岡本拓海
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    --- title: 関数の極限 tags: 数学,presentation,極限 slideOptions: theme: white slideNumber: 'c/t' center: false transition: 'none' keyboard: true width: '93%' height: '100%' --- <style> /* basic design */ .reveal h1, .reveal h2, .reveal h3, .reveal h4, .reveal h5, .reveal h6, .reveal section, .reveal table, .reveal li, .reveal blockquote, .reveal th, .reveal td, .reveal p { font-family: 'Meiryo UI', 'Source Sans Pro', Helvetica, sans-serif, 'Helvetica Neue', 'Helvetica', 'Arial', 'Hiragino Sans', 'ヒラギノ角ゴシック', YuGothic, 'Yu Gothic'; text-align: left; line-height: 1.6; letter-spacing: normal; text-shadow: none; word-wrap: break-word; color: #444; } .reveal h1, .reveal h2, .reveal h3, .reveal h4, .reveal h5, .reveal h6 {font-weight: bold;} .reveal h1, .reveal h2, .reveal h3 {color: #2980b9;} .reveal th {background: #DDD;} .reveal section img {background:none; border:none; box-shadow:none; max-width: 95%; max-height: 95%;} .reveal blockquote {width: 90%; padding: 0.5vw 3.0vw;} .reveal table {margin: 1.0vw auto;} .reveal code {line-height: 1.2;} .reveal p, .reveal li {padding: 0vw; margin: 0vw;} .reveal .box {margin: -0.5vw 1.5vw 2.0vw -1.5vw; padding: 0.5vw 1.5vw 0.5vw 1.5vw; background: #EEE; border-radius: 1.5vw;} /* table design */ .reveal table {background: #f5f5f5;} .reveal th {background: #444; color: #fff;} .reveal td {position: relative; transition: all 300ms;} .reveal tbody:hover td { color: transparent; text-shadow: 0 0 3px #aaa;} .reveal tbody:hover tr:hover td {color: #444; text-shadow: 0 1px 0 #fff;} /* blockquote design */ .reveal blockquote { width: 90%; padding: 0.5vw 0 0.5vw 6.0vw; font-style: italic; background: #f5f5f5; } .reveal blockquote:before{ position: absolute; top: 0.1vw; left: 1vw; content: "\f10d"; font-family: FontAwesome; color: #2980b9; font-size: 3.0vw; } /* font size */ .reveal h1 {font-size: 5.0vw;} .reveal h2 {font-size: 4.0vw;} .reveal h3 {font-size: 2.8vw;} .reveal h4 {font-size: 2.6vw;} .reveal h5 {font-size: 2.4vw;} .reveal h6 {font-size: 2.2vw;} .reveal section, .reveal table, .reveal li, .reveal blockquote, .reveal th, .reveal td, .reveal p {font-size: 2.2vw;} .reveal code {font-size: 1.6vw;} /* new color */ .red {color: #EE6557;} .blue {color: #16A6B6;} /* split slide */ #right {left: -18.33%; text-align: left; float: left; width: 50%; z-index: -10;} #left {left: 31.25%; text-align: left; float: left; width: 50%; z-index: -10;} </style> <style> /* specific design */ .reveal h2 { padding: 0 1.5vw; margin: 0.0vw 0 2.0vw -2.0vw; border-left: solid 1.2vw #2980b9; border-bottom: solid 0.8vw #d7d7d7; } </style> <!-- --------------------------------------------------------------------------------------- --> <br/> ## 関数の極限 ### 高校~大学数学を**ゆるふわ**で <br/> <br/> #### 2021.10.11 ### 岡本拓海 --- ## 前提知識 - 関数って何か何となく説明できる - 三角関数は何となく知ってる - 対数は何となく知ってる --- ## 微積分の勉強の順序 1. 関数の極限 1. 無限大まで数字を増やしたらどうなる? 1. 微分 1. 細かく分けて変化を捉える 1. 積分 1. 微分の逆演算 1. 面積を求める --- ## なんで関数の極限値について知る必要があるの? 微分・積分の基本は関数の数字を細かく分けて考えることです。 なので"限りなく大きくする”とか”限りなく小さくする”といったことについて学ぶ必要があります。 --- ## 関数の極限値の定義 > 関数$f(x)$において、$x$が$a$とは異なる値を取りながら$a$に限りなく近づくとき,$f(x)$の値が一定の値$\alpha$に限りなく近づくならば,この値$\alpha$を$x\to a$の時の$f(x)$の極限値または極限といい、次のように表す$$\lim_{x \to a}f(x) = \alpha$$もしくは$$ x \longrightarrow a \Rightarrow f(x) \longrightarrow \alpha $$ また、このとき、$f(x)$は$x$$\rightarrow$$a$で$\alpha$に収束するという ニホンゴムズカシイ ---- ## どういうこと? 下図のように徐々に点Xをaに近づけていくと、値が徐々に近づいていきます。 <iframe src="https://www.geogebra.org/graphing/wctxwwgx?embed" width="800" height="600" allowfullscreen style="border: 1px solid #e4e4e4;border-radius: 4px;" frameborder="0"></iframe> ---- ## でも厳密じゃないよね? "限りなく近づく"ってどういうこと?数式とかで明確に示して欲しい。 ---- ## 大学数学での定義 "限りなく近づく"="差がほとんどない" $\Longrightarrow$ $x$と$a$の差の絶対値を取って考える > $|x-a|$が0に近い値($\neq0$)になるとき ($0<|x − a|<\delta$) > $|f(x)-\alpha|$の値が0に近い値になっていく ( $|f(x) − \alpha | < \varepsilon$ ) ---- ## 大学数学での定義 >**任意**の正の数$\varepsilon$に対し、ある正の数$\delta$が存在して、$0<|x − a|<\delta$を満たし、かつ、$f(x)$の定義域に含まれるすべての$x$について、$|f(x) − \alpha | < \varepsilon$ が成り立つとき、この値$\alpha$を **$x$$\rightarrow$$a$のときの関数$f(x)$の極限または極限値**といい、次のように表す >$$\lim_{x \to a}f(x) = \alpha$$ >もしくは >$$ x \longrightarrow a \Rightarrow f(x) \longrightarrow \alpha $$ また、このとき、$f(x)$は$x$$\rightarrow$$a$で$\alpha$に収束するという。 この定義の仕方を$\varepsilon$-$\delta$論法などと言ったりします。 ※ここでの**任意の**は全てのという意味であるので注意 ---- ## もう一度図で確認 <iframe src="https://www.geogebra.org/graphing/wctxwwgx?embed" width="800" height="600" allowfullscreen style="border: 1px solid #e4e4e4;border-radius: 4px;" frameborder="0"></iframe> ---- ## 参考:まだ、厳密じゃないという人へ 日本語で表現されているので解釈の余地が有るのはケシカラン!という場合には以下の形式言語で記述すればもはや言葉は入ってないので、解釈の余地は生まれません。 $$ \forall \varepsilon \gt 0, \exists \delta \gt 0;\; \forall x \in \mathbb{R}\; [ 0 \lt | x - a | \lt \delta \Rightarrow |f(x)- \alpha| \lt \varepsilon ] $$ - $\forall\varepsilon$ : すべての$\varepsilon$ - $\exists$ : 存在する - $\mathbb{R}$ : 実数の集合 - $A\in B$ : AがBに含まれる ---- ## ちょっとややこしい具体例 関数$\displaystyle f(x)=\frac{x^2-1}{x-2}$の$x \to1$の極限値を考える $\{x \mid x \neq 1\}$であり$x=1$は定義域に含まれない。 しかし$x \neq 1$においては $$ \begin{eqnarray} f(x) & = \frac{x^2-1}{x-1} = \frac{(x-1)(x+1)}{x-1} \\ & = x+1 \end{eqnarray} $$ である よって$x\to 1$のとき、$f(x)\to 2$である --- ## 練習問題 以下の収束値を求めてみましょう $$ (1)\lim_{x \to 2}(x^2+5x+6)\quad (2)\lim_{x \to 2} \frac{x^3-8}{x-2} $$ --- ## 解答 <iframe src="https://www.geogebra.org/calculator/asutygsc?embed" width="800" height="600" allowfullscreen style="border: 1px solid #e4e4e4;border-radius: 4px;" frameborder="0"></iframe> --- ## 関数の極限についての諸性質 >$\displaystyle\lim_{x \to a}f(x) = \alpha$ , $\displaystyle\lim_{x \to a}g(x) = \beta$とすると以下の定理が成り立つ >1. $\displaystyle\lim_{x \to a}kf(x) = k\alpha$ >2. $\displaystyle\lim_{x \to a}\{f(x)+g(x)\} = \alpha +\beta$ , $\lim_{x \to a}\{f(x)-g(x)\} = \alpha -\beta$ >3. $\displaystyle\lim_{x \to a} f(x)g(x) = \alpha\beta$ >4. $\displaystyle\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\alpha}{\beta}$ ---- ## 関数の極限についての諸性質 合成関数の極限 >関数$f(x),g(x)$について、$\displaystyle\lim_{x \to a}f(x) = b$ , $\displaystyle\lim_{x \to b}g(x) = \alpha$とする。ただし$a,b,\alpha$は実数である。この時$f(x)とg(x)$の合成関数$(g\circ f)(x)$について$\displaystyle\lim_{x\to a}(g\circ f)(x)=\alpha$が成り立つ ---- ## 関数の極限についての諸性質 はさみうちの原理 >関数$f(x)$と$g(x)$の定義域が開区間$I$を含み $a\in I$である実数$a$について >$\displaystyle\lim_{x \to a}f(x) = \alpha$ , $\displaystyle\lim_{x \to a}g(x) = \beta$とする。この時以下が成り立つ > (1) 全ての$x \in I$について$f(x) \leq g(x)$ ならば $\alpha \leq \beta$ > (2) 関数$h(x)$の定義域が開区間$I$を含み、すべての$x \in I$について$f(x) \leq h(x)\leq g(x)$かつ$\alpha = \beta$ならば$\displaystyle\lim_{x \to a}h(x) = \alpha$ ---- ## 無限大や0の極限値 $$ \lim_{x \to \infty}\frac{1}{x} = 0 \\ \lim_{x \to +0 }\frac{1}{x} = \infty\\ \lim_{x \to -0 }\frac{1}{x} = -\infty $$ --- ## 練習問題 (演習回をやります) --- ## まとめ - 関数の極限値についての定義を示した - 関数の極限値の諸性質についてしめした --- ## 参考文献 - 市原一裕(2020) 大学教養微分積分の基礎 数研出版 - 砂田利一(2017) 基幹講座 数学 微分積分 東京図書株式会社 - 加藤文元(2019) 大学教養微分積分 数研出版 --- ## 付録 ---

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully