Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 建構新的子空間 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). {%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %} ```python from lingeo import random_good_matrix, column_space_matrix, left_kernel_matrix, kernel_matrix ``` ## Main idea Let $U$ and $V$ be two subspaces in the same vector space. In general, the set $U\cup V$ is no more a subspace. However, we may define the **sum** of $U$ and $V$ as $U + V = \operatorname{span}(U \cup V)$, which is a subspace. Suppose $\beta_U$ and $\beta_V$ are the bases of $U$ and $V$, respectively. Then $U + V = \operatorname{span}(\beta_U \cup \beta_V)$. However, $\beta_U \cup \beta_V$ is not necessarily independent. Suppose $\beta_U$ and $\beta_V$ are finite. Let $A_U$ and $A_V$ be the matrix whose columns are vectors in $U$ and $V$, respectively. Then the $\beta_C$ corresponding to $\begin{bmatrix} A_U & A_V \end{bmatrix}$ is a basis of $U + V$. On the other hand, the **intersection** $U \cap V$ is indeed a subspace. Suppose $\beta_U$ and $\beta_V$ are the bases of $U$ and $V$, respectively. Then $(\beta_U \cap \beta_V)$ is linearly independent but not necessarily spans $U\cap V$. (Even worse, it is quite possible that $U \cap V = \emptyset$.) Suppose we are able to matrices $B_U$ and $B_V$ such that $U = \operatorname{ker}(B_U)$ and $V = \operatorname{ker}(B_V)$. Then $U \cap V$ is the kernel of $\begin{bmatrix} B_U \\ B_V \end{bmatrix}$. By the expanding lemma, one may find a basis $\beta_\cap$ of $U\cap V$, expand it to a basis $\beta_U$ of $U$, expand it to a basis $\beta_V$ of $V$, and show that $\beta_\cup = \beta_U \cup \beta_V$ is a basis of $U + V$. Therefore, we have $$\dim(U + V) = \dim(U) + \dim(V) - \dim(U \cap V). $$ **[這裡定義有更新]** Suppose $V_1, \ldots, V_k$ are some subspaces in the same vector space. We say $\{V_1, \ldots, V_k\}$ is linearly independent if the only choice of ${\bf v}_1\in V_1, \ldots, {\bf v}_k\in V_k$ satisfying $${\bf v}_1 + \cdots + {\bf v}_k = {\bf 0} $$ is ${\bf v}_1 = \cdots = {\bf v}_k = {\bf 0}$. The following two statments are equivalents: 1. $\{V_1, V_2\}$ is linearly independent. 2. $V_1 \cap V_2 = \{ {\bf 0} \}$. However, even if $V_1,V_2,V_3$ mutually have trivial intersections, $\{ V_1, V_2, V_3 \}$ might not be linearly independent. In the case that $\{V_1,\ldots, V_k\}$ is linearly independent, we call the subspace $V_1 + \cdots + V_k$ the **direct sum** of them and use the notation $V_1 \oplus \cdots \oplus V_k$ instead to emphasize the linearly independence. ## Side stories - basis of the sum and the intersection - example of trivial intersections but not linearly independent ## Experiments ##### Exercise 1 執行以下程式碼。 令 ${\bf u}_1, {\bf u}_2$ 為 $A_U$ 的各行向量、 ${\bf v}_1, {\bf v}_2$ 為 $A_V$ 的各行向量。 令 $U = \operatorname{Col}(A_U)$ 且 $V = \operatorname{Col}(A_V)$。 已知 $R$ 為 $\begin{bmatrix} A_U & A_V \end{bmatrix}$ 的最簡階梯形式矩陣。 **[程式碼有更新]** ```python ### code set_random_seed(0) print_ans = False m,n,r = 4,3,3 A = random_good_matrix(m,n,r) AU = A[:,:2] AV = A[:,1:] AUAV = AU.augment(AV, subdivide=True) print("[ A_U | A_V ] =") show(AUAV) print("R =") show(AUAV.rref()) BU = left_kernel_matrix(AU) BV = left_kernel_matrix(AV) BUBV = BU.stack(BV, subdivide=True) if print_ans: print("dim( U + V ) =", r) print("basis of U + V = columns of") print(column_space_matrix(AUAV)) print("dim( U cap V) =", 4 - r) print("basis of U cap V = columns of") print(kernel_matrix(BUBV)) ``` ##### Exercise 1(a) 求 $U + V$ 的一組基底、 以及它的維度。 :::warning - [x] 假設 $\beta_U$、$\beta_V$ 是有限的,且令 $A_U$、$A_V$ 分別為其列是由 $U$ 及 $V$ 中的向量所組成的矩陣,--> 由於 $\left[\begin{array}{c|c} A_U & A_V \end{array}\right]$ 的行空間就是 $U + V$, - [x] $S = \{\bu_1,\bu_2,\bu_3,\bu_4\}$ --> $S = \{\bu_1,\bu_2,\bv_1,\bv_2\}$ (題目已經說這些向量的名稱了,其它向量名稱也跟著改一下) - [x] $\beta_c$ --> $\beta_C$ ::: ${\bf Ans:}$ 以下為運行程式碼後得到的數據: $$\begin{aligned} \left[\begin{array}{c|c} A_U & A_V \end{array}\right] = \left[\begin{array}{cc|cc} 1 & 4 & 8 & 5 \\-5 & -19 & -44 & -30 \\ 15 & 57 & 133 & 91\\48 & 183 & 424 & 289\end{array}\right] , R = \left[\begin{array}{cc|cc} 1 & 0 & 0 & 1 \\0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1\\0 & 0 & 0 & 0\end{array}\right]. \end{aligned} $$ 由於 $\left[\begin{array}{c|c} A_U & A_V \end{array}\right]$ 的行空間就是 $U + V$, 因此 $\begin{bmatrix} A_U & A_V \end{bmatrix}$ 的 $\beta_C$ 是 $U+V$ 的一組基底。 設 $S = \{\bu_1,\bu_2,\bv_1,\bv_2\}$ 為矩陣 $\left[\begin{array}{c|c} A_U & A_V \end{array}\right]$ 各行向量, 而由 $\left[\begin{array}{c|c} A_U & A_V \end{array}\right]$ 的最簡階梯形式 $R$ 的領導係數位置可知: $$\begin{aligned} \beta_C = \{\bu_1,\bu_2,\bv_1\}, \end{aligned} $$ 由上列敘述可得$\{\bu_1,\bu_2,\bv_1\}$ 為 $U+V$ 的一組基底,$\dim(U+V) = 3$。 ##### Exercise 1(b) 求 $\dim(U\cap V)$。 ${\bf Ans:}$ 由 $\dim(U + V) = \dim(U) + \dim(V) - \dim(U \cap V)$ 可得 $\dim(U \cap V) = \dim(U) + \dim(V) - \dim(U + V)$, 且由1(a)的運算結果可以得知 $\dim(U+V) = 3$, 則 $\dim(U \cap V) = 2 + 2 - 3 = 1$。 ##### Exercise 1(c) 求 $U\cap V$ 的一組基底。 :::warning - [x] 中英數間空格 - [x] $ker$ --> $\ker$ - [x] 左零解空間符號應該是 $\ker(B_U\trans)$ - [x] 的零解空間為 ??? --> 的零解空間由 ??? 所生成 ::: ${\bf Ans:}$ 令 $B_U$、$B_V$ 為滿足 $U = \ker (B_U\trans)$ , $V = \ker(B_V\trans)$ 的矩陣, 我們經運算得 $U$、$V$ 的左零解空間即可得到 $B_U$、$B_V$: $$\begin{aligned} B_U = \begin{bmatrix}1 & 0 & 1 & -\frac{{1}}{{3}}\\ 0 & 1 & \frac{{1}}{{3}} & 0\end{bmatrix}, B_V =\begin{bmatrix}1 & 0 & \frac{{64}}{{49}} & -\frac{{3}}{{7}}\\ 0 & 1 & \frac{{4}}{{147}} & \frac{{2}}{{21}}\end{bmatrix}, \end{aligned} $$ 若 $B_U$、$B_V$ 為滿足 $U = \ker(B_U\trans)$ , $V = \ker(B_V\trans)$ 的矩陣, 則 $U \cap V$ 為 $\begin{bmatrix}B_U\\ B_V\end{bmatrix}$ 的零解空間。 經計算可得 $\begin{bmatrix}B_U\\ B_V\end{bmatrix}$ 的零解空間由 $\left\{\begin{bmatrix}\frac{{1}}{{45}}\\-\frac{{14}}{{135}}\\\frac{{14}}{{45}}\\1 \end{bmatrix}\right\}$ 所生成,即為 $U \cap V$ 的一組基底。 ## Exercises ##### Exercise 2 令 $$A_U = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 2 & 1 \\ 2 & 1 \\ \end{bmatrix}, A_V = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 2 \\ 2 & 1 \\ \end{bmatrix} $$ 且 $U = \operatorname{Col}(A_U)$ 且 $V = \operatorname{Col}(A_V)$。 ##### Exercise 2(a) 求 $U + V$ 的一組基底。 :::warning 跟 1(a) 修改方式一樣 - [x] $dim$ --> $\dim$ ::: ${\bf Ans:}$ $\left[\begin{array}{c|c} A_U & A_V \end{array}\right] = \left[\begin{array}{cc|cc} 1 & 1 & 2 & 2 \\2 & 2 & 1 & 1 \\ 1 & 2 & 1 & 2\\2 & 1 & 2 & 1\end{array}\right]$ , 經運算可得 $\left[\begin{array}{c|c} A_U & A_V \end{array}\right]$ 的最簡階梯式: $$\begin{aligned} R = \left[\begin{array}{cc|cc} 1 & 0 & 0 & -1 \\0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\\0 & 0 & 0 & 0\end{array}\right].\end{aligned} $$ 由於 $\left[\begin{array}{c|c} A_U & A_V \end{array}\right]$ 的行空間就是 $U + V$, 因此 $\begin{bmatrix} A_U & A_V \end{bmatrix}$ 的 $\beta_C$ 是 $U+V$ 的一組基底。 設 $S = \{\bu_1,\bu_2,\bv_1,\bv_2\}$ 為矩陣 $\left[\begin{array}{c|c} A_U & A_V \end{array}\right]$ 各行向量, 而由$\left[\begin{array}{c|c} A_U & A_V \end{array}\right]$ 的最簡階梯形式 $R$ 的領導係數位置可知: $$\begin{aligned} \beta_C = \{\bu_1,\bu_2,\bv_1\} \end{aligned}, $$ 由上列敘述可得$\{\bu_1,\bu_2,\bv_1\}$ 為 $U+V$ 的一組基底,$\dim (U+V) = 3$。 ##### Exercise 2(b) 找出 $B_U$ 和 $B_V$ 使得 $U = \operatorname{ker}(B_U)$ 且 $V = \operatorname{ker}(B_V)$。 ${\bf Ans:}$ 我們經運算得 $U$、$V$ 的左零解空間即可得到 $B_U$、$B_V$: $$\begin{aligned} B_U = \begin{bmatrix}1 & -1 & 0 & 0\\ 0 & 0 & 1 & -1\end{bmatrix}, B_V =\begin{bmatrix}1 & 0 & -1 & 0\\ 0 & 1 & 0 & -1\end{bmatrix} \end{aligned}. $$ ##### Exercise 2(c) 求 $U \cap V$ 的一組基底。 :::warning - [x] $ker$ --> $\ker$ - [x] 呈上題 --> 承上題 - [x] 的零解空間為 ??? --> 的零解空間由 ??? 生成 - [x] 中英數間空格 ::: ${\bf Ans:}$ 令 $B_U$、$B_V$ 為滿足 $U = \ker (B_U\trans)$ , $V = \ker(B_V\trans)$ 的矩陣, 承上題運算結果即可得: $$\begin{aligned} B_U = \begin{bmatrix}1 & -1 & 0 & 0\\ 0 & 0 & 1 & -1\end{bmatrix}, B_V =\begin{bmatrix}1 & 0 & -1 & 0\\ 0 & 1 & 0 & -1\end{bmatrix} \end{aligned}. $$ 若 $B_U$、$B_V$ 為滿足 $U = \ker(B_U\trans)$ , $V = \ker(B_V\trans)$ 的矩陣, 則 $U \cap V$ 為 $\begin{bmatrix}B_U\\ B_V\end{bmatrix}$ 的零解空間。 經計算可得 $\begin{bmatrix}B_U\\ B_V\end{bmatrix}$ 的零解空間由 $\left\{\begin{bmatrix}1\\1\\1\\1 \end{bmatrix}\right\}$ 所生成,即為 $U \cap V$ 的一組基底。 ##### Exercise 3 若 $U$ 和 $V$ 為兩個子空間。 證明 $U + V$ 為一個子空間。 :::warning - [x] 第一行不用 - [x] 由子空間加法可得 --> 由子空間加法的定義 - [x] $U + V$ = $\operatorname{span}\{$$U$ $\cup V$ } --> $U + V = \vspan(U \cup V)$ (不要一直跳出數學模式,$U$ 和 $V$ 已經是集合了,外面不用大刮號) - [x] $span$ --> $\vspan$ - [x] 標點 ::: ${\bf Ans:}$ 由子空間加法的定義知道 $U + V = \vspan(U \cup V)$。 而任何可寫成 $\vspan$ 的集合都是一個子空間。 ##### Exercise 4 若 $U$ 和 $V$ 為兩個子空間。 證明 $U \cap V$ 為一個子空間。 :::warning - [x] 中英數空格 - [x] 向量粗體 - [x] $V_1,V_2$ --> $\bv_1, \bv_2$ - [x] 證明存在$V_1 , V_2 \in U \cap V \rightarrow V_1 + V_2 \in U \cap V$ --> 證明若 $\bv_1 , \bv_2 \in U \cap V$ 則 $\bv_1 + \bv_2 \in U \cap V$ - [ ] 把句子寫完整,加上完整標點。 - [ ] 證明$K \in \mathbb R , v \in U \cap V \rightarrow Kv \in U \cap V$ --> 證明若 $k \in \mathbb{R}$ 且 $\bv \in U \cap V$,則 $k\bv \in U \cap V$ ::: ${\bf Ans:}$ (1) 證明 $U \cap V = \emptyset$。 因 $\bzero \in U$,且 $\bzero \in V$, 所以 $\bzero \in U\cap V$ 。 (2) 證明若 $\bv_1 , \bv_2 \in U \cap V$ ,則 $\bv_1 + \bv_2 \in U \cap V$。 因為 $\bv_1,\bv_2 \in U$ 且 $U$ 是子空間,所以 $\bv_1 + \bv_2 \in U$。 因為 $\bv_1,\bv_2 \in V$ 且 $V$ 是子空間,所以 $\bv_1 + \bv_2 \in V$。 因此,$\bv_1+\bv_2 \in U \cap V$ 。 (3) 證明若 $k \in \mathbb R$ 且 $\bv \in U \cap V$ ,則 $k\bv \in U \cap V$。 令 $\bv \in U \cap V$ 而 $k \in \mathbb R$。 由於 $\bv\in U$ 且 $U$ 是子空間,所以 $k\bv\in U$。 由於 $\bv\in V$ 且 $V$ 是子空間,所以 $k\bv\in V$。 因此,$k\bv \in U \cap V$。 故 $U \cap V$ 為一子空間。 ##### Exercise 5 若 $U$ 和 $V$ 為兩個子空間。 證明 $$\dim(U + V) = \dim(U) + \dim(V) - \dim(U \cap V). $$ :::warning - [x] 設 $U \cap V$ 的基底 --> 設 $U \cap V$ 的基底為 - [x] 而透過 $\beta_U$ 、 $\beta_V$ ,我們可以知道 $U+V$ 的基底為$\bb_1,...\bb_k,\bc_1,...\bc_r,\bd_1,...\bd_l$, --> 令 $\beta = \{\bb_1,\ldots,\bb_k,\bc_1,\ldots, \bc_r,\bd_1,\ldots, \bd_l\}$。 接下來我們證明 $\beta$ 是 $U + V$ 的一組基底。 由於 $U + V = \vspan(U\cup V) = \vspan(\beta)$。 所以我們只要證明 $\beta$ 是線性獨立即可。 若 $$ ??? = \bzero, $$ 則 ... ::: ${\bf Ans:}$ 設 $U \cap V$ 的基底為 $\beta_\cap = \{\bu_1,\bu_2...\bu_k\}$。 根據擴充法則,我們可以得到 一組 $U$ 的基底 $\beta_U = \{\bb_1,...\bb_k,\bc_1,...\bc_r\}$ 及一組 $V$ 的基底 $\beta_V = \{\bb_1,...,\bb_k,\bd_1,...\bd_l\}$。 令 $\beta = \beta_U\cup\beta_V = \{\bb_1,\ldots,\bb_k,\bc_1,\ldots, \bc_r,\bd_1,\ldots, \bd_l\}$。 接下來我們證明 $\beta$ 是 $U+V$ 的一組基底。 由於 $U + V = \vspan(U\cup V) = \vspan(\beta)$。 所以我們只要證明 $\beta$ 是線性獨立即可。 若 $$b_1\bb_1+...+b_k\bb_k+c_1\bc_1+...+c_r\bc_r+d_1\bd_1+...d_l\bd_l = {\bf 0}, $$ 則 $$b_1\bb_1+...+b_k\bb_k+c_1\bc_1+...+c_r\bc_r = -(d_1\bd_1+...d_l\bd_l), $$ 且因為 $$b_1\bb_1+...+b_k\bb_k+c_1\bc_1+...+c_r\bc_r+d_1\bd_1+...d_l\bd_l \in U, $$ $$-(d_1\bd_1+...d_l\bd_l)\in V, $$ 所以 $-(d_1\bd_1+...d_l\bd_l) \in U \cap V = \vspan(\beta_\cap)$。 因此我們可以將上面的式子寫成 $\beta_\cap$ 的線性組合: $$-(d_1\bd_1+...d_l\bd_l) = a_1\bb_1+...a_k\bb_k, $$ 透過移項可得: $$ a_1\bb_1+...a_k\bb_k+d_1\bd_1+...+d_l\bd_l = {\bf 0}. $$ 由於 $\beta_V = \{\bb_1,\ldots,\bb_k,\bd_1,\ldots,\bd_l\}$ 是一組基底,所以這個集合獨立。 因而我們知道 $a_1 = \cdots = a_k = d_1 = \cdots = d_l = 0$。 由於 $d_1 = \cdots = d_l = 0$,我們可以得到 $$ b_1\bb_1+...+b_k\bb_k+c_1\bc_1+...+c_r\bc_r = \bzero. $$ 因為這些向量為 $\beta_U$ 中的向量且它們獨立,所以 $b_1 = \cdots + b_k = c_1 = \cdots = c_r = 0$。 因此 $$\begin{aligned} \dim(U) + \dim(V) &= (k+r) + (k+l) = (k+r+l) + k \\ &= \dim(U+V) +\dim(U \cap V). \end{aligned} $$ 最後透過移項我們可以得到 $\dim(U+V) = \dim(U) + \dim(V) - \dim(U \cap V)。$ ##### Exercise 6 令 $$A_U = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 2 & 1 \\ 2 & 1 \\ \end{bmatrix}, A_V = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 2 \\ 2 & 1 \\ \end{bmatrix} $$ 且 $U = \operatorname{Col}(A_U)$ 且 $V = \operatorname{Col}(A_V)$。 ##### Exercise 6(a) 找出一組向量 ${\bf u}\in U$ 及 ${\bf v}\in V$ 使得 $1\cdot {\bf u} + 1\cdot {\bf v} = {\bf 0}$。 藉此說明 $U$ 和 $V$ 不線性獨立。 :::info 想一下一般來說怎麼找。 ::: ${\bf Ans :}$ 令 $${\bf u} = \begin{bmatrix} 3 \\ 3 \\ 3 \\ 3 \\ \end{bmatrix} , {\bf v} = \begin{bmatrix} -3 \\ -3 \\ -3 \\ -3 \\ \end{bmatrix} $$ 使得 $$1\cdot \begin{bmatrix} 3 \\ 3 \\ 3 \\ 3 \\ \end{bmatrix} + 1\cdot \begin{bmatrix} -3 \\ -3 \\ -3 \\ -3 \\ \end{bmatrix} = \bf 0 $$ 因為 $c_1\cdot {\bf u} + c_2\cdot {\bf v} = {\bf 0}$ 存在 $c_1 = c_2 = 1 \neq 0$ , 所以 $U$ 和 $V$ 不線性獨立。 ##### Exercise 6(b) 令 $V_1$ 和 $V_2$ 為任意的兩個子空間。 證明以下敘述等價: 1. $\{V_1, V_2\}$ is linearly independent. 2. $V_1 \cap V_2 = \{ {\bf 0} \}$. :::warning - [x] 則存在 ${\bf v}$ 屬於 $V_1$ 、 ${\bf w}$ 屬於 $V_2$ 且 $\bv ,\bw$ 為非零向量, 令 ${\bf v} = {\bf w} = {\bf u}$。 --> 令 ${\bf v} = {\bf w} = {\bf u}$。則 ${\bf v}$ 屬於 $V_1$ 、${\bf w}$ 屬於 $V_2$ 且 $\bv ,\bw$ 為非零向量。 ::: ${\bf Ans : }$ $1. \implies 2.$ (反證法) 假設 ${\bf u} \neq \bf 0$ 屬於 $V_1 \cap V_2$,也就是說 ${\bf u}$ 屬於 $V_1$ 與 $V_2$ 。 令 ${\bf v} = {\bf w} = {\bf u}$ , 則 ${\bf v}$ 屬於 $V_1$ 、 ${\bf w}$ 屬於 $V_2$ 且 $\bv ,\bw$ 為非零向量。 使得 $c_1 \cdot {\bf v} + c_2 \cdot {\bf w} = c_1 \cdot {\bf u} + c_2 \cdot {\bf u} = \bf 0$ , $c_1$ 和 $c_2$ 屬於 $\mathbb{R}$ ,存在 $c_1=1 , c_2=-1$ ,得 $\{V_1, V_2\}$ 不線性獨立。 故如果 $\{V_1, V_2\}$ 線性獨立,則 $V_1 \cap V_2 = \{ {\bf 0} \}$。 :::warning - [x] 零向量用粗體 ::: $2. \implies 1.$ (反證法) 假設 $\{V_1, V_2\}$ 不線性獨立,則存在 ${\bf v}$ 屬於 $V_1$ 、 ${\bf w}$ 屬於 $V_2$ 且 $\bv ,\bw$ 為非零向量,使得 $c_1 \cdot {\bf v} + c_2 \cdot {\bf w} = \bf 0$,而 $c_1$ 和 $c_2$ 屬於 $\mathbb{R}$ ,且 $c_1,c_2 \neq 0$。 則 ${\bf v} = \frac{- c_2}{c_1} \cdot \bw$,又因 $V_2$ 為子空間,所以 $\frac{- c_2}{c_1} \cdot \bw$ 也屬於 $V_2$ , 得 ${\bf v} = \frac{- c_2}{c_1} \cdot \bw \neq \bf 0$ 也屬於 $V_1 \cap V_2$ 。 故如果 $V_1 \cap V_2 = \{ {\bf 0} \}$,則 $\{V_1, V_2\}$ 線性獨立。 ##### Exercise 7 :::warning 第七題因為子空間獨立定義有更新,所以放懸賞。 可以用新的定義重新整理一下。 ::: 令 ${\bf u}_1,\ldots,{\bf u}_k$ 為一群向量。 ##### Exercise 7(a) 對於每個 $i = 1,\ldots k$﹐令 $U_i = \operatorname{span}(\{{\bf u}_i\})$。 證明以下敘述等價: 1. $\{U_1, \ldots, U_k\}$ is linearly independent. 2. $\{{\bf u}_1, \ldots, {\bf u}_k\}$ is linearly independent. ${\bf Ans : }$ $1. \implies 2.$ 假設 $\{U_1, \ldots, U_k\}$ 為線性獨立。 考慮一些係數 $c_1,\ldots,c_k \in \mathbb R$ 使得 $c_1{\bf u}_1 + \ldots + c_k{\bf u}_k= {\bf 0}$。 由於每個 $i = 1,\ldots, k$ 都有 $\bu_i\in U_i$ 且 $\{U_1, \ldots, U_k\}$。 因此 $c_1 = \cdots = c_k = 0$。 結論得到 $\{{\bf u}_1, \ldots, {\bf u}_k\}$ 為線性獨立。 $2. \implies 1.$ 假設 $\{{\bf u}_1, \ldots, {\bf u}_k\}$ 為線性獨立。 令 $\bu_i'\in U_i$,則 $\bu_i'$ 可以寫成 $c_i\bu_i$。 如果 $\bu_1' + \cdots + \bu_k' = \bzero$, 則 $c_1\bu_1 + \cdots + c_k\bu_k = \bzero$。 由於 $\{{\bf u}_1, \ldots, {\bf u}_k\}$ 為線性獨立,所以 $c_1 = \cdots = c_k = 0$。 最後得到每個 $i$ 都有 $\bu_i' = \bzero$,並知道 $\{U_1, \ldots, U_k\}$ 為線性獨立。 ##### Exercise 7(c) 令 $$V_1 = \operatorname{span}\left(\left\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right\}\right), V_2 = \operatorname{span}\left(\left\{\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right\}\right), V_3 = \operatorname{span}\left(\left\{\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right\}\right).$$ 說明對任意相異的 $i$ 和 $j$ 都有 $V_i\cap V_j = \emptyset$﹐ 但是 $\{V_1,V_2,V_3\}$ 並不線性獨立。 ${\bf Ans : }$ $V_1,V_2, \ldots,V_k$ 為非零且獨立空間 ${\bf v}_1\in \ V_1,\ldots, {\bf v}_k\in \ V_k$, $c_1,\ldots,c_k \in \mathbb R$,使得 $c_1{\bf v}_1 + \ldots + c_k{\bf v}_k= {\bf 0}$ ,則 $c_1= \ldots =c_k=0$,故 $V_i\cap V_j = \emptyset$。 找的到$${\bf v}_1=\begin{bmatrix} 1 \\ 0 \\ \end{bmatrix} \in \ V_1, $$ $${\bf v}_2=\begin{bmatrix} 0 \\ 1 \\ \end{bmatrix} \in \ V_2, $$ $${\bf v}_3=\begin{bmatrix} 1 \\ 1 \\ \end{bmatrix} \in \ V_3, $$ 皆非零向量,使得 ${\bf v}_1+{\bf v}_2={\bf v}_3$, ${\bf v}_1+{\bf v}_2-{\bf v}_3={\bf 0}$,故可得 $\{V_1,V_2,V_3\}$ 並不線性獨立。 ##### Exercise 7(d) 若 $\{{\bf u}_1, \ldots, {\bf u}_6\}$ 線性獨立。 令 $V_1 = \{{\bf u}_1, {\bf u}_2\}$、 $V_2 = \{{\bf u}_3, {\bf u}_4\}$ 且 $V_3 = \{{\bf u}_5, {\bf u}_6\}$。 證明 $\{V_1,V_2,V_3\}$ 線性獨立。 (實際上把一群線性獨立的向量分成任意堆﹐ 則每堆生成出來的空間 全部合在一起會是線性獨立的。) ${\bf Ans : }$ $\{{\bf u}_1, \ldots, {\bf u}_6\}$ 線性獨立,可寫成 $c_1{\bf u}_1 + \ldots + c_6{\bf u}_6\neq {\bf 0}$ ,其中 $c_1,\ldots,c_6 \in \mathbb R$。 $V_1 = \{{\bf u}_1, {\bf u}_2\}$ = $d_1{\bf u}_1 + d_2{\bf u}_2$、 $V_2 = \{{\bf u}_3, {\bf u}_4\}$ = $d_3{\bf u}_3 + d_4{\bf u}_4$ 且 $V_3 = \{{\bf u}_5, {\bf u}_6\}$ = $d_5{\bf u}_5 + d_6{\bf u}_6$ , $d_1,\ldots,d_6 \in \mathbb R$ 。 因為 $\{V_1,V_2,V_3\}$ = $k_1(d_1{\bf u}_1 + d_2{\bf u}_2)$+ $k_2(d_3{\bf u}_3 + d_4{\bf u}_4)$ + $k_3(d_5{\bf u}_5 + d_6{\bf u}_6)$ = $k_1d_1{\bf u}_1 + k_1d_2{\bf u}_2$ + $k_2d_3{\bf u}_3 + k_2d_4{\bf u}_4$ + $k_3d_5{\bf u}_5 + k_3d_6{\bf u}_6$ = $c_1{\bf u}_1 + \ldots + c_6{\bf u}_6\neq {\bf 0}$, $k_1,k_2,k_3 \in \mathbb R$ ,所以可得 $\{V_1,V_2,V_3\}$ 線性獨立。 :::info 目前分數 6.5 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully