Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 小型矩陣的行列式值 Determinant for small matrices ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}$ ```python from lingeo import random_good_matrix ``` ## Main idea In this section we explore some basic properties of the determinant of a $2\times 2$ or a $3\times 3$ matrix. Let $$ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} $$ be a $2\times 2$ matrix. Then its **determinant** is defined as $$ \det(A) = ad - bc. $$ When $$ A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} $$ is a $3\times 3$ matrix, the **determinant** is $$ \begin{aligned} \det(A) &= aei - afh - bdi + bfg + cdh - ceg \\ &= a(ei - fh) - b(di -fg) + c(dh - eg). \end{aligned} $$ Let $n = 2,3$ and $A$ an $n\times n$ matrix. Then the determinant functions have the following basic properties. (See Section 108 for the notations of row operations.) - $\det(I_n) = 1$. - If $B$ is obtained from $A$ by performing the row operation $\rho_i\leftrightarrow\rho_j$, then $\det(B) = -\det(A)$. - If $B$ is obtained from $A$ by performing the row operation $\rho_i:\times k$, then $\det(B) = k\det(A)$. - If $B$ is obtained from $A$ by performing the row operation $\rho_i:+k\rho_j$, then $\det(B) = \det(A)$. When $A$ is a $2\times 2$ matrix, one may construct a _parallelogram_ spanned by its row vectors. It is known that $\det(A)$ is the _signed area_ of this parallelogram. When $A$ is a $3\times 3$ matrix, one may construct a _parallelepiped_ spanned by its row vectors. It is known that $\det(A)$ is the _signed volume_ of this parallelepiped. The same statement holds when the row vectors are replaced with the column vectors. As a consequence, $\det(A) \neq 0$ if and only if $A$ is invertible. For any sqaure matrices $A$ and $B$ of the same size, the determinant function also has the following properties. - $\det(A) = \det(A\trans)$. - $\det(AB) = \det(A)\det(B)$. ## Side stories - characteristic polynomial ## Experiments ##### Exercise 1 執行以下程式碼。 <!-- eng start --> Run the code below. <!-- eng end --> ```python ### code set_random_seed(0) print_ans = False n = 2 k1 = 2 k2 = 3 A1 = random_good_matrix(n,n,n) * choice([-2,-1,1,2]) A2 = copy(A1) A2.swap_rows(0,1) A3 = copy(A2) A3.rescale_row(1,k1) A4 = copy(A3) A4.add_multiple_of_row(1,0,k2) print("A1") pretty_print(A1) print("A2") pretty_print(A2) print("A3") pretty_print(A3) print("A4") pretty_print(A4) if print_ans: print("det(A1) =", A1.det()) print("A2 is obtained from A1 by swapping rows, so ") print("det(A2) = - det(A1) =", A2.det()) print("A3 is obtained from A2 by rescaling a row, so ") print("det(A3) = %s * det(A2) ="%k1, A3.det()) print("A4 is obtained from A3 by adding a multiple of a row to the other, so ") print("det(A4) = det(A3) =", A4.det()) ``` ##### Exercise 1(a) 用定義計算 $\det(A_1)$。 <!-- eng start --> Find $\det(A_1)$ by definition. <!-- eng end --> ##### Exercise 1(a) -- answer here:) Run the code above and get $$ A_1 = \begin{bmatrix} -2 & -6 \\ -10 & -32 \end{bmatrix}. $$ According to the definition, $\det(A_1)$ equals to $(-2)(-32)-(-6)(-10)=4$ ##### Exercise 1(b) 用定義計算 $\det(A_2)$。 已知 $A_2$ 可以由 $A_1$ 經過列運算得出, 利用 $\det(A_1)$ 再次計算 $\det(A_2)$ 來驗證答案。 <!-- eng start --> Find $\det(A_2)$ by definition. Suppose we know that $A_2$ can be obtained from $A_1$ by some row operation. Use $\det(A_1)$ to find $\det(A_2)$ again to verify your previous answer. <!-- eng end --> ##### Exercise 1(b) -- answer here:) From the definition of the determinant, we can find $\det(A_2)=(-10)(-6)-(-2)(-32)=-4$. We know that $A_2$ can be obtained from $A_1$ by row operation $\rho_1\leftrightarrow\rho_2$ so $\det(A_2)=-\det(A_1)$. From Exercise 1(a) we know $\det(A_1)=4$, so we know that $\det(A_2)=-4$. ##### Exercise 1(c) 用定義計算 $\det(A_3)$。 已知 $A_3$ 可以由 $A_2$ 經過列運算得出, 利用 $\det(A_2)$ 再次計算 $\det(A_3)$ 來驗證答案。 <!-- eng start --> Find $\det(A_3)$ by definition. Suppose we know that $A_3$ can be obtained from $A_2$ by some row operation. Use $\det(A_2)$ to find $\det(A_3)$ again to verify your previous answer. <!-- eng end --> ##### Exercise 1(c) -- answer here:) :::warning - [x] $*2$ --> $\times 2$, replace other $*$ with $\times$ or $\cdot$ ::: Run the code above and get $$ A_3 = \begin{bmatrix} -10 & -32\\ -4 & -12 \end{bmatrix}. $$ According to the definition, $\det(A_3)$ equals to $(-10)(-12)-(32)(-4)=-8$. We know that $A_3$ can be obtained from $A_2$ by row operation $\rho_2:\times2$, so $\det(A_3)=2\times\det(A_2)=2\times(-4)=-8$. ##### Exercise 1(d) 用定義計算 $\det(A_4)$。 已知 $A_4$ 可以由 $A_3$ 經過列運算得出, 利用 $\det(A_3)$ 再次計算 $\det(A_4)$ 來驗證答案。 <!-- eng start --> Find $\det(A_4)$ by definition. Suppose we know that $A_4$ can be obtained from $A_3$ by some row operation. Use $\det(A_3)$ to find $\det(A_4)$ again to verify your previous answer. <!-- eng end --> ##### Exercise 1(d) -- answer here:) Run the code above and get $$ A_4 = \begin{bmatrix} -10 & -32\\ -34 & -108 \end{bmatrix}. $$ :::warning - [x] $det$ --> $\det$ ::: According to the definition, $\det(A_3)$ equals to $(-10)(-108)-(32)(-34)=-8$. We know that $A_4$ can be obtained from $A_3$ by row operation $\rho_2:+3\rho_1$, so $\det(A_4)=\det(A_3)=-8$. :::warning Please answer the question below. ::: :::info What do the experiments try to tell you? (open answer) 行列式值會隨著列運算有一定的改變 ::: ## Exercises ##### Exercise 2 以下練習驗證行列式值和矩陣是否可逆的關係。 <!-- eng start --> Through the following exercises, explore the relation between the determinant and the invertibility of a matrix. <!-- eng end --> ##### Exercise 2(a) 寫出一個行列式值為 $0$ 且矩陣中每項皆不為 $0$ 的 $3\times 3$ 矩陣。 用列運算判斷其是否可逆。 <!-- eng start --> Find a $3\times 3$ matrix with zero determinant such that all its entries are nonzero. Determine if it is invertible by row operations. <!-- eng end --> ##### Exercise 2(a) -- answer here: :::warning - [x] $3\times 3$ - [x] Use $\rightarrow$ instead of "to". - [x] REF and RREF are different. RREF requires you to kill all entries above a pivot. ::: One example of a $3\times3$ matrix with zero determinant and all entries nonzero is: $$ A = \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{bmatrix}. $$ To determine if this matrix is invertible by row operations, we can row-reduce it to row echelon form using elementary row operations: $$ A = \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{bmatrix}. $$ $\rightarrow$ $$ A = \begin{bmatrix} 1 & 2 & 3\\ 0 & -3 & -6\\ 0 & 0 & 0 \end{bmatrix}. $$ $\rightarrow$ $$ A = \begin{bmatrix} 1 & 2 & 3\\ 0 & 1 & 2\\ 0 & 0 & 0 \end{bmatrix}. $$ The resulting matrix is in row echelon form, and has a row of zeros, which means its determinant is zero. Since the determinant is nonzero if and only if the matrix is invertible, we can conclude that this matrix is not invertible. ##### Exercise 2(b) 寫出一個行列式值不為 $0$ 且矩陣中每項皆不為 $0$ 的 $3\times 3$ 矩陣。 用列運算判斷其是否可逆。 <!-- eng start --> Find a $3\times 3$ matrix with nonzero determinant such that all its entries are nonzero. Determine if it is invertible by row operations. <!-- eng end --> ##### Exercise 2(b) -- answer here: :::warning Same as previous problem. ::: Let matrix $A$: $$ A = \begin{bmatrix} 1 & 3 & 6\\ 5 & 2 & 7\\ 9 & 8 & 4 \end{bmatrix}. $$ (REF) $$ A = \begin{bmatrix} 1 & 2 & 3\\ 0 & -3 & -6\\ 7 & 8 & 9 \end{bmatrix}. $$ $\rightarrow$ $$ A = \begin{bmatrix} 1 & 2 & 3\\ 0 & -12 & -23\\ 0 & 0 & -95 \end{bmatrix}. $$ $\rightarrow$ $$ A = \begin{bmatrix} 1 & 2 & 3\\ 0 & 1 & 1\\ 0 & 0 & 1 \end{bmatrix}. $$ The resulting matrix is in row echelon form, and does not have a row of zeros. Therefore, we can conclude that the original matrix is invertible, since it has nonzero determinant. ##### Exercise 2(c) 令 $$ A_x = \begin{bmatrix} 2 - x & 3 \\ 3 & 2 - x \end{bmatrix}. $$ 找出所有會讓 $A_x$ 奇異(不可逆)的 $x$。 對每個這樣的 $x$,求出一個非零向量 $\bv_x$ 使得 $A_x\bv_x = \bzero$。 <!-- eng start --> Let $$ A_x = \begin{bmatrix} 2 - x & 3 \\ 3 & 2 - x \end{bmatrix}. $$ Find all possible $x$ such that $A_x$ is singular (not invertible). For each of such $x$, find a nonzero vector $\bv_x$ such that $A_x\bv_x = \bzero$. <!-- eng end --> ##### Exercise 2(c) -- answer here: :::warning - [x] $\times$ - [x] Fix the typo $A_($ ::: According to the definition, $\det(A) \neq 0$ if and only if $A$ is invertible. We need to find $\det(A)=0$ such that $A_x$ is singular (not invertible). $\det(A)=(2-x)(2-x)-3\times3=(2-x-3)(2-x+3)=(-1-x)(5-x)$ When $\det(A)=0$, $x=5$ or $x=-1$. When $x=5$, $$ A_5=\begin{bmatrix} -3 & 3\\ 3 & -3 \end{bmatrix}. $$ Find $$ \bv_5=\begin{bmatrix} 1 \\ 1 \end{bmatrix} $$ such that $A_5\bv_5=0$ . When $x=-1$, $$ A_{-1}=\begin{bmatrix} 3 & 3\\ 3 & 3 \end{bmatrix}. $$ Find $$ \bv_{-1}=\begin{bmatrix} 1 \\ -1 \end{bmatrix} $$ such that $A_{-1}\bv_{-1}=0$. ##### Exercise 2(d) 令 $$ A_x = \begin{bmatrix} 0 - x & 1 & 1 \\ 1 & 0 - x & 0 \\ 1 & 0 & 0 - x \\ \end{bmatrix}. $$ 找出所有會讓 $A_x$ 奇異(不可逆)的 $x$。 對每個這樣的 $x$,求出一個非零向量 $\bv_x$ 使得 $A_x\bv_x = \bzero$。 <!-- eng start --> Let $$ A_x = \begin{bmatrix} 0 - x & 1 & 1 \\ 1 & 0 - x & 0 \\ 1 & 0 & 0 - x \\ \end{bmatrix}. $$ Find all possible $x$ such that $A_x$ is singular (not invertible). For each of such $x$, find a nonzero vector $\bv_x$ such that $A_x\bv_x = \bzero$. <!-- eng end --> ##### Exercise 2(d) -- answer here: :::warning - [x] typo: knoe ::: From the main idea we know that $\det(A) \neq 0$ if and only if $A$ is invertible, so if $A_x$ is singular $\det(A_x)=0$. From the definition $\det(A_x)=(-x)^3+0+0-(-x)-(-x)-0=-x^3+2x=0,$ $x=0, \sqrt2, -\sqrt2$. $$ A_0 = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ \end{bmatrix}, A_\sqrt2 = \begin{bmatrix} -\sqrt2 & 1 & 1 \\ 1 & -\sqrt2 & 0 \\ 1 & 0 & -\sqrt2 \\ \end{bmatrix}, A_{-\sqrt2} = \begin{bmatrix} \sqrt2 & 1 & 1 \\ 1 & \sqrt2 & 0 \\ 1 & 0 & \sqrt2 \\ \end{bmatrix}. $$ When $x=0$, we can find $\bv_x = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$. When $x=\sqrt2$, we can find $\bv_x = \begin{bmatrix} \sqrt2 \\ 1 \\ 1 \end{bmatrix}$. When $x={-\sqrt2}$, we can find $\bv_x = \begin{bmatrix} -\sqrt2 \\ 1 \\ 1 \end{bmatrix}$. ##### Exercise 3 令 $n = 2,3$、且 $A$ 為一 $n\times n$ 的矩陣。 利用定義證明以下性質: - $\det(I_n) = 1$. - If $B$ is obtained from $A$ by performing the row operation $\rho_i\leftrightarrow\rho_j$, then $\det(B) = -\det(A)$. - If $B$ is obtained from $A$ by performing the row operation $\rho_i:\times k$, then $\det(B) = k\det(A)$. - If $B$ is obtained from $A$ by performing the row operation $\rho_i:+k\rho_j\times$, then $\det(B) = \det(A)$. <!-- eng start --> Let $n = 2,3$ and $A$ an $n\times n$ matrix. Prove the following properties by definition: - $\det(I_n) = 1$. - If $B$ is obtained from $A$ by performing the row operation $\rho_i\leftrightarrow\rho_j$, then $\det(B) = -\det(A)$. - If $B$ is obtained from $A$ by performing the row operation $\rho_i:\times k$, then $\det(B) = k\det(A)$. - If $B$ is obtained from $A$ by performing the row operation $\rho_i:+k\rho_j\times$, then $\det(B) = \det(A)$. <!-- eng end --> **[由 :cloud: 提供]** ### Exercise 3 -- answer * >$\det(I_n) = 1$ If $n=2$, let $I_2=\begin{bmatrix} 1 & 0 \\ 0 & 1\\\end{bmatrix}.$ According to the definition of determinant, its determinant is $\det(I_2) = 1^2 - 0=1.$ If $n=3$, let $I_3=\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\\end{bmatrix}.$ According to the definition of determinant, its determinant is $\det(I_3) = 1^3 - 0=1.$ * >If $B$ is obtained from $A$ by performing the row operation $\rho_i\leftrightarrow\rho_j$, then $\det(B) = -\det(A)$. When $n=2$ let $A_1=\begin{bmatrix} a & b \\ c & d\\\end{bmatrix}$; when $n=3$ let $A_2=\begin{bmatrix} a & b & c\\ d & e & f\\ g & h & i\\\end{bmatrix}.$ Suppose $B_1$ is obtained from $A_1$ by performing the row operation $\rho_1\leftrightarrow\rho_2$, then $B_1=\begin{bmatrix} c & d\\ a & b\\\end{bmatrix}.$ Next, we calculate determinant, we found that $\det(B)=bc-ad=-(ad-bc)=-\det(A).$ Suppose $B_2$ is obtained from $A_2$ by performing the row operation $\rho_1\leftrightarrow\rho_3$, then $B_2=\begin{bmatrix} g & h & i\\ d & e & f\\ a & b & c\\\end{bmatrix}.$ Next, we calculate determinant, we found that $$ \begin{aligned} \det(B) &= afh+bdi+ceg-aei-cdh-bfg \\ &=-(aei+bfg+cdh-afh-bdi-ceg)\\ &=-\det(A) \end{aligned} $$ * >If $B$ is obtained from $A$ by performing the row operation $\rho_i:\times k$, then $\det(B) = k\det(A)$. Suppose $B_1$ is obtained from $A_1$ by performing the row operation $\rho_1:\times k$, then $B_1=\begin{bmatrix} ka & kb\\ c & d\\\end{bmatrix}.$ Next, we calculate determinant, we found that $\det(B_1)=kad-kbc=k(ad-bc)=k\det(A_1).$ Suppose $B_2$ is obtained from $A_2$ by performing the row operation $\rho_2:\times k$, then $B_2=\begin{bmatrix} a & b & c\\ kd & ke & kf\\ g & h & i\\\end{bmatrix}.$ Next, we calculate determinant, we found that $\det(B_2)=kaei+kbfg+kcdh-kafh-kbdi-kceg=k\det(A_2).$ * > If $B$ is obtained from $A$ by performing the row operation $\rho_i:+k\rho_j\times$, then $\det(B) = \det(A)$. Suppose $B_1$ is obtained from $A_1$ by performing the row operation $\rho_1:+k\rho_2\times$, then $B_1=\begin{bmatrix} a+kc & b+kd\\ c & d\\\end{bmatrix}.$ Next, we calculate determinant, we found that $\det(B_1)=ad+kcd-bc-kcd=\det(A_1).$ Suppose $B_2$ is obtained from $A_2$ by performing the row operation $\rho_3:+k\rho_1\times$, then $B_2=\begin{bmatrix} a & b & c\\ d & e & f\\ g+ka & h+kb & i+kc\\\end{bmatrix}.$ Next, we calculate determinant, we found that $$ \begin{aligned} \det(B_2) &= aei+kace+bfg+kabf+cdh+kbcd-afh-kabf-bdi-kbcd-ceg-kace \\ &=\det(A_2). \end{aligned} $$ ##### Exercise 4 令 $n = 2,3$、且 $A$ 為一 $n\times n$ 的矩陣。 利用定義證明以下性質: - $\det(A) = \det(A\trans)$. - $\det(AB) = \det(A)\det(B)$. <!-- eng start --> Let $n = 2,3$ and $A$ an $n\times n$ matrix. Prove the following properties by definition: - $\det(A) = \det(A\trans)$. - $\det(AB) = \det(A)\det(B)$. <!-- eng end --> ##### Exercise 4 -- answer here: :::warning - [x] typo: Thereform - [x] add space after comma Otherwise, the answer is nice. ::: Question 1 Let matrix $A$: $$ A = \begin{bmatrix} a & b \\ c & d\\ \end{bmatrix}. $$ then $A\trans$: $$ A\trans = \begin{bmatrix} a & c \\ b & d\\ \end{bmatrix}. $$ According to the definition of determinant, we know that: $$\det(A) = ad-bc$$ $$\det(A\trans) =ad-cb$$ Therefore,$\det(A) = \det(A\trans)$. Question 2 Let matrices $A$ and $B:$ $$ A = \begin{bmatrix} a & b \\ c & d\\ \end{bmatrix}. $$ $$ B = \begin{bmatrix} e & f \\ g & h\\ \end{bmatrix}. $$ Then by the definition, $$ AB=\begin{bmatrix} a & b \\ c & d\\ \end{bmatrix} \begin{bmatrix} e & f \\ g & h\\ \end{bmatrix}=\begin{bmatrix} ae+bg & af+ bh\\ ce+dg & cf+dh\\ \end{bmatrix} $$ and$$ \begin{aligned} \det(AB) &= (ae+bg)(cf+dh)-(af+bh)(ce+dg) \\ &= aecf+aedh+bgcf+bgdh-afce-afdg-bhce-bhdg \\ &= aedh+bgcf-afdg-bhce \\ &= adeh-adfg-bceh+bcfg \\ &= (ad-bc)(eh-fg) \\ &=\det(A)\det(B). \end{aligned} $$ Thereform, $\det(AB) = \det(A)\det(B)$. :::info collaboration: 1 4 problems: 4 * 2a~d extra: 1 * 4 moderator: 1 qc: 1 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully