Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 遞迴關係式 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}}$ ```python from lingeo import random_int_list ``` ## Main idea Consider a sequence that satisfies $$ \begin{aligned} a_{n+2} &= c_1a_{n+1} + c_2a_n, \\ a_0 &= p,\quad a_1 = q, \end{aligned} $$ where $c_1,c_2,p,q$ are some given values. The first line is called a **recurrence relation**, while the second line is called the **initial conditions**. A famous example is the **Fibonacci sequence** defined by $$ \begin{aligned} a_{n+2} &= a_{n+1} + a_n, \\ a_0 &= 1,\quad a_1 = 1. \end{aligned} $$ Such a relation can be written as $$ \begin{bmatrix} a_{n+1} \\ a_{n+2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ c_2 & c_1 \end{bmatrix} \begin{bmatrix} a_{n} \\ a_{n+1} \end{bmatrix}. $$ That is, by setting $\bv_n = \begin{bmatrix} a_n \\ a_{n+1} \end{bmatrix}$, there is a matrix $A$ such that $$ \begin{aligned} \bv_{n+1} &= A\bv_n, \\ \bv_0 &= \begin{bmatrix} p \\ q \end{bmatrix}. \end{aligned} $$ As long as we have a formulat for $A^n$, then we know $\bv_n = A^n\bv_0$. ## Side stories - Fibonacci sequence - $\mathbb{R}^\mathbb{Z}$ and the advancement operator ## Experiments ##### Exercise 1 執行以下程式碼。 ```python ### code set_random_seed(0) print_ans = False while True: c1,c2 = random_int_list(2, 3) if c1 != 0 and c2 != 0: break p,q = random_int_list(2, 3) pretty_print(LatexExpr("a_{n+2} = (%s)a_{n+1} + (%s)a_{n}"%(c1,c2))) pretty_print(LatexExpr("a_0 = %s"%p)) pretty_print(LatexExpr("a_1 = %s"%q)) A = matrix([[0,1],[c2,c1]]) pretty_print(LatexExpr("A^5 ="), A^5) if print_ans: anp0,anp1 = p,q for k in range(2,6): anp2 = c2 * anp0 + c1 * anp1 pretty_print(LatexExpr("a_{%s} = %s"%(k,anp2))) anp0 = anp1 anp1 = anp2 ``` 藉由 `seed = 0` 可得, $a_{n+2} = (-3)a_{n+1} + (3)a_{n}$ $a_0 = 1 , a_1 = 2$ $A^5 = \begin{bmatrix} -135 & 171 \\ 513 & -648 \end{bmatrix}$ ##### Exercise 1(a) 依照定義依序求出 $a_2,\ldots, a_5$。 $Ans:$ 依照定義可得, $a_2 = (-3)a_{1} + (3)a_{0} = -3$, $a_3 = (-3)a_{2} + (3)a_{1} = 15$, $a_4 = (-3)a_{3} + (3)a_{2} = -54$, $a_5 = (-3)a_{4} + (3)a_{3} = 207$。 ##### Exercise 1(b) 令 $\bv_n = \begin{bmatrix} a_n \\ a_{n+1} \end{bmatrix}$, 找到一個矩陣 $A$ 使得 $\bv_{n+1} = A\bv_n$。 :::warning - [x] 另 --> 令 ::: $Ans:$ $$\bv_0 = \begin{bmatrix} a_0 \\ a_{1} \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$以此可以同樣情況得, $$\bv_1 = \begin{bmatrix} 2 \\ -3 \end{bmatrix} , \bv_2 = \begin{bmatrix} -3 \\ 15 \end{bmatrix} , \bv_3 = \begin{bmatrix} 15 \\ -54 \end{bmatrix} , \bv_4 = \begin{bmatrix} -54 \\ 207 \end{bmatrix}$$ 令一個矩陣 $A = \begin{bmatrix} 0 & 1 \\ 3 & -3 \end{bmatrix}$ ,將矩陣 $A$ 帶入 $\bv_{n+1} = A\bv_n$ ,依序驗算可得, $$\bv_{2} = A\bv_1 = \begin{bmatrix} -3 \\ 15 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 3 & -3 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix} $$ $$\bv_{3} = A\bv_2 = \begin{bmatrix} 15 \\ -54 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 3 & -3 \end{bmatrix} \begin{bmatrix} -3 \\ 15 \end{bmatrix} $$ $$\bv_{4} = A\bv_3 = \begin{bmatrix} -54 \\ 207 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 3 & -3 \end{bmatrix} \begin{bmatrix} 15 \\ -54 \end{bmatrix} $$ 所以可得到矩陣 $A$ 為答案。 :::warning 驗算三個 $n$ 都對其實沒辦法說明 $A$ 就是對的;不過意思到了,沒關係。 ::: ##### Exercise 1(c) 利用題目給的 $A^5$,求出 $a_5$。 比較答案是否和前面算的一樣。 :::warning - [x] 最後那個向量裡面應該是 $a$ 不是 $\bv$。 ::: $Ans:$ $a_5 = 207$ , $A^5 = \begin{bmatrix} -135 & 171 \\ 513 & -648 \end{bmatrix}$ 。 將 $A^5$ 帶入 $A^5 \bv_0 = \begin{bmatrix} -135 & 171 \\ 513 & -648 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 207 \\ -883 \end{bmatrix} = \begin{bmatrix} a_5 \\ a_6 \end{bmatrix}$ 。 比較發現此次答案與前面答案一樣。 ## Exercises ##### Exercise 2 解以下遞迴關係式中 $a_n$ 的一般式。 ##### Exercise 2(a) 已知 $$ \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 0 & 1 \\ -6 & 5 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}. $$ 考慮遞迴關係式 $a_{n+2} = 5a_{n+1} - 6a_n$、$a_0 = a_1 = 1$。 $Ans:$ 用 $D = Q^{-1} A Q$ 的形式來看, 可知 $D$ 為 $A$ 經由對角化而來的矩陣, 且 $A = Q D Q^{-1}$, 則 $A^n = Q D^n Q^{-1}$。 又由遞迴關係式可知 $\bv_2 = A \bv_1$, 推得 $\bv_n = A^{n} \bv_0$, 其中 $\bv_n = \begin{bmatrix} a_{n} \\ a_{n+1} \end{bmatrix}$, 所以只要找出 $\bv_n$ 的第一項即可。 此題的 $$ A^n = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 2^n & 0 \\ 0 & 3^n \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 3 \times 2^{n} -2 \times 3^{n} & 3^n - 2^n \\ c_1 & c_2 \end{bmatrix} $$ 且 $$ \bv_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} $$ 則 $\bv_n$ 的第一項即為 $$ a_{n} = 3 \times 2^{n} - 2 \times 3^{n} + 3^{n} - 2^{n} = 2 \times 2^{n} - 3^{n}. $$ ##### Exercise 2(c) 已知 $$ \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix}^{-1} \begin{bmatrix} 0 & 1 \\ -4 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix}. $$ 考慮遞迴關係式 $a_{n+2} = 0a_{n+1} - 4a_n$、$a_0 = a_1 = 1$。 $Ans:$ 經計算, $$ A^{n} = \begin{bmatrix} 1/2 \times (2^{n} + (-2)^{n}) & 1/4 \times (2^{n} - (-2)^{n}) \\ c_1 & c_2 \end{bmatrix} $$ 且 $$ \bv_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} $$ 則 $\bv_n$ 的第一項為 $$ a_{n} = 1/2 \times (2^{n} + (-2)^{n}) + 1/4 \times (2^{n} - (-2)^{n}) = 3/4 \times 2^{n} + 1/4 \times (-2)^{n}. $$ ##### Exercise 2(d) 已知 $$ \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 4 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 & 1 \\ -4 & 4 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 4 & 0 \end{bmatrix}. $$ 考慮遞迴關係式 $a_{n+2} = 4a_{n+1} - 4a_n$、$a_0 = a_1 = 1$。 $Ans:$ 經計算, $$ A^{n} = \begin{bmatrix} (1-n) \times 2^{n} & n/2 \times 2^{n} \\ c_1 & c_2 \end{bmatrix} $$ 且 $$ \bv_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} $$ 則 $\bv_n$ 的第一項為 $$ a_{n} = (1-n) \times 2^{n} + n/2 \times 2^{n} = ((2-n)/2) \times 2^{n}. $$ ##### Exercise 2(e) 已知 $$ \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 9 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 & 1 \\ -9 & 6 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ 9 & 0 \end{bmatrix}. $$ 考慮遞迴關係式 $a_{n+2} = 6a_{n+1} - 9a_n$、$a_0 = a_1 = 1$。 $Ans:$ 經計算, $$ A^{n} = \begin{bmatrix} (1-n) \times 3^{n} & n/3 \times 3^{n} \\ c_1 & c_2 \end{bmatrix} $$ 且 $$ \bv_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} $$ 則 $\bv_n$ 的第一項為 $$ a_{n} = (1-n) \times 3^{n} + n/3 \times 3^{n} = ((3-2n)/3) \times 3^{n} $$ ##### Exercise 3 已知 $$ \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 2 & 1 \\ 9 & 4 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 3 & 2 & 1 \\ 9 & 4 & 1 \end{bmatrix}. $$ 考慮遞迴關係式 $a_{n+3} = 6a_{n+2} - 11a_{n+1} + 6a_n$、$a_0 = a_1 = a_2 = 1$。 解 $a_n$ 的一般式。 :::warning - [x] $V$ --> $A$, $A_n$ --> $\bv_n$;而且你沒有解釋什麼是 $V$ 什麼是 $A_n$ - [x] $V^n \times a_1$ 是矩陣乘數字? - [x] 最後的一堆等式用 `aligned` 排好 - [x] 最後答案應該是 $a_n = 1$ ::: $Ans:$ 因為 遞迴關係式 $a_{n+3} = 6a_{n+2} - 11a_{n+1} + 6a_n$、$a_0 = a_1 = a_2 = 1$。 所以 $a_3 = 6a_2 - 11a_1 + 6a_0$, 也就是 $a_4 = 6\times1 - 11\times1 + 6\times1$。 我們可以將上面的方程式改成以矩陣方式表示, 即為 $a_4 = \begin{bmatrix} 6 & -11 & 6 \end{bmatrix} \begin{bmatrix} 1\\ 1 \\ 1 \ \end{bmatrix}$ 另外我們知道 $$bv_n= \begin{bmatrix} a_{n+1} \\ a_{n+2} \\ a_{n+3} \ \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ c_3 & c_2 & c_1 \ \end{bmatrix} \begin{bmatrix} a_{n} \\ a_{n+1} \\ a_{n+2} \end{bmatrix}. $$ 以及 $\bv_n = A\bv_{n-1} = A^{n} \bv_0$。 其中的 $\begin{bmatrix} c_3 & c_2 & c_1 \ \end{bmatrix}$ 就是 $\begin{bmatrix} 6 & -11 & 6 \ \end{bmatrix}$, 而 $\bv_n$ 也可寫成 $A^{n}\bv_1$。 為了要方便計算 $A^{n}$ ,我們可以將難看的 $A$ 矩陣對角化。 根據題幹,此矩陣可經由下列處理形成對角化矩陣 $$ \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 2 & 1 \\ 9 & 4 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 3 & 2 & 1 \\ 9 & 4 & 1 \end{bmatrix}. $$ 因此可知, $$ A^{n} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end{bmatrix}^{n} = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 2 & 1 \\ 9 & 4 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{n} \begin{bmatrix} 1 & 1 & 1 \\ 3 & 2 & 1 \\ 9 & 4 & 1 \end{bmatrix}^{-1}。 $$ 而 $\bv_n = A^{n} \bv_0$ 的第一項。 $$a_n = 3^{n} - 3 \times 2^{n} + 3 - 3/2 \times 3^{n} + 4 \times 2^{n} - 5/2 + 1/2 \times 3^{n} - 2^{n} + 1/2 = 1. $$ ##### Exercise 4 解費波那契數列的 $a_n$ 的一般式。 :::warning - [x] $V_n$ --> $\bv_n$;而且你沒有解釋什麼是 $V_n$ - [x] $V^n \times a_1$ 是矩陣乘數字? - [x] 最後的一堆等式用 `aligned` 排好 ::: $ans:$ 令 $$ Q=\begin{bmatrix} 1 & 1 \\ \lambda_0 & \lambda_1 \\ \end{bmatrix}, A=\begin{bmatrix} 0 & 1 \\ 1 & 1 \\ \end{bmatrix}, \bv_{n} = \begin{bmatrix} a_{n} \\ a_{n+1} \\ \end{bmatrix}. $$ 其中 $\lambda_0,\lambda_1$ 分別為 $\frac{1-\sqrt{5}}{2},\frac{1+\sqrt{5}}{2}$,且 $A$ 為一可對角化矩陣。那麼,我們可以藉由 $Q$ 跟 $A$ 求得一個對角矩陣,即 $$ Q^{-1} A Q = \begin{bmatrix} \lambda_0 & 0 \\ 0 & \lambda_1 \end{bmatrix} = D. $$ $\bv_n = A \cdot \bv_{n-1} = A^2 \cdot \bv_{n-2} = \cdots = A^n \cdot \bv_0$。 則 $$ \begin{array}{l} \bv_{n} &= A^n \bv_0 = Q D^{n} Q^{-1} \bv_0 \\ &= \begin{bmatrix} 1 & 1 \\ \lambda_0 & \lambda_1 \\ \end{bmatrix} \begin{bmatrix} \lambda_0^{n} & 0 \\ 0 & \lambda_1^{n} \\ \end{bmatrix} \begin{bmatrix} \lambda_1 & -1 \\ -\lambda_0 & 1 \\ \end{bmatrix} \cdot \dfrac{1}{\lambda_1 - \lambda_0} \bv_0 \end{array} $$ 那麼我們就求得 $$ \begin{aligned} a_n &= \frac{1}{\lambda_1 - \lambda_0} \cdot (\lambda_1^n - \lambda_0^n) \\ &= \sqrt{5} \cdot (\lambda_1^n - \lambda_0^n). \end{aligned} $$ ##### Exercise 5 以下提供解遞迴關係式的另一種觀點。 ##### Exercise 5(a) 考慮集合 $$ \mathbb{R}^\mathbb{Z} = \{( \ldots, a_{-1}, a_0, a_1, \ldots): a_n \in \mathbb{R} \text{ for all }n\in\mathbb{Z}\}. $$ 定義向量加法與數列的純量乘法為 $$ ( \ldots, a_{-1}, a_0, a_1, \ldots) + ( \ldots, b_{-1}, b_0, b_1, \ldots) = ( \ldots, a_{-1} + b_{-1}, a_0 + b_0, a_1 + b_1, \ldots), $$ $$ k( \ldots, a_{-1}, a_0, a_1, \ldots) = ( \ldots, ka_{-1}, ka_0, ka_1, \ldots). $$ 說明 $\mathbb{R}^\mathbb{Z}$ 搭配以上定義的向量加法與純量乘法後,是一個向量空間。 :::warning - [x] 向量空間要驗證哪些條件? PS $a_n$ 有 $n$ 組有一個 $1$ 和其他全為 $0$ 的向量 <-- $a_n$ 到底是幾個向量? $n_{-1}$ 又是什麼 ::: **答:** 要說明 $\mathbb{R}^\mathbb{Z}$ 為一個向量空間,以下條件必須成立: 1. 向量加法的封閉性: 對於任意的 $$(\ldots, a_{-1}, a_0 , a_1, \ldots),(\ldots, b_{-1}, b_0, b_1, \ldots) \in \mathbb{R}.$$ 存在 $$(\ldots, a_{-1}, a_0 , a_1, \ldots)+(\ldots, b_{-1}, b_0, b_1, \ldots) \in \mathbb{R} $$ 由於 $a_0,b_0 \in \mathbb{R}$,所以 $a_0+b_0 \in \mathbb{R}$。 2. 向量加法的交換律: 對於任意的 $$(\ldots, a_{-1}, a_0 , a_1, \ldots),(\ldots, b_{-1}, b_0, b_1, \ldots) \in \mathbb{R}$$. 存在 $$(\ldots, a_{-1}, a_0 , a_1, \ldots)+(\ldots, b_{-1}, b_0, b_1, \ldots) $$ $$=(\ldots, a_{-1} + b_{-1}, a_0 +b_0 , a_1 + b_1, \ldots) $$ $$=(\ldots, b_{-1} +a_{-1} , b_0 + a_0 , b_1 + a_1 , \ldots) $$ $$=(\ldots, b_{-1}, b_0, b_1, \ldots) + (\ldots, a_{-1}, a_0 , a_1, \ldots). $$ 3. 向量加法的結合律: 對於任意的 $$(\ldots, a_{-1}, a_0 , a_1, \ldots),(\ldots, b_{-1}, b_0, b_1, \ldots),(\ldots, c_{-1}, c_0 , c_1, \ldots) \in \mathbb{R}$$. 存在 $$(\ldots, a_{-1}, a_0 , a_1, \ldots)+[(\ldots, b_{-1}, b_0, b_1, \ldots)+(\ldots, c_{-1}, c_0 , c_1, \ldots)] $$ $$=(\ldots, a_{-1}, a_0 , a_1, \ldots)+(\ldots, b_{-1} + c_{-1}, c_0 +c_0 , b_1 + c_1, \ldots) $$ $$=(\ldots, a_{-1} + b_{-1} + c_{-1}, a_0 +b_0 +c_0 , a_1 + b_1 + c_1, \ldots) $$ $$=(\ldots, a_{-1} +b_{-1} , a_0 + b_0 , a_1 + b_1 , \ldots)+(\ldots, c_{-1}, c_0 , c_1, \ldots) $$ $$=[(\ldots, a_{-1}, a_0 , a_1, \ldots)+(\ldots, b_{-1}, b_0, b_1, \ldots)]+(\ldots, c_{-1}, c_0 , c_1, \ldots). $$ 4. 向量加法的單位元素: 存在一個零向量,使得 $\mathbb{0} \in \mathbb{R}$ ,對於任意 $(\ldots, a_{-1}, a_0 , a_1, \ldots) \in \mathbb{R}$ 都滿足 $$ (\ldots, a_{-1}, a_0 , a_1, \ldots) + \mathbb{0} = (\ldots, a_{-1}, a_0 , a_1, \ldots). $$ 5. 向量加法的反元素: 對於任意 $(\ldots, a_{-1}, a_0 , a_1, \ldots) \in \mathbb{R}$ ,都存在$(\ldots, b_{-1}, b_0 , b_1, \ldots) \in \mathbb{R}$ ,使得 $$(\ldots, a_{-1}, a_0 , a_1, \ldots)+(\ldots, b_{-1}, b_0, b_1, \ldots) = \mathbb{0}. $$ 6. 純量乘法的封閉性: 對於任意 $$ (\ldots, a_{-1}, a_0 , a_1, \ldots) \in \mathbb{R} \space \space 且 \space\space k \in \mathbb{R}, $$ $$ k \cdot (\ldots, a_{-1}, a_0 , a_1, \ldots) \in \mathbb{R}. $$ 也必定成立。 7. 純量乘法的分配律: (1) 純量乘法對向量加法的分配律: 對於任意 $$ (\ldots, a_{-1}, a_0 , a_1, \ldots),(\ldots, b_{-1}, b_0, b_1, \ldots) \in \mathbb{R} \space \space 且 \space\space k \in \mathbb{R}, $$ $$ k \cdot [(\ldots, a_{-1}, a_0 , a_1, \ldots)+(\ldots, b_{-1}, b_0, b_1, \ldots)] $$ $$ =k \cdot (\ldots, a_{-1} + b_{-1}, a_0 +b_0 , a_1 + b_1, \ldots) $$ $$ =(\ldots, k \cdot a_{-1} + k \cdot b_{-1}, k \cdot a_0 + k \cdot b_0 , k \cdot a_1 + k \cdot b_1, \ldots) $$ $$ =(\ldots, k \cdot a_{-1} , k \cdot a_0 , k \cdot a_1 , \ldots)+(\ldots, k \cdot b_{-1}, + k \cdot b_0 , k \cdot b_1, \ldots) $$ $$ = k \cdot (\ldots, a_{-1}, a_0 , a_1, \ldots)+ k \cdot (\ldots, b_{-1}, b_0, b_1, \ldots). $$ (2) 向量加法對純量乘法的分配律: $$ (\ldots, a_{-1}, a_0 , a_1, \ldots) \in \mathbb{R} \space \space 且 \space\space k_1,k_2 \in \mathbb{R}, $$ $$ (k_1+k_2) \cdot (\ldots, a_{-1}, a_0 , a_1, \ldots) $$ $$ =(\ldots, (k_1+k_2) \cdot a_{-1}, (k_1+k_2) \cdot a_0 , (k_1+k_2) \cdot a_1, \ldots) $$ $$ =(\ldots, k_1\cdot a_{-1}+k_2 \cdot a_{-1}, k_1\cdot a_0+k_2 \cdot a_0 , k_1\cdot a_1+k_2 \cdot a_1, \ldots). $$ $$ =(\ldots, k_1 \cdot a_{-1}, k_1 \cdot a_0 , k_1 \cdot a_1, \ldots)+(\ldots, k_2 \cdot a_{-1}, k_2 \cdot a_0 , k_2 \cdot a_1, \ldots) $$ $$=k_1 \cdot(\ldots, a_{-1}, a_0 , a_1, \ldots)+k_2 \cdot(\ldots, a_{-1}, a_0 , a_1, \ldots). $$ 8. 純量乘法的交換律: 假設$k,v \in \mathbb{R}$$(\ldots, a_{-1}, a_0 , a_1, \ldots) \in \mathbb{R}$, $$k \cdot v \cdot (\ldots, a_{-1}, a_0 , a_1, \ldots)$$ $$=k \cdot (\ldots, v \cdot a_{-1}, v \cdot a_0 , v \cdot a_1, \ldots)$$ $$=(\ldots, k \cdot v \cdot a_{-1}, k \cdot v \cdot a_0 , k \cdot v \cdot a_1, \ldots) $$ $$=v \cdot (\ldots, k \cdot a_{-1}, k \cdot a_0 , k \cdot a_1, \ldots)$$ $$=v \cdot k \cdot (\ldots, a_{-1}, a_0 , a_1, \ldots). $$ 9. 純量乘法的單位元素: 存在一個 $1 \in \mathbb{R}$ 且 $(\ldots, a_{-1}, a_0 , a_1, \ldots) \in \mathbb{R}$ ,使得 $$ 1 \cdot (\ldots, a_{-1}, a_0 , a_1, \ldots)=(\ldots, a_{-1}, a_0 , a_1, \ldots). $$ ##### Exercise 5(b) 定義一個左移函數(advanced operator) $A: \mathbb{R}^\mathbb{Z} \rightarrow \mathbb{R}^\mathbb{Z}$ 為 $$ A(\ldots, a_n, \ldots) = (\ldots, a_{n+1},\ldots). $$ 即將數列 $(\ldots, a_n, \ldots)$ 全部往左移一格。 說明 $A$ 是一個線性函數。 **答:** 利用上題定義的向量加法與數列的純量乘法: $$ ( \ldots, a_{-1}, a_0, a_1, \ldots) + ( \ldots, b_{-1}, b_0, b_1, \ldots) = ( \ldots, a_{-1} + b_{-1}, a_0 + b_0, a_1 + b_1, \ldots), $$ $$ k( \ldots, a_{-1}, a_0, a_1, \ldots) = ( \ldots, ka_{-1}, ka_0, ka_1, \ldots). $$ $A$ 是一個線性函數必須滿足加法、乘法先做後做效果一致,這裡先驗證加法先做後做效果一致,得 $$ A( \ldots, a_{-1}, a_0, a_1, \ldots) +A ( \ldots, b_{-1}, b_0, b_1, \ldots) $$ $$ = ( \ldots, a_0, a_1, a_2, \ldots) + ( \ldots, b_0, b_1, b_2, \ldots) $$ $$ = ( \ldots, a_0 + b_0, a_1 + b_1, a_2 + b_2, \ldots). $$ 另一方面,得 $$ A[( \ldots, a_{-1}, a_0, a_1, \ldots) + ( \ldots, b_{-1}, b_0, b_1, \ldots)] $$ $$ = A( \ldots, a_{-1}+b_{-1} , a_0 +b_0 , a_1 + b_1, \ldots) $$ $$ = ( \ldots, a_0 + b_0, a_1 + b_1, a_2 + b_2, \ldots). $$ 所以先將向量個別送進 $A$ 和先將兩個向量相加所得到的結果是一樣的 再驗證乘法先做後做效果一致,得 $$ k \cdot A( \ldots, a_{-1}, a_0, a_1, \ldots) $$ $$ =k \cdot ( \ldots, a_0, a_1, a_2, \ldots) $$ $$ =( \ldots, k \cdot a_0, k \cdot a_1, k \cdot a_2, \ldots). $$ 另一方面,得 $$ A \cdot k( \ldots, a_{-1}, a_0, a_1, \ldots) $$ $$ A \cdot ( \ldots, k \cdot a_{-1}, k \cdot a_0, k \cdot a_1, \ldots) $$ $$ =( \ldots, k \cdot a_0, k \cdot a_1, k \cdot a_2, \ldots). $$ 所以先將向量送進 $A$ 再乘 $k$ 和先乘 $k$ 再送進 $A$ 所得到的結果是一樣的。 即可確定 $A$ 為一個線性函數。 ##### Exercise 5(c) 說明 $A - 3\idmap$ 也是一個線性函數且 $$ \ker(A - 3\idmap) = \vspan\{(\ldots, 3^n, \ldots)\}. $$ **答:** $A - 3\idmap$ 是一個線性函數必須滿足加法、乘法先做後做效果一致,這裡先驗證加法先做後做效果一致,得 $$ (A - 3\idmap)( \ldots, a_{-1}, a_0, a_1, \ldots) + (A - 3\idmap) ( \ldots, b_{-1}, b_0, b_1, \ldots) $$ $$ = [( \ldots, a_0, a_1, a_2, \ldots)-( \ldots, 3a_{-1}, 3a_0, 3a_1, \ldots)] + [( \ldots, b_0, b_1, b_2, \ldots) - ( \ldots, 3b_{-1}, 3b_0, 3b_1, \ldots)] $$ $$ = ( \ldots, a_0 + b_0, a_1 + b_1, a_2 + b_2, \ldots) - ( \ldots, 3a_{-1}+3b_{-1} , 3a_0 + 3b_0 , 3a_1 + 3b_1, \ldots). $$ 另一方面,得 $$ (A - 3\idmap)[( \ldots, a_{-1}, a_0, a_1, \ldots) + ( \ldots, b_{-1}, b_0, b_1, \ldots)] $$ $$ = (A - 3\idmap) ( \ldots, a_{-1}+b_{-1} , a_0 +b_0 , a_1 + b_1, \ldots) $$ $$ = ( \ldots, a_0 + b_0, a_1 + b_1, a_2 + b_2, \ldots) - ( \ldots, 3a_{-1}+3b_{-1} , 3a_0 + 3b_0 , 3a_1 + 3b_1, \ldots). $$ 所以先將向量個別送進 $A - 3\idmap$ 和先將兩個向量相加所得到的結果是一樣的。 再驗證乘法先做後做效果一致,得 $$ k \cdot (A - 3\idmap) ( \ldots, a_{-1}, a_0, a_1, \ldots) $$ $$ =k \cdot [( \ldots, a_0, a_1, a_2, \ldots) - ( \ldots, 3a_{-1}, 3a_0, 3a_1, \ldots)] $$ $$ =( \ldots, k \cdot a_0, k \cdot a_1, k \cdot a_2, \ldots) - ( \ldots, k \cdot 3a_{-1}, k \cdot 3a_0, k \cdot 3a_1, \ldots). $$ 另一方面,得 $$ (A - 3\idmap) \cdot k( \ldots, a_{-1}, a_0, a_1, \ldots) $$ $$ =(A - 3\idmap) \cdot ( \ldots, k \cdot a_{-1}, k \cdot a_0, k \cdot a_1, \ldots) $$ $$ =( \ldots, k \cdot a_0, k \cdot a_1, k \cdot a_2, \ldots) - ( \ldots, k \cdot 3a_{-1}, k \cdot 3a_0, k \cdot 3a_1, \ldots). $$ 所以先將向量送進 $A - 3\idmap$ 再乘 $k$ 和先乘 $k$ 再送進 $A - 3\idmap$ 所得到的結果是一樣的。 即可確定 $A - 3\idmap$ 為一個線性函數。 接著要解釋的是: $$ \ker(A - 3\idmap) = \vspan\{(\ldots, 3^n, \ldots)\}. $$ 由於 $A - 3\idmap$ 是線性函數,所以可以將其轉換成矩陣的樣子,比較方便說明。 $\idmap$ 是將自己送到自己的矩陣,在同個向量空間就能表示成$I_n$。 :::info $A - 3\idmap$ 真要寫起來應該是一個「無窮大的矩陣」,但這樣的東西通常不叫作矩陣,其乘法也會有收斂性的問題。 ::: 所以 $A - 3\idmap$ 的矩陣形式就可以寫成 $$ \begin{bmatrix} \cdots& \cdots & \cdots & \cdots & \cdots & \cdots\\ \vdots& -3 & 1 & 0 & 0 & \vdots\\ \vdots& 0 & -3 & 1 & 0 & \vdots\\ \vdots& 0 & 0 & -3 & 1 & \vdots\\ \cdots& \cdots & \cdots & \cdots & \cdots & \cdots \end{bmatrix}. $$ 其中所有的 $(i,i)$項 都是 $-3$,而 $(i,i+1)$項 都是 $1$。 即 $$(A - 3\idmap) \cdot \begin{bmatrix} \vdots\\ a_1\\ a_2\\ a_3\\ \vdots \end{bmatrix} = 0. $$ 等價於 $$ \begin{cases} \space\space\space\space\space\space\space\space\space\space\space\vdots\\ -3a_1 + a_2 = 0\\ -3a_2 + a_3 = 0\\ \space\space\space\space\space\space\space\space\space\space\space\vdots \end{cases} $$ $$ = \begin{cases} \space\space\space\space\space\space\space\space\vdots\\ a_2 = 3a_1\\ a_3 = 3a_2 = 3^2a_1\\ \space\space\space\space\space\space\space\space\vdots\\ a_n = 3^na_1 \end{cases}. $$ 再將此矩陣轉換回線性函數,即可得 $$ \ker(A - 3\idmap) = \vspan\{(\ldots, 3^n, \ldots)\}. $$ ##### Exercise 5(d) 若 $f$ 和 $g$ 為兩個 $\mathbb{R}^\mathbb{Z} \rightarrow \mathbb{R}^\mathbb{Z}$ 的函數。 我們用 $fg$ 代表函數的合成 $f(g(\cdot))$。 所以 $A^2$ 表示代入 $A$ 函數兩次。 已知 $A^2 - 5A + 6\idmap = (A - 2\idmap)(A - 3\idmap)$。 說明 $$ \ker(A^2 - 5A + 6\idmap) \supseteq \vspan \{(\ldots, 2^n, \ldots), (\ldots, 3^n, \ldots)\}. $$ (實際上兩個集合相等,但另一個方向證明要花比較多的力氣。) :::warning - [ ] 這題只要確認那兩個個向量是零解就好 ::: **答:** 藉由上一題,我們知道 $A - 3\idmap$ 是線性函數,即可類推出 $A - 2\idmap$ 也是線性函數,所以 $(A - 2\idmap)(A - 3\idmap)$ 是線性函數,依題確定 $A^2 - 5A + 6\idmap$ 也是線性函數。 因為是線性函數,所以即可將 $A^2 - 5A + 6\idmap$ 轉換成矩陣形式。 得 $$(A^2 - 5A + 6\idmap) \cdot \begin{bmatrix} \vdots\\ a_1\\ a_2\\ a_3\\ \vdots \end{bmatrix} =A^2 \cdot \begin{bmatrix} \vdots\\ a_1\\ a_2\\ a_3\\ \vdots \end{bmatrix} -5A \cdot \begin{bmatrix} \vdots\\ a_1\\ a_2\\ a_3\\ \vdots \end{bmatrix} +6\idmap \cdot \begin{bmatrix} \vdots\\ a_1\\ a_2\\ a_3\\ \vdots \end{bmatrix}= \begin{bmatrix} \vdots\\ a_3\\ a_4\\ a_5\\ \vdots \end{bmatrix} -\begin{bmatrix} \vdots\\ 5a_2\\ 5a_3\\ 5a_4\\ \vdots \end{bmatrix} +\begin{bmatrix} \vdots\\ 6a_1\\ 6a_2\\ 6a_3\\ \vdots \end{bmatrix}=0. $$ 等價於 $$\begin{bmatrix} \vdots\\ a_3-5a_2+6a_1\\ a_4-5a_3+6a_2\\ a_5-5a_4+6a_3\\ \vdots \end{bmatrix} $$ $$ = \begin{cases} \space\space\space\space\space\space\space\space\space\space\space\space\space\space\vdots\\ a_3-5a_2+6a_1 = 0\\ a_4-5a_3+6a_2 = 0\\ a_5-5a_4+6a_3 = 0\\ \space\space\space\space\space\space\space\space\space\space\space\space\space\space\vdots \end{cases}. $$ 將 $a_3-5a_2+6a_1 = 0$ 移項後,得 $a_3 = 5a_2 - 6a_1$。 以矩陣方式呈現即 $$M\cdot \begin{bmatrix} a_1\\ a_2 \end{bmatrix} =\begin{bmatrix} a_2\\ a_3 \end{bmatrix}. $$ 得 $$M=\begin{bmatrix} 0 & 1\\ 5 & -6 \end{bmatrix}. $$ 即 $$\begin{bmatrix} 0 & 1\\ 5 & -6 \end{bmatrix}^n \cdot \begin{bmatrix} a_1\\ a_2 \end{bmatrix} =\begin{bmatrix} a_{n+1}\\ a_{n+2} \end{bmatrix}. $$ 由此遞迴關係式可知除了設定的初始項 $a_1$ 和 $a_2$ , 其他項的值都可以由 $c_1 5^n + c_2 \cdot (-6)^n$ 組成,而 $$ c_1 \cdot 5^n + c_2 \cdot (-6)^n = c_1 \cdot (2^n+3^n) + c_2 \cdot (2^n \cdot 3^n). $$ 所以唯二的變數就是 $a_1$ 和 $a_2$ ,而此兩項就不一定包含於 $\vspan \{(\ldots, 2^n, \ldots), (\ldots, 3^n, \ldots)\}$,所以 : 當 $a_1 , a_2 \in \ \vspan \{(\ldots, 2^n, \ldots), (\ldots, 3^n, \ldots)\}$ 時, $$ \ker(A^2 - 5A + 6\idmap) = \vspan \{(\ldots, 2^n, \ldots), (\ldots, 3^n, \ldots)\}. $$ 反之, $$ \ker(A^2 - 5A + 6\idmap) \neq \vspan \{(\ldots, 2^n, \ldots), (\ldots, 3^n, \ldots)\}. $$ 即 $$ \ker(A^2 - 5A + 6\idmap) \supseteq \vspan \{(\ldots, 2^n, \ldots), (\ldots, 3^n, \ldots)\}. $$ :::info 目前分數 = 5 &times; 檢討 = 6.5 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully