(B_V\) 為滿足 \(U = \ker(B_U\trans)\) , \(V = \ker(B_V\trans)\) 的矩陣,
\(U \cap V\)\(\begin{bmatrix}B_U\\ B_V\end{bmatrix}\) 的零解空間。

經計算可得 \(\begin{bmatrix}B_U\\ B_V\end{bmatrix}\) 的零解空間由 \(\left\{\begin{bmatrix}\frac{{1}}{{45}}\\-\frac{{14}}{{135}}\\\frac{{14}}{{45}}\\1 \end{bmatrix}\right\}\) 所生成,即為 \(U \cap V\) 的一組基底。

Exercises

Exercise 2


\[A_U = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 2 & 1 \\ 2 & 1 \\ \end{bmatrix}, A_V = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 2 \\ 2 & 1 \\ \end{bmatrix} \]
\(U = \operatorname{Col}(A_U)\)\(V = \operatorname{Col}(A_V)\)

Exercise 2(a)

\(U + V\) 的一組基底。

跟 1(a) 修改方式一樣

  • \(dim\) > \(\dim\)

\({\bf Ans:}\)

\(\left[\begin{array}{c|c} A_U & A_V \end{array}\right] = \left[\begin{array}{cc|cc} 1 & 1 & 2 & 2 \\2 & 2 & 1 & 1 \\ 1 & 2 & 1 & 2\\2 & 1 & 2 & 1\end{array}\right]\) ,

經運算可得 \(\left[\begin{array}{c|c} A_U & A_V \end{array}\right]\) 的最簡階梯式: \[\begin{aligned} R = \left[\begin{array}{cc|cc} 1 & 0 & 0 & -1 \\0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\\0 & 0 & 0 & 0\end{array}\right].\end{aligned} \]

由於 \(\left[\begin{array}{c|c} A_U & A_V \end{array}\right]\) 的行空間就是 \(U + V\)
因此 \(\begin{bmatrix} A_U & A_V \end{bmatrix}\)\(\beta_C\)\(U+V\) 的一組基底。

\(S = \{\bu_1,\bu_2,\bv_1,\bv_2\}\) 為矩陣 \(\left[\begin{array}{c|c} A_U & A_V \end{array}\right]\) 各行向量, 而由\(\left[\begin{array}{c|c} A_U & A_V \end{array}\right]\) 的最簡階梯形式 \(R\) 的領導係數位置可知: \[\begin{aligned} \beta_C = \{\bu_1,\bu_2,\bv_1\} \end{aligned}, \]

由上列敘述可得\(\{\bu_1,\bu_2,\bv_1\}\)\(U+V\) 的一組基底,\(\dim (U+V) = 3\)

Exercise 2(b)

找出 \(B_U\)\(B_V\)
使得 \(U = \operatorname{ker}(B_U)\)\(V = \operatorname{ker}(B_V)\)

\({\bf Ans:}\)

我們經運算得 \(U\)\(V\) 的左零解空間即可得到 \(B_U\)\(B_V\) \[\begin{aligned} B_U = \begin{bmatrix}1 & -1 & 0 & 0\\ 0 & 0 & 1 & -1\end{bmatrix}, B_V =\begin{bmatrix}1 & 0 & -1 & 0\\ 0 & 1 & 0 & -1\end{bmatrix} \end{aligned}. \]

Exercise 2©

\(U \cap V\) 的一組基底。

  • \(ker\) > \(\ker\)
  • 呈上題 > 承上題
  • 的零解空間為 ??? > 的零解空間由 ??? 生成
  • 中英數間空格

\({\bf Ans:}\)

\(B_U\)\(B_V\) 為滿足 \(U = \ker (B_U\trans)\) , \(V = \ker(B_V\trans)\) 的矩陣,
承上題運算結果即可得: \[\begin{aligned} B_U = \begin{bmatrix}1 & -1 & 0 & 0\\ 0 & 0 & 1 & -1\end{bmatrix}, B_V =\begin{bmatrix}1 & 0 & -1 & 0\\ 0 & 1 & 0 & -1\end{bmatrix} \end{aligned}. \]

\(B_U\)\(B_V\) 為滿足 \(U = \ker(B_U\trans)\) , \(V = \ker(B_V\trans)\) 的矩陣, \(U \cap V\)\(\begin{bmatrix}B_U\\ B_V\end{bmatrix}\) 的零解空間。

經計算可得 \(\begin{bmatrix}B_U\\ B_V\end{bmatrix}\) 的零解空間由 \(\left\{\begin{bmatrix}1\\1\\1\\1 \end{bmatrix}\right\}\) 所生成,即為 \(U \cap V\) 的一組基底。

Exercise 3

\(U\)\(V\) 為兩個子空間。
證明 \(U + V\) 為一個子空間。

  • 第一行不用
  • 由子空間加法可得 > 由子空間加法的定義
  • \(U + V\) = \(\operatorname{span}\{\)\(U\) \(\cup V\) } > \(U + V = \vspan(U \cup V)\) (不要一直跳出數學模式,\(U\)\(V\) 已經是集合了,外面不用大刮號)
  • \(span\) > \(\vspan\)
  • 標點

\({\bf Ans:}\)

由子空間加法的定義知道 \(U + V = \vspan(U \cup V)\)
而任何可寫成 \(\vspan\) 的集合都是一個子空間。

Exercise 4

\(U\)\(V\) 為兩個子空間。
證明 \(U \cap V\) 為一個子空間。

  • 中英數空格
  • 向量粗體
  • \(V_1,V_2\) > \(\bv_1, \bv_2\)
  • 證明存在\(V_1 , V_2 \in U \cap V \rightarrow V_1 + V_2 \in U \cap V\) > 證明若 \(\bv_1 , \bv_2 \in U \cap V\)\(\bv_1 + \bv_2 \in U \cap V\)
  • 把句子寫完整,加上完整標點。
  • 證明\(K \in \mathbb R , v \in U \cap V \rightarrow Kv \in U \cap V\) > 證明若 \(k \in \mathbb{R}\)\(\bv \in U \cap V\),則 \(k\bv \in U \cap V\)

\({\bf Ans:}\)

(1) 證明 \(U \cap V = \emptyset\)

\(\bzero \in U\),且 \(\bzero \in V\)
所以 \(\bzero \in U\cap V\)

(2) 證明若 \(\bv_1 , \bv_2 \in U \cap V\) ,則 \(\bv_1 + \bv_2 \in U \cap V\)
因為 \(\bv_1,\bv_2 \in U\)\(U\) 是子空間,所以 \(\bv_1 + \bv_2 \in U\)
因為 \(\bv_1,\bv_2 \in V\)\(V\) 是子空間,所以 \(\bv_1 + \bv_2 \in V\)
因此,\(\bv_1+\bv_2 \in U \cap V\)

(3) 證明若 \(k \in \mathbb R\)\(\bv \in U \cap V\) ,則 \(k\bv \in U \cap V\)
\(\bv \in U \cap V\)\(k \in \mathbb R\)
由於 \(\bv\in U\)\(U\) 是子空間,所以 \(k\bv\in U\)
由於 \(\bv\in V\)\(V\) 是子空間,所以 \(k\bv\in V\)
因此,\(k\bv \in U \cap V\)

\(U \cap V\) 為一子空間。

Exercise 5

\(U\)\(V\) 為兩個子空間。
證明
\[\dim(U + V) = \dim(U) + \dim(V) - \dim(U \cap V). \]

  • \(U \cap V\) 的基底 > 設 \(U \cap V\) 的基底為
  • 而透過 \(\beta_U\)\(\beta_V\) ,我們可以知道 \(U+V\) 的基底為\(\bb_1,...\bb_k,\bc_1,...\bc_r,\bd_1,...\bd_l\), > 令 \(\beta = \{\bb_1,\ldots,\bb_k,\bc_1,\ldots, \bc_r,\bd_1,\ldots, \bd_l\}\)
    接下來我們證明 \(\beta\)\(U + V\) 的一組基底。
    由於 \(U + V = \vspan(U\cup V) = \vspan(\beta)\)
    所以我們只要證明 \(\beta\) 是線性獨立即可。

    \[ ??? = \bzero, \]

\({\bf Ans:}\)

\(U \cap V\) 的基底為 \(\beta_\cap = \{\bu_1,\bu_2...\bu_k\}\)
根據擴充法則,我們可以得到
一組 \(U\) 的基底 \(\beta_U = \{\bb_1,...\bb_k,\bc_1,...\bc_r\}\)
及一組 \(V\) 的基底 \(\beta_V = \{\bb_1,...,\bb_k,\bd_1,...\bd_l\}\)

\(\beta = \beta_U\cup\beta_V = \{\bb_1,\ldots,\bb_k,\bc_1,\ldots, \bc_r,\bd_1,\ldots, \bd_l\}\)
接下來我們證明 \(\beta\)\(U+V\) 的一組基底。

由於 \(U + V = \vspan(U\cup V) = \vspan(\beta)\)
所以我們只要證明 \(\beta\) 是線性獨立即可。

\[b_1\bb_1+...+b_k\bb_k+c_1\bc_1+...+c_r\bc_r+d_1\bd_1+...d_l\bd_l = {\bf 0}, \]
\[b_1\bb_1+...+b_k\bb_k+c_1\bc_1+...+c_r\bc_r = -(d_1\bd_1+...d_l\bd_l), \]

且因為 \[b_1\bb_1+...+b_k\bb_k+c_1\bc_1+...+c_r\bc_r+d_1\bd_1+...d_l\bd_l \in U, \] \[-(d_1\bd_1+...d_l\bd_l)\in V, \] 所以 \(-(d_1\bd_1+...d_l\bd_l) \in U \cap V = \vspan(\beta_\cap)\)

因此我們可以將上面的式子寫成 \(\beta_\cap\) 的線性組合: \[-(d_1\bd_1+...d_l\bd_l) = a_1\bb_1+...a_k\bb_k, \] 透過移項可得: \[ a_1\bb_1+...a_k\bb_k+d_1\bd_1+...+d_l\bd_l = {\bf 0}. \] 由於 \(\beta_V = \{\bb_1,\ldots,\bb_k,\bd_1,\ldots,\bd_l\}\) 是一組基底,所以這個集合獨立。
因而我們知道 \(a_1 = \cdots = a_k = d_1 = \cdots = d_l = 0\)

由於 \(d_1 = \cdots = d_l = 0\),我們可以得到
\[ b_1\bb_1+...+b_k\bb_k+c_1\bc_1+...+c_r\bc_r = \bzero. \] 因為這些向量為 \(\beta_U\) 中的向量且它們獨立,所以 \(b_1 = \cdots + b_k = c_1 = \cdots = c_r = 0\)

因此 \[\begin{aligned} \dim(U) + \dim(V) &= (k+r) + (k+l) = (k+r+l) + k \\ &= \dim(U+V) +\dim(U \cap V). \end{aligned} \]

最後透過移項我們可以得到 \(\dim(U+V) = \dim(U) + \dim(V) - \dim(U \cap V)。\)

Exercise 6


\[A_U = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 2 & 1 \\ 2 & 1 \\ \end{bmatrix}, A_V = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 2 \\ 2 & 1 \\ \end{bmatrix} \]
\(U = \operatorname{Col}(A_U)\)\(V = \operatorname{Col}(A_V)\)

Exercise 6(a)

找出一組向量 \({\bf u}\in U\)\({\bf v}\in V\)
使得 \(1\cdot {\bf u} + 1\cdot {\bf v} = {\bf 0}\)
藉此說明 \(U\)\(V\) 不線性獨立。

想一下一般來說怎麼找。

\({\bf Ans :}\)

\[{\bf u} = \begin{bmatrix} 3 \\ 3 \\ 3 \\ 3 \\ \end{bmatrix} , {\bf v} = \begin{bmatrix} -3 \\ -3 \\ -3 \\ -3 \\ \end{bmatrix} \]

使得 \[1\cdot \begin{bmatrix} 3 \\ 3 \\ 3 \\ 3 \\ \end{bmatrix} + 1\cdot \begin{bmatrix} -3 \\ -3 \\ -3 \\ -3 \\ \end{bmatrix} = \bf 0 \]

因為 \(c_1\cdot {\bf u} + c_2\cdot {\bf v} = {\bf 0}\) 存在 \(c_1 = c_2 = 1 \neq 0\) , 所以 \(U\)\(V\) 不線性獨立。

Exercise 6(b)

\(V_1\)\(V_2\) 為任意的兩個子空間。
證明以下敘述等價:

  1. \(\{V_1, V_2\}\) is linearly independent.
  2. \(V_1 \cap V_2 = \{ {\bf 0} \}\).
  • 則存在 \({\bf v}\) 屬於 \(V_1\)\({\bf w}\) 屬於 \(V_2\)\(\bv ,\bw\) 為非零向量, 令 \({\bf v} = {\bf w} = {\bf u}\)> 令 \({\bf v} = {\bf w} = {\bf u}\)。則 \({\bf v}\) 屬於 \(V_1\)\({\bf w}\) 屬於 \(V_2\)\(\bv ,\bw\) 為非零向量。

\({\bf Ans : }\)

\(1. \implies 2.\) (反證法)

假設 \({\bf u} \neq \bf 0\) 屬於 \(V_1 \cap V_2\),也就是說 \({\bf u}\) 屬於 \(V_1\)\(V_2\)
\({\bf v} = {\bf w} = {\bf u}\) \({\bf v}\) 屬於 \(V_1\)\({\bf w}\) 屬於 \(V_2\)\(\bv ,\bw\) 為非零向量。
使得 \(c_1 \cdot {\bf v} + c_2 \cdot {\bf w} = c_1 \cdot {\bf u} + c_2 \cdot {\bf u} = \bf 0\)\(c_1\)\(c_2\) 屬於 \(\mathbb{R}\) ,存在 \(c_1=1 , c_2=-1\) ,得 \(\{V_1, V_2\}\) 不線性獨立。

故如果 \(\{V_1, V_2\}\) 線性獨立,則 \(V_1 \cap V_2 = \{ {\bf 0} \}\)

  • 零向量用粗體

\(2. \implies 1.\) (反證法)

假設 \(\{V_1, V_2\}\) 不線性獨立,則存在 \({\bf v}\) 屬於 \(V_1\)\({\bf w}\) 屬於 \(V_2\)\(\bv ,\bw\) 為非零向量,使得 \(c_1 \cdot {\bf v} + c_2 \cdot {\bf w} = \bf 0\),而 \(c_1\)\(c_2\) 屬於 \(\mathbb{R}\) ,且 \(c_1,c_2 \neq 0\)
\({\bf v} = \frac{- c_2}{c_1} \cdot \bw\),又因 \(V_2\) 為子空間,所以 \(\frac{- c_2}{c_1} \cdot \bw\) 也屬於 \(V_2\) , 得 \({\bf v} = \frac{- c_2}{c_1} \cdot \bw \neq \bf 0\) 也屬於 \(V_1 \cap V_2\)

故如果 \(V_1 \cap V_2 = \{ {\bf 0} \}\),則 \(\{V_1, V_2\}\) 線性獨立。

Exercise 7

第七題因為子空間獨立定義有更新,所以放懸賞。
可以用新的定義重新整理一下。

\({\bf u}_1,\ldots,{\bf u}_k\) 為一群向量。

Exercise 7(a)

對於每個 \(i = 1,\ldots k\)﹐令 \(U_i = \operatorname{span}(\{{\bf u}_i\})\)
證明以下敘述等價:

  1. \(\{U_1, \ldots, U_k\}\) is linearly independent.
  2. \(\{{\bf u}_1, \ldots, {\bf u}_k\}\) is linearly independent.

\({\bf Ans : }\)

\(1. \implies 2.\)

假設 \(\{U_1, \ldots, U_k\}\) 為線性獨立。

考慮一些係數 \(c_1,\ldots,c_k \in \mathbb R\) 使得 \(c_1{\bf u}_1 + \ldots + c_k{\bf u}_k= {\bf 0}\)
由於每個 \(i = 1,\ldots, k\) 都有 \(\bu_i\in U_i\)\(\{U_1, \ldots, U_k\}\)
因此 \(c_1 = \cdots = c_k = 0\)

結論得到 \(\{{\bf u}_1, \ldots, {\bf u}_k\}\) 為線性獨立。

\(2. \implies 1.\)

假設 \(\{{\bf u}_1, \ldots, {\bf u}_k\}\) 為線性獨立。

\(\bu_i'\in U_i\),則 \(\bu_i'\) 可以寫成 \(c_i\bu_i\)
如果 \(\bu_1' + \cdots + \bu_k' = \bzero\)
\(c_1\bu_1 + \cdots + c_k\bu_k = \bzero\)
由於 \(\{{\bf u}_1, \ldots, {\bf u}_k\}\) 為線性獨立,所以 \(c_1 = \cdots = c_k = 0\)
最後得到每個 \(i\) 都有 \(\bu_i' = \bzero\),並知道 \(\{U_1, \ldots, U_k\}\) 為線性獨立。

Exercise 7©


\[V_1 = \operatorname{span}\left(\left\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right\}\right), V_2 = \operatorname{span}\left(\left\{\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right\}\right), V_3 = \operatorname{span}\left(\left\{\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right\}\right).\]
說明對任意相異的 \(i\)\(j\) 都有 \(V_i\cap V_j = \emptyset\)
但是 \(\{V_1,V_2,V_3\}\) 並不線性獨立。

\({\bf Ans : }\)

\(V_1,V_2, \ldots,V_k\) 為非零且獨立空間 \({\bf v}_1\in \ V_1,\ldots, {\bf v}_k\in \ V_k\)\(c_1,\ldots,c_k \in \mathbb R\),使得 \(c_1{\bf v}_1 + \ldots + c_k{\bf v}_k= {\bf 0}\) ,則 \(c_1= \ldots =c_k=0\),故 \(V_i\cap V_j = \emptyset\)
找的到\[{\bf v}_1=\begin{bmatrix} 1 \\ 0 \\ \end{bmatrix} \in \ V_1, \] \[{\bf v}_2=\begin{bmatrix} 0 \\ 1 \\ \end{bmatrix} \in \ V_2, \] \[{\bf v}_3=\begin{bmatrix} 1 \\ 1 \\ \end{bmatrix} \in \ V_3, \] 皆非零向量,使得 \({\bf v}_1+{\bf v}_2={\bf v}_3\)\({\bf v}_1+{\bf v}_2-{\bf v}_3={\bf 0}\),故可得 \(\{V_1,V_2,V_3\}\) 並不線性獨立。

Exercise 7(d)

\(\{{\bf u}_1, \ldots, {\bf u}_6\}\) 線性獨立。
\(V_1 = \{{\bf u}_1, {\bf u}_2\}\)
\(V_2 = \{{\bf u}_3, {\bf u}_4\}\)
\(V_3 = \{{\bf u}_5, {\bf u}_6\}\)
證明 \(\{V_1,V_2,V_3\}\) 線性獨立。
(實際上把一群線性獨立的向量分成任意堆﹐
則每堆生成出來的空間
全部合在一起會是線性獨立的。)

\({\bf Ans : }\)

\(\{{\bf u}_1, \ldots, {\bf u}_6\}\) 線性獨立,可寫成 \(c_1{\bf u}_1 + \ldots + c_6{\bf u}_6\neq {\bf 0}\) ,其中 \(c_1,\ldots,c_6 \in \mathbb R\)
\(V_1 = \{{\bf u}_1, {\bf u}_2\}\) = \(d_1{\bf u}_1 + d_2{\bf u}_2\)
\(V_2 = \{{\bf u}_3, {\bf u}_4\}\) = \(d_3{\bf u}_3 + d_4{\bf u}_4\)
\(V_3 = \{{\bf u}_5, {\bf u}_6\}\) = \(d_5{\bf u}_5 + d_6{\bf u}_6\)\(d_1,\ldots,d_6 \in \mathbb R\)

因為 \(\{V_1,V_2,V_3\}\) = \(k_1(d_1{\bf u}_1 + d_2{\bf u}_2)\)+ \(k_2(d_3{\bf u}_3 + d_4{\bf u}_4)\) + \(k_3(d_5{\bf u}_5 + d_6{\bf u}_6)\)
= \(k_1d_1{\bf u}_1 + k_1d_2{\bf u}_2\) + \(k_2d_3{\bf u}_3 + k_2d_4{\bf u}_4\) + \(k_3d_5{\bf u}_5 + k_3d_6{\bf u}_6\)
= \(c_1{\bf u}_1 + \ldots + c_6{\bf u}_6\neq {\bf 0}\)\(k_1,k_2,k_3 \in \mathbb R\) ,所以可得 \(\{V_1,V_2,V_3\}\) 線性獨立。

目前分數 6.5

Select a repo