owned this note
owned this note
Published
Linked with GitHub
## Scope of the audit
The following circuits, which you can find in [packages/circuits](https://github.com/personaelabs/spartan-ecdsa/tree/main/packages/circuits).
- eff_ecdsa.circom
- tree.circom
- add.circom
- double.circom
- mul.circom
- poseidon.circom
- pubkey_membership.circom
## Sessions
**Session #1**
- Spartan-ecdsa
- Efficient ECDSA
- Membership verification
**Session #2**
- Poseidon-secp
# Session #1
## 1. Spartan-ecdsa
- https://github.com/personaelabs/spartan-ecdsa
- [Slides](https://docs.google.com/presentation/d/1CDbf7ABlOTnrFM_k99DwMWsm_-MbKDnfIUi7ZIAt-Wg/edit#slide=id.g2031c280798_0_210)
- [Spartan-ecdsa](https://personaelabs.org/posts/spartan-ecdsa/)
## 2. Circuit files to cover
- [eff_ecdsa.circom](https://github.com/personaelabs/spartan-ecdsa/blob/main/packages/circuits/eff_ecdsa_membership/eff_ecdsa.circom)
- [tree.circom](https://github.com/personaelabs/spartan-ecdsa/blob/main/packages/circuits/eff_ecdsa_membership/tree.circom)
- [add.circom](https://github.com/personaelabs/spartan-ecdsa/blob/main/packages/circuits/eff_ecdsa_membership/eff_ecdsa.circom)
- [mul.circom](https://github.com/personaelabs/spartan-ecdsa/blob/main/packages/circuits/eff_ecdsa_membership/secp256k1/mul.circom)
## 3. Run the circuits
- Please refer to the [README.md](https://github.com/personaelabs/spartan-ecdsa/tree/main/packages/circuits#readme).
## 4. Efficient ECDSA
_Assuming basic knowledge of elliptic curves and ECDSA._
[eff_ecdsa.circom](https://github.com/personaelabs/spartan-ecdsa/blob/main/packages/circuits/eff_ecdsa_membership/eff_ecdsa.circom)
**Notations**
- $p, q$: Base field and scalar field order, respectively.
- $G = (g_x, g_y)$: Generator
### Standard ECDSA
**Sign**
1. $\text{msgHash} = \text{hash(msg)}$
2. $k \in_R [1, q-1]$
3. $R = k * G$
4. $r = R.x$
5. $s = k^{-1} * (\text{msgHash} + r * \text{privKey}) \mod{q}$
6. $\text{Sig} = (r, s)$
**Verify**
Given $\text{msg}, r, s$
1. $\text{msgHash} = \text{hash(msg)}$
2. $s_1 = s^{-1}$
3. $R' = (\text{msgHash} * s1) * G + (r * s1) * \text{pubKey}$
4. $r' = R'.x$
5. Check $r' == r$
[More about ECDSA](https://cryptobook.nakov.com/digital-signatures/ecdsa-sign-verify-messages)
### ECDSA in Spartan-ecdsa (Efficient ECDSA)
**Sign (prove)**
1. Sign $\text{msgHash}$ as in standard ECDSA.
2. Compute $T = r^{-1} * R$
3. Compute $U = -(r^{-1}) * \text{msg} * G$
4. Generate a proof $\pi$ that proves
$$
s * T + U == \text{pubKey}$$ without revealing $s$. In practice, we also prove $\text{pubKey}$ is in some set.
6. $\text{Proof} = (R, T, U, \pi)$
**Verify**
1. $T \stackrel{?}{=} r^{-1} * R$
2. $U \stackrel{?}{=} -(r^{-1}) * \text{msg} * G$
3. $\pi$ is a valid proof and its public inputs are $T, U$
## 5. Merkle tree proof verification
[tree.circom](https://github.com/personaelabs/spartan-ecdsa/blob/main/packages/circuits/eff_ecdsa_membership/tree.circom)
- Clone of the [circuit from Semaphore](https://github.com/semaphore-protocol/semaphore/blob/main/packages/circuits/tree.circom).
- Based on the Poseidon hash function.
## 6. Secp256k1 group arithmetic
### Addition
**Complete addition**
- [add.circom:Secp256k1AddComplete](https://github.com/personaelabs/spartan-ecdsa/blob/main/packages/circuits/eff_ecdsa_membership/secp256k1/add.circom#L16)
**Incomplete addition**
- [add.circom:Secp256k1AddIncomplete](https://github.com/personaelabs/spartan-ecdsa/blob/main/packages/circuits/eff_ecdsa_membership/secp256k1/add.circom#L46)
In spartan-ecdsa, the Plonkish addition constraints below ([from the halo2 book](https://zcash.github.io/halo2/design/gadgets/ecc/addition.html#constraints-1)) are transformed into R1CS constraints.
- Incomplete addition in Plonkish
![](https://hackmd.io/_uploads/Hk2m9PTP2.png)
- Complete addition in Plonkish
![](https://hackmd.io/_uploads/B1RI9w6w2.png)
_More about [complete and incomplete additions](https://zcash.github.io/halo2/design/gadgets/ecc/addition.html)_
### Variable-base scalar multiplication (double-and-add)
- [mul.circom](https://github.com/personaelabs/spartan-ecdsa/blob/main/packages/circuits/eff_ecdsa_membership/secp256k1/mul.circom)
- The circuit implements the [optimized double-and-add algorithm](https://zcash.github.io/halo2/design/gadgets/ecc/var-base-scalar-mul.html) from the halo2 book. (Difficulty: Advanced)
# Session #2
## 1. Poseidon
### Preliminaries
- Why not use Poseidon from circomlib?
- We need to instantiate Poseidon to work over the base field of secp256k1.
- More precicely, we need to use [constants](https://github.com/personaelabs/spartan-ecdsa/blob/main/packages/circuits/poseidon/poseidon_constants.circom) that work over our base field.
- We implement Poseidon-secp in Circom and Rust.
- [Circom implementation](https://github.com/personaelabs/spartan-ecdsa/tree/main/packages/circuits/poseidon) (In scope of audit)
- [Rust implementation](https://github.com/personaelabs/spartan-ecdsa/tree/main/packages/poseidon) (Not in scope of audit)
- The implementation follows Filecoin's Poseidon implementation: [Neptune](https://github.com/lurk-lab/neptune)
- [Spec of Neptune](https://spec.filecoin.io/#section-algorithms.crypto.poseidon)
### Generating the constants
- Script to generate the Poseidon constants
- [k256_params.sh](https://github.com/personaelabs/spartan-ecdsa/blob/main/packages/poseidon/k256_params.sh)
- Runs the Sage script [generate_params_poseidon.sage](https://extgit.iaik.tugraz.at/krypto/hadeshash/-/blob/master/code/generate_params_poseidon.sage) from the Poseidon reference implementation.
- Output of the script in Appendix A
- Sage script to check the security inequalities [deinfed in Filecoin's spec](https://spec.filecoin.io/#section-algorithms.crypto.poseidon.security-inequalities).
- [security_inequalities.sage](https://github.com/personaelabs/spartan-ecdsa/blob/main/packages/poseidon/sage/security_inequalities.sage)
- You can run this in [SageMathCell](https://sagecell.sagemath.org/)
# Quizzes
## Session #1
1. (basic) How many complete additions are used in the optimized double-and-add algorithm implemented in [mul.circom](https://github.com/personaelabs/spartan-ecdsa/blob/main/packages/circuits/eff_ecdsa_membership/secp256k1/mul.circom)?
- A: 3
2. (medium) What are the base field and scalar field orders of secq256k1?
- [On the base field and scalar field of an elliptic curve](https://zcash.github.io/halo2/background/curves.html#cycles-of-curves)
- [Hint](https://docs.google.com/presentation/d/1CDbf7ABlOTnrFM_k99DwMWsm_-MbKDnfIUi7ZIAt-Wg/edit#slide=id.g2031c280798_0_96)
- A:
- Base field order: 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
- Scalar field order: 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
3. (advanced) We have an insecure implementation of Efficient ECDSA. The verifier only checks that the proof $\pi$ is valid, and does not check if $T, U$ were computed correctly. Let’s say you are an adversary and want to convince this insecure verifier that you can generate a valid signature. How would you set $T$ and $U$ to generate the proof $\pi$?
- A
1. Choose random $s$ and $T$
2. Compute $U = \text{pubKey} - s * T$
## Session #2
1. (basic) How many full rounds does the Poseidon instance in Spartan-ecdsa execute?
- A: 8
2. (medium) We want to build an arity-8 Merkle tree that uses Poseidon. According to the specification of Neptune, what should the domain tag of the Poseidon hash function be?
- A: $2^8 - 1 = 255$
3. (advanced) Confirm that the following parameters are secure.
- Target security level: 128bits
- State size: 3
- S-box exponent: 5
- Field modulus: 0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff
- Number of full rounds: 10
- Number of partial rounds: 50
Hint: You can run the script [security_inequalities.sage](https://github.com/personaelabs/spartan-ecdsa/blob/main/packages/poseidon/sage/security_inequalities.sage) in [SageMathCell](https://sagecell.sagemath.org/).
## Appendix
### Appendix A
Output of [k256_params.sh](https://github.com/personaelabs/spartan-ecdsa/blob/main/packages/poseidon/k256_params.sh)
```sage!
Params: n=256, t=3,
=5, M=128, R_F=8, R_P=56
Modulus = 115792089237316195423570985008687907853269984665640564039457584007908834671663
Number of S-boxes: 80
Number of round constants: 192
Round constants for GF(p):
['15180568604901803243989155929934437997245952775071395385994322939386074967328', '98155933184944822056372510812105826951789406432246960633912199752807271851218', '32585497418154084368870158853355239726261349829448673320273043226636389078017', '66713968576806622579829258440960693099797917756640662361943757758980796487698', '61296025743283504825054745787375839406507895949474930140819919915792438454216', '64548089412749542282115556935384382035671782881737715696939837764375912217104', '108421562972909537718478936575770973463273651828765393113349044862621092658552', '93957623861448681916560847065407918286434708744548934125771289238599801659600', '31886767595881910145119755249133120645312710313371225820300496900248094187131', '36511615103248888903406040506250394762206798360602726106046630438239169384653', '21193239787133737740669439860809806837993750509086389566475677877580362491125', '15159189447883181997488877417695825734356570617827322308691834229181804753656', '19272373877630561389686073945290625876718814210798194797601715657476609730306', '23132197996397121955527964729507651432518694856862854469217474256539272053037', '9869753235007825662020275771343858285582964429845049469800863115040150206544', '36536341316285671890133896506951910369952562161551585116256678375995315827743', '62582239167707347777855528698896708360409296899261565735324151945083720570858', '96597358901965097853721114962031771931271685249979807653919643952343419105640', '99475971754252188104003224702005940217163363685728394033034788135108600073953', '52080483875928847502018688921126796935417602445765802481027972679966274137987', '101922748752417217354391348649359865075718358385248454632698502400961567227929', '26980595292132221181330746499613907829041623688147011560382352796984836870749', '7059991836806083192408106370472821784612460308866802565871813230060135266390', '19329812920723038526370491239817117039289784665617181727933894076969997926129', '65570620823578601926240439251563587376966657231502120214692324496443514623818', '58403733332589349613112270854204921427257113546270812628317365115158685715742', '45021021211732634759643776743541935700591354899980928498981462362035961745443', '313468157086800401026946312285365733155132234906935411743639256319782592571', '101316949793045093761117346380310841944294663456931203380573537653884068660109', '23683935571424619534194393788101669168630123784066421490798386323411538828592', '45470730427236677197026094498490008082250264942279323465121581539984407294442', '48141067373531800337373447278127981363951468257064369512416205750641258258193', '42554919225040466028330117313396362347164995917041931400909482795914116747618', '11551941832988244108260444347046942236051939264069344013774353630451796870907', '60185799182545404739011626517355854847787627814101363386450657535504094743765', '81823160578900678880708744457872721685515019032370491632046212317701226128393', '7165646831054215773988859638722974820791178194871546344315162343128362695647', '75289707601640398424243937567716657896680380639974371761136292031415717685949', '7150842764562742184396161198129263121409208675362553300851082062734889620953', '24380904705269761063866540342138412601132455197711667167747524315310027386226', '9728986075621437350131504894128984146939551938810073671231633620616345344412', '10579382052089733216628873394134968879891026686695240299956972154694558493896', '8171994519466002143995890536756742287314780571933910736618431096190430536601', '30420144259409274775063072923609924427757612539094840146996944760708902708570', '63962155989812703023698320394024694856871261481871757094333286947755599007133', '25280070391177856032024336895094721131222985610587247589336316615596140400436', '15305872319988027006162258914083163651002306183917888172691618513722838997098', '51545603291342006705870081001071419395633279951502747769141857387796043104608', '91109680756552587805002537489407348773333405839144382221272597323798859182191', '72175452855185658158184807496160149169667221240389196996344579971523681433202', '30361989157454953234766224747536334157139256334148153290771332849307087761025', '38169634499980959088614671703639492517637815232220682121652135514105493936992', '49591153263237620796156788742811547511792615129981565620486914545749079774827', '47403873018260745456113868791119169163627014766514972598212646481717066065016', '93989849689047144228924801010853106857960399638657695410345207191739048300111', '10590240512802509131776989274411792739339398409955259174829387591089799115255', '29183703335869638067547208413224742887766212046438654772943025958628178245227', '4131650227136944095885036960767735080970262672750406866066212532739784907379', '43395510588213653537697670365796375057855260611965666448183946252832290017444', '95246795133940226900907730059125298420936467652619708443128629427116119621152', '6012209003558496814495903476753006089125143165365334812097313083703216071080', '26183233284429251459198269925441295879550203824094631575778521083706115817955', '26058994700533582730528567480051558438548299522338811756875396252016497202713', '107240485663145290290374164860301805857261278222480421976433215167444496066511', '84412820763898503096477800002865877536719992495674955119188074297975154406587', '52386303852182662900790700046090769869460994629239741773176060026198900130384', '95746062835936512160025091603469309809932540674474329021370075533568318932379', '22711334660013961010382652754865456251782349529764119853461446587583972054666', '16959835233095757670013367728627149851239789174357906293937455553277911805495', '15116421110200928832147360650392633091242147433006813656250997138988179879750', '107878787525302837370688492081178689950008165750500003692400517211520334656293', '44210105558575948369921579518078229089923760124167628288943900602376706136436', '90305995748749060889452130219544332384396626628663475498252761213618628372367', '104941997925797907872686462815914481945432760720471803254797908465921520138024', '100036855232527386145662094141100441220151775745916101660987264242446845728894', '103285582836474146806606752170525767341430483568396209591447274936228630298052', '82197692939371228160449741709034077803239992888716859217989995857278406253737', '10040764964044995095453717286623030376397745892179877153575434454090155545240', '27304226040425863042893623786832369758179176309230053449707879364285977952630', '42627232144930751842910170221862679057276668485045156742021958050665662768084', '76972394926916659428228833084621905890924612368412796262119501852346293848159', '39796921406297542196667238133893946368231540421737718098283349901435707131075', '14745047092916651495052563068083093689676472592445845983334785004125684263162', '43421479365783318841667739359312715738029447177150400204380817518608837765863', '107871536756946365977710326147511195471121248998432910212631960353348700694610', '39505942243687894211614489736115535754716239859353578295470352855493707198619', '59676442091621150164811367352362126934419932715789994860508056194143441226580', '94470526851498636320865653968033227263836954414283116133326109455334870036212', '15044796858044094866329855531761112645684343559112419720568996573556805975600', '67157729293641241473980125231288476062565688273917759533572275886277269201651', '72911083146182058225942884942982388217243826839805061121973109250798137784134', '102973386186208530972563015865701244407271836208547629083437627219683649557477', '57485522356347377122696081086816661784954498123948319434326439317393351620564', '23112275556906805064863694321486306070917598599342299357379251070160695202292', '107618884362423342584703700349292347754139538760798319916678240538294838342400', '83961260400031958812820990908241261093246389047082613562825737834833753517337', '42726953951733266282750892844947149703751388034177248277671157488506520215317', '39379570934119946602507737250800178347029772561352879974941214627084076473292', '72203650529122342092280763801468513707870760755235719535090090101623606334441', '13389660788942842724553143053013919883368472759564135119390935439369513690496', '101745263541280877725997503552978999350831489463993178838531539940805924817361', '76849182334465191824607032600721023780793694103840553871800174717760598910761', '53896256317996838683363773836826653859512780625932638736752563553878867538095', '24688792501674999263943657175455335814404948006469220532686392550824320454904', '69132683906595821927803530074656979217668636557563597358799899743174233903941', '2861982085506615225917620192781928414994576134281371548401916333754363567986', '37311353286221616083824584705974993449107063556724405440534160586561042968316', '83718085796857523832195255218519255973031752296424117786202083986118546906913', '103633177691684814414226251117070754499104739002759424774194851613917008856616', '84968411062305024171594435878414659990735518025357685215223731503921265946461', '41865099330909055069143724769818364262362915440371474104937435863183989905059', '46156624920251322979270606388518884047396423747179340919303543598300663968593', '64416327466854458915398302811825971539792429791049027619471115285308743811583', '94942471312481523091911417289540395651121558150571128515230470225155209280585', '109682618775735319282534546194470743032129102295907200313471041846112653687024', '61531999191737540795124202104235799899980935519651613893518293245268304980543', '17797352534596268622733030076742840951214734697361029060619245779495726996632', '2323150752778983462106829021155031678603044899339819935981200101818542000989', '16998018904363448507967526489917057882529252665835717172712095240271574074587', '110634872413902251217040490777568744431854972018399530234679399294372694506842', '31639545145649753705216327198217551838008233610574104460826956396569310697060', '107845103764339268987018917144483935480716224058844669233389185480836000033760', '46240297572174662698030819651333060930818959915797061274854448535534474175039', '53065607123105696930220421963755520777674094852857308823370049733888025985616', '16931881300947470270453776207625163368485560075525342751440832370220475352149', '79254110800481916763656344422402393723573490114487681345184594841431920461089', '42268569642639492314994307446626647824927989776691987788682655102426770655233', '9749633319307409894058984489496091535125232227316143918000642155415596066903', '57606597628648270579042266322415267200058617178318601782866227410456726724976', '56082250485913115488341301630850455009935943641292622301678990296508134206571', '17957245764842844288802777667800779232762688847417238921175068882796163705248', '94356229516444419318132697346021621194464273500135725160277725602263001442644', '52536631226748676066386651084538409050048707922045928887930261833545619358914', '107794922118166328243581272159394479176678094739027519706768813902978100436849', '92984368734102511759118281503078145182557799453616537383408606074187034371208', '59652553897137603386525572460411404882917571255327541516871354737502335133690', '49012645345644326995052653072578673750516379655033952006121214224119466671764', '79025576845143484310735291619293962982804358365838961371044480386743856799994', '5437377540613244374799729812489584777222423091155743557287567155811057717409', '100687592213090267900708728796310211082532607828753010566886681655775031329660', '99074462968857696481475128596339544396152341206708424767062829343406495063192', '67476872698289965626550204192782761730653024363949045140720348870736942130242', '103307125141718054130755829916960708430672826104789971350239945481960770107890', '74087383014714668160537499936376991041273055222568604413015844459913259357334', '40924049099780965904051946083599822761993164889139026432053420731164022206736', '32594924940463736641240515015317856157169105212942308502676422036626316673214', '98990663138035055774586216545398054668349058134877723031747421828753359974443', '55821766022768786066770462759796825978667805772707620106340033118519147871694', '4001942224536365489828915551180230767516454384395893814399938353050969198154', '30136373426492646221252150708518703998248891683881870400906269276900707426865', '34943205764464817266133164313915763122699935186597909347522822673832250079664', '27737330737483170511275902246508559278973986181590368845166383812793468814968', '96292398813565494438359802278723334615526914389306923046282571355958508916558', '97147334956505986101750230325438660094766812949748276042292963837380833668274', '24754519562402723848413674701792328284127274989440581643644298347747941238812', '76111103490248669364580390783887028636436246028943665707064153006971943621186', '33764090322658516047637223655525551979364055499647855895233821795694749902854', '100536990630540359004783976190215234627391515555181073681294901127179838732969', '55991997435987096996680289872758998763908676069536901375395297778729059185671', '32860959903680178324832991459746631238726690317249285658471597044247794502256', '70074816806976994707467706079200635184034023598764203123459335544110485476930', '46213940675829172331116620705134022102338250410334045747023950259088879662946', '77000624259024986585504351395777746568094934279771127334532438603183524642061', '21719649576090832101273013788716623377603297433777804572370785470329817725170', '29209622978540575483991966565508890231057362045066230397327380085945876837821', '2445742484263083651472035320255578071935687960412507452207899496253120999364', '86846812580007547526361109808384103509272544750564766849178767957571523649544', '43025640639926253696325070988523609146060819319830735794100778654425057363895', '108957662689228031021948854644435971168708642184764962508575441689859324862868', '83891545396650121758556392255189778590486277180642660527000882403085396114823', '42527013475786190604202451803064937203698027000671529418992521798122995373551', '115180194520889678365425151865713593680657747284471744934804370945935167043862', '28979598171177052880917135045920701144584888536299261666846302083645491369348', '68351312608110279019109436395199010412431777911149851157132527077210966351650', '61759623963943995967580147094342313397376358019837276043205235302342147116585', '80714625408576660514217469096827255752431164791924432025682445176737446783085', '33048555646676368266608424610100449208381357250300222636992099726804869416731', '50682223610667325089810868083131721901859473966415125289975106060759036109476', '4271213571706787092297985431667190050727614825584809797590204884727103716461', '101314046722405990971733763321368296660561930294000591067108115987088407142646', '55565500177602146197728150332647093173137211885612327122425918553270191254877', '65556764608648687291293889343854786421750589271167654521933267288313526422497', '66877533773422945979143954094644173219583178339199697252673545117318799706373', '30511098623357801425494143655999121699575856091238269679669864984061501512835', '95900192636363991637086954986559552472749485926252879461208179855482821976623', '37879946127489462347049192209554168578320892231852882971030128420645686965013', '80479504274334215471057938992198620419540634144266821121799003865782336406529', '13326262422954139210095783388743602482455840337093117010479445267213907605425', '16047106134611124637925332265703907202779549268127518502853950466090054176776', '71499356105233640605079063493613576024353801558965221134519779175477723594865', '28438981751956157476540225984733791304599172905715743025543841239013139121102', '56066317647068426981453448715118237747130321302262827290362392918472904421147']
n: 256
t: 3
N: 768
Result Algorithm 1:
[True, 0]
Result Algorithm 2:
[True, None]
Result Algorithm 3:
[True, None]
Prime number: 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
MDS matrix:
[['92469348809186613947252340883344274339611751744959319352506666082431267346705', '100938028378191533449096235266991198229563815869344032449592738345766724371160', '77486311749148948616988559783475694076613010381924638436641318334458515006661'],['110352262556914082363749654180080464794716701228558638957603951672835474954408', '27607004873684391669404739690441550149894883072418944161048725383958774443141', '29671705769502357195586268679831947082918094959101307962374709600277676341325'],['77762103796341032609398578911486222569419103128091016773380377798879650228751', '1753012011204964731088925227042671869111026487299375073665493007998674391999', '70274477372358662369456035572054501601454406272695978931839980644925236550307']]
```