Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 線性函數 Linear function ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}$ ```python from lingeo import random_good_matrix, kernel_matrix ``` ## Main idea Let $U$ and $V$ be two vector spaces. A function $f: U\rightarrow V$ is **linear** if $$ \begin{aligned} f(\bu_1 + \bu_2) &= f(\bu_1) + f(\bu_2) \\ f(k\bu) &= kf(\bu) \\ \end{aligned} $$ for any vectors $\bu, \bu_1, \bu_2\in U$ and scalar $k\in\mathbb{R}$. Let $f : U \rightarrow V$ be a linear function. The **kernel** of $f$ is $\ker(f) = \{\bu\in U: f(\bu) = \bzero\}$. Recall that $\range(f) = \{ f(\bu) : \bu\in U \}$. Indeed, $\ker(f)$ is a subspace of $U$ and $\range(f)$ is a subspace of $V$. Thus, we define the **rank** of $f$ as $\rank(f) = \dim(\range(f))$ and the **nullity** of $f$ as $\nul(f) = \dim(\ker(f))$. From the definition, $f$ is surjective if and only if $\range(f) = V$, or, equivalently, $\rank(f) = \dim(V)$. On the other hand, it is also known that $f$ is injective if and only if $\ker(f) = \{\bzero\}$, or, equivalently, $\nul(f) = 0$. Thanks to the structure of a linear function, the function values of a basis of $U$ is enough to determine the function. Let $\beta = \{\bu_1, \ldots, \bu_n\}$ be a basis of $U$ and $f : U\rightarrow V$ a linear function. If $f(\bu_1) = \bv_1$, $\ldots$, $f(\bu_n) = \bv_n$, then $$ f(c_1\bu_1 + \cdots + c_n\bu_n) = c_1\bv_1 + \cdots + c_n\bv_n $$ is uniquely determined, since every vector $\bu$ can be written as a linear combinatoin $c_1\bu_1 + \cdots + c_m\bu_m$ of $\beta$ for some $c_1,\ldots, c_n\in\mathbb{R}$. ## Side stories - basis of the range ## Experiments ##### Exercise 1 執行以下程式碼。 假設已知 $f$ 為一從 $\mathbb{R}^3$ 到 $\mathbb{R}^4$ 的線性函數。 令 $\beta = \{\be_1, \be_2, \be_3\}$ 為 $I_3$ 的行向量集合﹐其為 $\mathbb{R}^3$ 的基底。 <!-- eng start --> Run the code below. Suppose $f: \mathbb{R}^3 \rightarrow \mathbb{R}^4$ is a linear function. Let $\beta = \{\be_1, \be_2, \be_3\}$ be the columns of $I_3$, which is a basis of $\mathbb{R}^3$. <!-- eng end --> ```python ### code set_random_seed(0) print_ans = False m,n,r = 4,3,2 A = random_good_matrix(m,n,r) for i in range(n): print("f(e%s) ="%(i+1), A.column(i)) if print_ans: print("f(3e1 + 2e2) = 3f(e1) + 2f(e2) =", 3*A.column(0) + 2*A.column(1)) print("To make f(u) = 0 for some nonzero u, one may choose u =", kernel_matrix(A).column(0)) print("A =") show(A) ``` ##### Exercise 1(a) 求 $f(3\be_1 + 2\be_2)$。 <!-- eng start --> Find $f(3\be_1 + 2\be_2)$. <!-- eng end --> :::warning - [x] linear function --> linear functions ::: ##### Exercise 1(a) -- answer here: Let `seed = 1`, we get $f(\be_1) = (1, 1, 3, -1)$, $f(\be_2) = (4, 4, 12, -4)$, $f(\be_3) = (-3, -2, -8, 7)$. According to the properties of linear functions: $f(3\be_1 + 2\be_2) = 3f(\be_1) + 2f(\be_2) = (11, 11, 33, -11).$ ##### Exercise 1(b) 求 $\mathbb{R}^3$ 中的一個非零向量 $\bu$ 使得 $f(\bu) = \bzero$。 <!-- eng start --> Find a nonzero vector $\bu\in\mathbb{R}^3$ such that $f(\bu) = \bzero$. <!-- eng end --> :::info Your approach is correct. Basically, if you found $c_1,c_2,c_3$ such that $$ c_1(1,1,3,-1) + c_2(4,4,12,-4) + c_3(-3,-2,-8,7) = \bzero, $$ then you can conclude that $f(c_1\be_1 + c_2\be_2 + c_3\be_3) = \bzero$. ::: ##### Exercise 1(b) -- answer here: By setting $$ A = \begin{bmatrix} | & | & | \\ f(\be_1) & f(\be_2) & f(\be_3) \\ | & | & | \\ \end{bmatrix} = \begin{bmatrix} 1 & 4 & -3\\ 1 & 4 & -2\\ 3 & 12 & -8\\ -1 & -4 & 7 \end{bmatrix}, $$ we have $f(\bx) = A\bx$ for all $\bx\in\mathbb{R}^3$. <!-- We set $f({\bf x}) = A{\bf x}$. --> Thus, finding a vector $\bu$ with $f(\bu) = \bzero$ is equivalent to finding a vector $\bu\in\ker(A)$. <!-- Accroding to the question, $f({\bf u}) = {\bf 0} = A{\bf u}$, it means $\ker({A}) = {\bf 0}$. --> <!-- We know that $\beta = \{\be_1, \be_2, \be_3\}$ be the columns of $I_3$. By running the code above, we obtain that $f(\be_1) = (1, 1, 3, -1)$, $f(\be_2) = (4, 4, 12, -4)$, $f(\be_3) = (-3, -2, -8, 7)$. --> After calculating by Gaussian elimination, we get the reduced echelon form $R = \begin{bmatrix} 1 & 4 & -3\\ 0 & 0 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$. By setting the free variable as $1$, we can find a solution to $A{\bf u} = 0$, which is ${\bf u} = (-4,1,0).$ ##### Exercise 1(c) 找一個矩陣 $A$ 使得對所有向量 $\bu\in\mathbb{R}^3$ 都有 $f(\bu) = A\bu$。 <!-- eng start --> Find a matrix $A$ such that $f(\bu) = A\bu$ for any vector $\bu\in\mathbb{R}^3$. <!-- eng end --> :::warning Check grammar. ::: ##### Exercise 1(c) -- answer here: Let `seed = 1`, we have $f(\be_1) = (1, 1, 3, -1)$ $f(\be_2) = (4, 4, 12, -4)$ $f(\be_3) = (-3, -2, -8, 7)$ Because $\beta = \{\be_1, \be_2, \be_3\}$ are the columns of $I_3$, which is a basis of $\mathbb{R}^3$. So, $$ AI_3= \begin{bmatrix} 1 & 4 & -3\\ 1 & 4 & -2\\ 3 & 12 & -8\\ -1 & -4 & 7 \\ \end{bmatrix}=A. $$ ## Exercises ##### Exercise 2 判斷以下函數是否線性。 <!-- eng start --> Determine if each of the following functions is linear. <!-- eng end --> ##### Exercise 2(a) 判斷 $f: \mathbb{R}\rightarrow\mathbb{R}$ 且 $f(x) = 3x + 5$ 是否線性。 <!-- eng start --> Let $f: \mathbb{R}\rightarrow\mathbb{R}$ be a function defined by $f(x) = 3x + 5$. Is it linear? <!-- eng end --> :::warning - [x] boldface for vectors. Since a function is linear when it meets the two conditions for any possible vectors and scalar, it is not linear whenever ==one== of the two conditions fails for ==some particular vectors and scalar== . ::: ##### Exercise 2(a) -- answer here: We say that $f:U\rightarrow\ V$ is linear if $$ \begin{aligned} f(\bu_1 + \bu_2) &= f(\bu_1) + f(\bu_2) \\ f(k\bu) &= kf(\bu) \\ \end{aligned} $$ for any vectors $\bu, \bu_1, \bu_2\in U$ and scalar $k\in\mathbb{R}$. Suppose $x=\bv_1+\bv_2$ , $$ f( \bv_1+\bv_2)=3(\bv_1+\bv_2)+5 \neq3\bv_1+3\bv_2+10=f(\bv_1)+f(\bv_2). $$ So $f(x)=3x+5$ is not linear. OR Let $k\in\mathbb{R}$ , $$ f(k\bv)= 3k\bv+5\neq3k\bv+5k=kf(\bv). $$ So $f(x)=3x+5$ is not linear. ##### Exercise 2(b) 判斷 $f: \mathbb{R}\rightarrow\mathbb{R}$ 且 $f(x) = 3x$ 是否線性。 <!-- eng start --> Let $f: \mathbb{R}\rightarrow\mathbb{R}$ be a function defined by $f(x) = 3x$. Is it linear? <!-- eng end --> :::warning - [x] And --> and - [x] fulfill --> fulfills ::: ##### Exercise 2(b) -- answer here: Because $f(kx) = 3kx = kf(x)$ and $f(x_1+x_2) = 3x_1 + 3x_2 = f(x_1) + f(x_2)$. It fulfills the definition, that's why $f$ is linear. ##### Exercise 2(c) 判斷 $f: \mathbb{R}\rightarrow\mathbb{R}$ 且 $f(x) = x^2$ 是否線性。 <!-- eng start --> Let $f: \mathbb{R}\rightarrow\mathbb{R}$ be a function defined by $f(x) = x^2$. Is it linear? <!-- eng end --> ##### Exercise 2(c) -- answer here: Because of $f(x_1 + x_2) = (x_1 + x_2)^2 = x_1^2 + x_2^2 + 2x_1x_2 = f(x_1)+f(x_2)+2x_1x_2$, we get that $f(x_1+x_2)\neq f(x_1) + f(x_2)$. So $f(x) = x^2$ is not linear. ##### Exercise 2(d) 判斷 $f: \mathbb{R}^2\rightarrow\mathbb{R}$ 且 $f(x,y) = x^2 + y^2$ 是否線性。 <!-- eng start --> Let $f: \mathbb{R}^2\rightarrow\mathbb{R}$ be a function defined by $f(x,y) = x^2 + y^2$. Is it linear? <!-- eng end --> **[由吳愷杰提供]** **Answer** Because $f(kx,ky) = k^2x^2 + k^2y^2$ and $kf(x,y) = kx^2 + ky^2$, we get $kf(x,y) \neq f(kx,ky)$, Thus, $f$ is not linear. ##### Exercise 2(e) 判斷 $f: \mathbb{R}^2\rightarrow\mathbb{R}$ 且 $f(x,y) = 3x + 2y$ 是否線性。 <!-- eng start --> Let $f: \mathbb{R}^2\rightarrow\mathbb{R}$ be a function defined by $f(x,y) = 3x + 2y$. Is it linear? <!-- eng end --> **[由吳愷杰提供]** **Answer** Because $kf(x,y) = 3kx + 2ky = f(kx,ky)$ and $$\begin{align} f(x_1 + x_2,y_1 + y_2) & = 3(x_1 + x_2) + 2(y_1 + y_2) \\ & = 3x_1 + 3x_2 + 2y_1 + 2y_2 \\ & = f(x_1,y_1) + f(x_2,y_2). \end{align} $$ It fulfills the definition, so $f$ is linear. ##### Exercise 2(f) 判斷 $f: \mathbb{R}^2\rightarrow\mathbb{R}$ 且 $f(x,y) = 3x + 2y + 1$ 是否線性。 <!-- eng start --> Let $f: \mathbb{R}^2\rightarrow\mathbb{R}$ be a function defined by $f(x,y) = 3x + 2y + 1$. Is it linear? <!-- eng end --> **[由吳愷杰提供]** **Answer** Beacuse $kf(x,y) = 3kx + 2ky + k \neq f(kx,ky)$, $f$ is not linear. ##### Exercise 3 令 $\bu_1, \bu_2, \bu_3$ 為 $U$ 中的向量﹐ 已知 $f$ 為從 $U$ 到 $\mathbb{R}^4$ 的線性函數且 $$ \begin{aligned} f(\bu_1) &= (1,1,1,1) \\ f(\bu_2) &= (1,2,3,4) \\ f(\bu_3) &= (4,3,2,1) \\ \end{aligned} $$ 求 $f(3\bu_1 + 2\bu_2 + 2\bu_3)$。 <!-- eng start --> Let $\bu_1, \bu_2, \bu_3$ be vectors in the space $U$. Suppose $f$ is a linear function from $U$ to $\mathbb{R}^4$ such that $$ \begin{aligned} f(\bu_1) &= (1,1,1,1) \\ f(\bu_2) &= (1,2,3,4) \\ f(\bu_3) &= (4,3,2,1) \\ \end{aligned} $$ Find $f(3\bu_1 + 2\bu_2 + 2\bu_3)$. <!-- eng end --> ##### Exercise 3 -- answer here: Because $f$ is a linear function, $$\begin{aligned} f(3{\bf u}_1 + 2{\bf u}_2 + 2{\bf u}_3) &= f(3{\bf u}_1)+f(2{\bf u}_2)+f(2{\bf u}_3) \\ &= 3f({\bf u}_1)+2f({\bf u}_2)+2f({\bf u}_3) \\ &=(13,13,13,13). \end{aligned} $$ ##### Exercise 4 令 $f: U\rightarrow V$ 為一線性函數。 證明以下敘述等價: 1. $f$ is injective. 2. $\ker(f) = \{ \bzero \}$. 3. $\nul(f) = 0$. <!-- eng start --> Let $f: U\rightarrow V$ be a linear function. Show that the following are equivalent: 1. $f$ is injective. 2. $\ker(f) = \{ \bzero \}$. 3. $\nul(f) = 0$. <!-- eng end --> ##### Exercise 4 -- answer here: We want to proof $(1. \leftrightarrow 2.)$. So we have to proof $(1.\rightarrow2.)$ and $(1.\leftarrow2.)$ are both corret. $(\Rightarrow)$: We know $\bzero\in\ker(f)$ since $f$ is linear. Suppose $\bx\in\ker(f)$ with $\bx\neq\bzero$. Since $f$ is injective, we know $f(\bx)\ne f(\bzero)=\bzero$, and $\bx$ is not in the $\ker(f)$. It is a contradiction. $(\Leftarrow)$: Suppose $\bx\ne\by\in U$. Then $\bx - \by \ne \bzero$. This means $f(\bx - \by) \ne \bzero$ since $\bx - \by \ne \bzero$ and $\ker(f) = \{ \bzero \}$. According to the properties of linear function, $f(\bx) - f(\by) \ne \bzero$. Thus $f(\bx) \ne f(\by)$. $1.$ and $2.$ are equivalent. Because $\nul(f)=\dim(\ker(f))$ by the properties of linear function, and $\ker(f) = \{ \bzero \}$. Thus $\dim(\ker(f))=\nul(f)=0$. $2.$ and $3.$ are equivalent. Because $1.$ and $2.$ are equivalent and $2.$ and $3.$ are equivalent. Therefore $1.$ $2.$ $3.$are equivalent. ##### Exercise 5 嵌射顧名思義有點像是把定義域嵌入到對應域之中﹐所以很多性質都會被保留下來。 <!-- eng start --> The name "injection" indicates that the domain is injected, or embedded, into the codomain, so many properties of the domain preserve. <!-- eng end --> ##### Exercise 5(a) 令 $f: U\rightarrow V$ 為一線性函數。 證明若 $f$ 是嵌射且 $\alpha = \{\bu_1,\ldots,\bu_k\}$ 為 $U$ 中的一線性獨立集﹐ 則 $f(\alpha)$ 是 $V$ 中的一線性獨立集。 <!-- eng start --> Let $f: U\rightarrow V$ be a linear function. Show that if $f$ is injective and $\alpha = \{\bu_1,\ldots,\bu_k\}$ is linearly independent in $U$, then $f(\alpha)$ is linearly independent in $V$. <!-- eng end --> **[由孫心提供]** **Answer** We set $c_1f({\bf u}_1) + \cdots +c_kf({\bf u}_k) = \bf0$. Because the function $f$ is linear, $f(c_1{\bf u}_1 + \cdots + c_k\bu_k) = \bf0$. Accroding to Exercise 4, we know that $\ker(f) = \{ \bzero \}$, because function $f$ is injective. And so, we know $c_1\bu_1 + \cdots + c_k{\bf u}_k = \bf0$. Also, $\alpha$ is linearly independent, so $c_1 = \cdots = c_k = 0$. Therefore, $f(\alpha)$ is a linearly independent set in $V$. ##### Exercise 5(b) 令 $f: U\rightarrow V$ 為一線性函數。 證明若 $f$ 是嵌射且 $\alpha = \{\bu_1,\ldots,\bu_k\}$ 為 $U$ 的一組基底﹐ 則 $f(\alpha)$ 是 $\range(f)$ 的一組基底。 <!-- eng start --> Let $f: U\rightarrow V$ be a linear function. Show that if $f$ is injective and $\alpha = \{\bu_1,\ldots,\bu_k\}$ is a basis of $U$, then $f(\alpha)$ is a basis of $\range(f)$. <!-- eng end --> ##### Exercise 6 依照步驟確認線性擴充出來的函數符合我們要的性質。 令 $U$ 和 $V$ 為兩向量空間 且 $\beta = \{ \bu_1, \ldots, \bu_n \}$ 為 $U$ 的一組基底。 若 $f : U \rightarrow V$ 是一個線性函數 且已知 $f(\bu_1) = \bv_1$, $\ldots$, $f(\bu_n) = \bv_n$。 <!-- eng start --> Use the given instructions to verify the linear extension has the desired properties. Let $U$ and $V$ be vector spaces and $\beta = \{ \bu_1, \ldots, \bu_n \}$ a basis of $U$. Suppose $f: U\rightarrow V$ is a linear function and $f(\bu_1) = \bv_1$, $\ldots$, $f(\bu_n) = \bv_n$. <!-- eng end --> ##### Exercise 6(a) 說明對任何 $\beta$ 的線性組合﹐$f(c_1\bu_1 + \cdots + c_n\bu_n)$ 必須是 $c_1\bv_1 + \cdots + c_n\bv_n$。 <!-- eng start --> Explain why $f(c_1\bu_1 + \cdots + c_n\bu_n)$ has to be $c_1\bv_1 + \cdots + c_n\bv_n$. <!-- eng end --> ##### Exercise 6(b) 說明 $$ f(c_1\bu_1 + \cdots + c_n\bu_n) = c_1\bv_1 + \cdots + c_n\bv_n $$ 這個公式是定義完善的函數。 (每個 $U$ 中的元素都有被定義到、 且線性組合的不同表示法不會造成任何問題。) <!-- eng start --> Verify that $$ f(c_1\bu_1 + \cdots + c_n\bu_n) = c_1\bv_1 + \cdots + c_n\bv_n $$ is well-defined. That is, check if $f$ is defined for every vector in $U$ and check if different representations of a vector in $U$ do not result in different function values. <!-- eng end --> ##### Exercise 6(c) 說明 $$ f(c_1\bu_1 + \cdots + c_n\bu_n) = c_1\bv_1 + \cdots + c_n\bv_n $$ 這個公式是定義出來的函數是線性的。 <!-- eng start --> Verify that the function defined by $$ f(c_1\bu_1 + \cdots + c_n\bu_n) = c_1\bv_1 + \cdots + c_n\bv_n $$ is linear. <!-- eng end --> :::info collaboration: 1 4 problems: 4 - done: 2a, 2b, 2c, 3 extra: 0.5 - done: 4 moderator: 1 quality control: 1 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully