Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 特徵多項式 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}}$ ```python from lingeo import random_int_list, random_good_matrix ``` ## Main idea We have seen the power of matrix diagonalization and how it relies on the equation $$ A\bv = \lambda \bv. $$ To find the eigenvalues and the eigenvectors, we may may rewrite the equation as $A\bv = \lambda I\bv$ and obtain $$ (A - \lambda I) \bv = \bzero, $$ which means - $\lambda$ is an eigenvalue if and only if $A - \lambda I$ is singular; and - when $\lambda$ is an eigenvalue, then $\bv$ can be any nonzero vector in $\ker(A - \lambda I)$. We also know the determinant can be used to detect singularity. Therefore, $\lambda$ is an eigenvalue of $A$ if and only if $\det(A - \lambda I) = 0$. If we compute $p_A(x) = \det(A - x I)$, then $\lambda$ is an eigenvalue of $A$ if and only if $\lambda$ is a root of $p_A(x)$. We call $p_A(x)$ the **characteristic polyonimal** of $A$ and the multiset of its roots as the **spectrum** of $A$, denoted by $\spec(A)$. Not that even if $A$ is a real matrix, $\spec(A)$ might contains complex numbers. Note that if $A$ and $B$ are similar by $B = Q^{-1}AQ$, then $p_A(x) = p_B(x)$ since $$ \begin{aligned} p_B(x) &= \det(Q^{-1}AQ - xI) \\ &= \det(Q^{-1}AQ - Q^{-1}(xI)Q) \\ &= \det(Q^{-1}(A - xI)Q) \\ &= \det(Q^{-1})\det(A - xI)\det(Q) \\ &= p_A(x). \end{aligned} $$ Therefore, the **characteristic polynomial** of a linear function $f:V\rightarrow V$ is $p_f(x) = \det([f]_\beta^\beta - xI)$ for any basis $\beta$ of $V$, while the multiset of its roots is called the **spectrum** of $f$, denoted by $\spec(f)$. ## Side stories - continuous argument - differentiation ## Experiments ##### Exercise 1 執行以下程式碼。 ```python ### code set_random_seed(0) print_ans = False n = 2 spec = random_int_list(n, 3) D = diagonal_matrix(spec) Q = random_good_matrix(n,n,n) A = Q * D * Q.inverse() pretty_print(LatexExpr("A ="), A) if print_ans: pA = (-1)^n * A.charpoly() print("characteristic polyomial =", pA) print("spectrum is the set { " + ", ".join("%s"%val for val in spec) + " }") ``` ##### Exercise 1(a) 計算 $A$ 的特徵多項式。 $Ans:$ 藉由 `seed = 0` 求得 $$ A = \begin{bmatrix} -3 & 30 \\ 0 & 3 \end{bmatrix}. $$ 那麼根據特徵多項式的定義,我們要求得一個 $\lambda$ 使得 $$ A\bv = \lambda \bv. $$ 因此, $$ \begin{bmatrix} -3 & -30 \\ 0 & 3 \\ \end{bmatrix}\bv = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \\ \end{bmatrix}\bv \Rightarrow \begin{bmatrix} -3-\lambda & -30 \\ 0 & 3-\lambda \\ \end{bmatrix}\bv =0. $$ 故特徵多項式 $p_A(\lambda)$ 為 $$ \det \begin{bmatrix} -3-\lambda & -30 \\ 0 & 3-\lambda \\ \end{bmatrix} = \lambda^2-9. $$ ##### Exercise 1(b) 計算 $\spec(A)$。 $Ans:$ $\spec(A)$ 即為 $p_A(\lambda)=0$ 的解,也就是 $\lambda^2-9$ 的根為。求得 $\lambda=\pm 3$。 故 $\spec(A)=\{-3,3\}。$ ## Exercises ##### Exercise 2 令 $$ A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} $$ 且 $\bv = (x, y)$。 把 $A\bv = \lambda \bv$ 和 $(A - \lambda I)\bv$ 分別寫成 $x,y$ 的聯立方程組, 並說明它們等價。 $Ans:$ $A\bv = \lambda \bv$ 的情形: $$ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{cases} x+2y = \lambda x \\ 3x+4y = \lambda y \end{cases} \Rightarrow \begin{cases} (1- \lambda)x+2y = 0 \\ 3x+(4- \lambda)y = 0 \end{cases}. $$ $(A - \lambda I)\bv$ 的情形: $$ \left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \right) \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1-\lambda & 2 \\ 3 & 4-\lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{cases} (1- \lambda)x+2y = 0 \\ 3x+(4- \lambda)y = 0 \end{cases}. $$ 因為這兩個式子相等,故它們等價。 ##### Exercise 3 計算以下矩陣 $A$ 的特徵多項式以及 $\spec(A)$。 ##### Exercise 3(a) $$ A = \begin{bmatrix} 5 & -1 \\ -1 & 5 \end{bmatrix}. $$ $Ans:$ <!-- $A\bv = \lambda\bv \Rightarrow(A-\lambda I)\bv=0$ --> $$p_A(\lambda) = \det(A-\lambda I)= \det\begin{bmatrix} 5-\lambda & -1 \\ -1 & 5-\lambda \end{bmatrix}=\lambda^2-10\lambda+24=(\lambda-4)(\lambda-6). $$ <!-- 矩陣 $A$ 的特徵多項式為 $\lambda^2-10\lambda+24$。 --> 並且 $\spec(A)=\{4,6\}$。 ##### Exercise 3(b) $$ A = \begin{bmatrix} 0 & 1 \\ -6 & 5 \end{bmatrix}. $$ $Ans:$ $$p_A(\lambda) = \det(A-\lambda I)= \det\begin{bmatrix} -\lambda & 1 \\ -6 & 5-\lambda \end{bmatrix}=\lambda^2-5\lambda+6=(\lambda-2)(\lambda-3). $$ 並且 $\spec(A)=\{2,3\}。$ ##### Exercise 3(c) $$ A = \begin{bmatrix} 0 & 1 \\ -4 & 0 \end{bmatrix}. $$ $Ans:$ $$p_A(\lambda) = \det(A-\lambda I)= \det\begin{bmatrix} -\lambda & 1 \\ -4 & -\lambda \end{bmatrix}=\lambda^2+4. $$ 並且 $\spec(A)=\{-2i,2i\}。$ ##### Exercise 3(d) $$ A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}. $$ $Ans:$ $$ p_A(\lambda) = \det(A-\lambda I)= \det\begin{bmatrix} -\lambda & -1 \\ 1 & -\lambda \end{bmatrix}=\lambda^2+1. $$ 並且 $\spec(A)=\{-i,i\}。$ ##### Exercise 4 計算以下矩陣 $A$ 的特徵多項式以及 $\spec(A)$。 ##### Exercise 4(a) $$ A = \begin{bmatrix} 4 & 0 & -1 \\ 0 & 4 & -1 \\ -1 & -1 & 5 \end{bmatrix}. $$ $Ans:$ $$ p_A(\lambda) = \det(A-\lambda I)= \det\begin{bmatrix} 4-\lambda & 0 & -1 \\ 0 & 4-\lambda & -1 \\ -1 & -1 & 5-\lambda \end{bmatrix} =-\lambda^3+13\lambda^2-54\lambda+72. $$ 用一次因式檢驗法可得 $$ -\lambda^3 + 13 \lambda^2 - 54\lambda + 72 = -(\lambda-3)(\lambda-4)(\lambda-6). $$ 故 $\spec(A)=\{3,4,6\}。$ ##### Exercise 4(b) $$ A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end{bmatrix}. $$ $Ans:$ $$ p_A(\lambda) = \det(A-\lambda I)= \det\begin{bmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 6 & -11 & 6-\lambda \end{bmatrix} =-\lambda^3+6\lambda^2-11\lambda+6. $$ 用一次因式檢驗法可得 $$ -\lambda^3+6\lambda^2-11\lambda+6=-(\lambda-1)(\lambda-2)(\lambda-3). $$ 故 $\spec(A)=\{1,2,3\}。$ ##### Exercise 4(c) $$ A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}. $$ $Ans:$ $$ p_A(\lambda) = \det(A-\lambda I)= \det\begin{bmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 1 & 0 & -\lambda \end{bmatrix} =-\lambda^3+1. $$ 因式分解可得 $$ -\lambda^3 + 1 = -(\lambda-1)(\lambda^2+\lambda+1)=-(\lambda-1)(\lambda- \frac{-1+\sqrt{3}{i}}{2})(\lambda- \frac{-1-\sqrt{3}{i}}{2}). $$ 故 $\spec(A)=\left\{ 1,\dfrac{-1+\sqrt{3}{i}}{2},\dfrac{-1-\sqrt{3}{i}}{2} \right\}。$ ##### Exercise 5 令 $J_n$ 為 $n\times n$ 的全 $1$ 矩陣。 求 $J_n$ 的特徵多項式及 $\spec(J_n)$。 提示:先用列運算把所有列加到第一列。 :::warning - [x] 列運算會保持行列式值沒錯,但是你要對 $J_n - xI$ 做列運算才行,不能先對 $J_n$ 列運算再減 $xI$ - [x] 特徵多項式用小寫 $p$ - [x] $\spec(J_n)$ 除了 $n$ 以外還有很多解,總共有 $n$ 個數字 ::: $Ans:$ 我們先將 $J_n$ 之所有列加到第一列,並運用列運算將除第一列以外的列成為零列,即 $$ \begin{array}{l} \det (J_n - \lambda I_n) &= \det \begin{bmatrix} 1-\lambda & 1 & \cdots & \cdots & 1 \\ 1 & 1-\lambda & 1 & \cdots & 1 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & \dots & 1 & 1-\lambda & 1 \\ 1 & \cdots & \cdots & 1 & 1-\lambda \end{bmatrix} \\ &= \det \begin{bmatrix} n-\lambda & n - \lambda & \cdots & \cdots & n - \lambda \\ 1 & 1-\lambda & 1 & \cdots & 1 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & \dots & 1 & 1-\lambda & 1 \\ 1 & \cdots & \cdots & 1 & 1-\lambda \end{bmatrix} \\ &= \det \begin{bmatrix} n-\lambda & \cdots & \cdots & \cdots & n - \lambda \\ 0 & -\lambda & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & -\lambda & 0 \\ 0 & \cdots & \cdots & 0 & -\lambda \end{bmatrix}. \end{array} $$ 所以, $$ p_{J_n}(\lambda) = \det(J-\lambda I_n) = \det\begin{bmatrix} n-\lambda & \cdots & \cdots & \cdots & n - \lambda \\ 0 & -\lambda & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & -\lambda & 0 \\ 0 & \cdots & \cdots & 0 & -\lambda \end{bmatrix} = (n-\lambda)(-\lambda)^{n-1}. $$ 由特徵多項式我們可以知道 $p_{J_n}(\lambda)=0$ 的解,即 $$ \spec(J) = {\{n \ , \ 0^{(n-1)}}\}. $$ ##### Exercise 6 令 $A$ 和 $B$ 分別為 $m\times n$ 及 $n\times m$ 矩陣,並令 $$ M = \begin{bmatrix} O_{n,n} & B \\ A & O_{m,m} \end{bmatrix}. $$ ##### Exercise 6(a) 假設 $x \neq 0$,參考 408-5 計算 $$ \det\begin{bmatrix} -xI_n & B \\ A & -xI_m \end{bmatrix}. $$ $Ans:$ 藉由 408-5 我們得到 $$ \begin{aligned} \det\begin{bmatrix} -xI_n & B \\ A & -xI_m \end{bmatrix} &= \det (-x I_n) \cdot \det ((-x I_m) - A (-x I_n)^{-1} B) \\ &= (-x)^n \cdot \det (\frac{1}{x}AB - x I_m) \\ &= (-x)^n \cdot (x)^{-m} \cdot \det (AB - x^2 I_m). \end{aligned} $$ 另一個寫法是 $$ \begin{aligned} \det\begin{bmatrix} -xI_n & B \\ A & -xI_m \end{bmatrix} &= \det (-x I_m) \cdot \det ((-x I_n) - B (-x I_m)^{-1} A) \\ &= (-x)^m \cdot \det (\frac{1}{x}BA - x I_n) \\ &= (-x)^m \cdot (x)^{-n} \cdot \det (BA - x^2 I_n). \end{aligned} $$ ##### Exercise 6(b) 利用行列式值的連續性來補足 $x = 0$ 的狀況。 求 $M$ 的特徵多項式。 :::warning - [x] 極限不用特別寫 $x\rightarrow 0^+$,寫 $x\rightarrow 0$ 就好 - [x] 雖然在 $x = 0$ 時還沒有定義,但 --> 雖然在 $x = 0$ 時還沒有定義,但這時我們可以利用行列式值的連續性得到 - [x] 這時我們可以利用行列式值的連續性,就讓 $x = 0$ 時的值定為 $0$ 吧! <-- 這句要拿掉,兩邊極限都有值,而且不見得會是 $0$ - [x] $=0$ 的部份要改成 $=\det(M)$ - [x] 特徵多項式用小寫 $p$ - [x] 最後加上:當 $m\geq n$ 時,$(\lambda)^{n-m}$ 會造成 $\lambda=0$ 時沒定義,然而 $(\lambda)^{n-m}$ 會和 $p_{AB}(\lambda^2)$ 相消。但方便起見,當 $m\geq n$ 時,我們取 $p_M(\lambda) = (-1)^m \cdot (\lambda)^{m-n} \cdot P_{BA} (\lambda^2)$。 ::: 藉由 **Exercise 6(a)** 我們可以知道 $x \neq 0$ 時, $$ \det\begin{bmatrix} -xI_n & B \\ A & -xI_m \end{bmatrix} = (-x)^m \cdot (x)^{-n} \cdot \det (BA - x^2 I_n) = (-1)^m \cdot (x)^{m-n} \cdot (BA - x^2 I_n). $$ 雖然在 $x = 0$ 時還沒有定義,但這時我們可以利用行列式值的連續性得到 $$ \lim\limits_{x \rightarrow 0} (-1)^m \cdot (x)^{m-n} \cdot (BA - x^2 I_n) = \det(M). $$ \ 而 $M$ 的特徵多項式 $p_M(\lambda) = \det (M - \lambda I_{n+m})$,根據 **Exercise 6 (a)**,求得 $$ \begin{array}{l} p_M(\lambda) &= (-\lambda)^n \cdot (\lambda)^{-m} \cdot \det (AB - \lambda^2 I_m) \\ &= (-1)^n \cdot (\lambda)^{n-m} \cdot \det (AB - \lambda^2 I_m) \\ &= (-1)^n \cdot (\lambda)^{n-m} \cdot p_{AB} (\lambda^2). \end{array} $$ 另一種寫法是 $$ \begin{array}{l} p_M(\lambda) &= (-\lambda)^m \cdot (\lambda)^{-n} \cdot \det (BA - \lambda^2 I_n) \\ &= (-1)^m \cdot (\lambda)^{m-n} \cdot \det (BA - \lambda^2 I_n) \\ &= (-1)^m \cdot (\lambda)^{m-n} \cdot p_{BA} (\lambda^2). \end{array} $$ 當 $m\geq n$ 時,$(\lambda)^{n-m}$ 會造成 $\lambda=0$ 時沒定義,然而 $(\lambda)^{n-m}$ 會和 $p_{AB}(\lambda^2)$ 相消。但方便起見,當 $m\geq n$ 時,我們取 $p_M(\lambda) = (-1)^m \cdot (\lambda)^{m-n} \cdot p_{BA} (\lambda^2)$。 ##### Exercise 6(c) 若 $m\geq n$,證明 $AB$ 和 $BA$ 有相同的非零特徵值集合。 $Ans:$ 根據 **Exercise 6(a),6(b)**,我們知道 $$ \begin{array}{l} p_M(\lambda) &= (-1)^n \cdot (\lambda)^{n-m} \cdot p_{AB} (\lambda^2) \\ &= (-1)^m \cdot (\lambda)^{m-n} \cdot p_{BA} (\lambda^2). \end{array} $$ 由上述式子我們知道若 $M$ 的特徵值為 $\lambda \neq 0$ 時,則 $AB$ 的特徵值為 $\lambda^2$。同理,$BA$ 的特徵值亦為 $\lambda^2$,那麼我們就知道 $AB$ 與 $BA$ 有相同的非零特徵值集合。 :::info 當 $m\geq n$ 時,可以把等式整理一下變成: $$ p_{AB} (\lambda^2) = (-1)^{m-n} \lambda^{2(m-n)} p_{BA} (\lambda^2) $$ 如此就可以看出 $p_{AB}(\lambda^2)$ 和 $p_{BA}(\lambda^2)$ 除了 $\lambda$ 以外的的因式都一樣(連重數都相等)。 ::: \ -- *另解* -- \ 令 $\bx$ 為 $AB$ 的特徵向量,$\lambda$ 為特徵值且 $\lambda \neq 0$。那麼我們可以寫出以下等式: $$ AB \bx = \lambda \bx. $$ 接著我們將兩邊同時左乘 $B$,得到 $$ B(AB \bx) = BA (B \bx) = B (\lambda \bx) = \lambda (B \bx). $$ 如此,我們就能得到 $BA$ 的特徵向量為 $B\bx$,且特徵值一樣為 $\lambda$。故 $AB$ 與 $BA$ 有相同的非零特徵值集合。 :::info 這個想法很好,但有一些瑕疵。 1. 如果 $B\bx = \bzero$ 的話,就不能保證 $\lambda$ 是 $BA$ 的特徵值了。 2. 這個方法看不出重數會相等。 ::: ##### Remark 以上的手法稱作連續性論證(continuous argument)。 由於矩陣不可逆的情況只發生在行列式值為零的時候, 一般來說我們都可以先假設矩陣可逆,再看看是否能用連續性處理不可逆的情況。 ##### Exercise 7 令 $J_{m,n}$ 為 $m\times n$ 的全 $1$ 矩陣,而 $$ A = \begin{bmatrix} O_{n,n} & J_{n,m} \\ J_{m,n} & O_{m,m} \end{bmatrix}. $$ 求 $A$ 的特徵多項式及 $\spec(A)$。 :::warning - [x] 特徵多項式用小寫 $p$ - [x] 且 $-\lambda I_n,-\lambda I_m$ 皆可逆 <-- 這句拿掉,$\lambda$ 有可能是 $0$ - [x] 第二段計算有錯,實際上 $\sqrt{m}$ 不在 $\spec(A)$ 裡 - [x] $\spec(A)$ 總共有 $m + n$ 個數字, ::: $Ans:$ 直接將特徵值結合成為特徵多項式得到 $$ p_A(\lambda) = \det (A - \lambda I_{n+m}) =\det\begin{bmatrix} -\lambda I_n & J_{n,m} \\ J_{m,n} & -\lambda I_m \end{bmatrix}. $$ 根據區塊矩陣的運算可得到 $$ \begin{array}{l} \det(A - \lambda I_{m+n}) &= \det (-\lambda I_n) \cdot \det (-\lambda I_m - J_{m,n} (-\lambda I_n)^{-1} J_{n,m}) \\ &= (-\lambda)^n \cdot (\lambda)^{-m} \cdot \det ((n)J_{m,m} - \lambda^2 I_m). \end{array} $$ 根據 **Exercise 5** 的結論,我們可以將 $\det ((n)J_{m,m} - \lambda^2 I_m)$ 改寫,即 $$ \det ((n)J_{m,m} - \lambda^2 I_m) = (nm-\lambda^2)(-\lambda^2)^{m-1}. $$ 故 $$ p_A(\lambda) = \det(A - \lambda I_{m+n}) = (-\lambda)^n \cdot (\lambda)^{-m} \cdot (nm-\lambda^2)(-\lambda^2)^{m-1}. $$ 如此一來我們也能求到 $\spec(A) = {\{ \pm \sqrt{nm} \ , 0^{(m+n-2)} \ }\}$。 ##### Exercise 8 令 $V$ 為 $\mathbb{R}^3$ 中的一個二維空間, 而 $f:\mathbb{R}^3 \rightarrow \mathbb{R}^3$ 將向量 $\bv\in\mathbb{R}^3$ 投影到 $V$ 上。 求 $f$ 的特徵多項式。 :::warning - [x] $id$ --> $\idmap$ ::: $Ans:$ 令 $\bu_1 ,\bu_2 \in \mathbb R^3$ 是 $V$ 的一組基底,並且 $\bu_1,\bu_2$ 正交,長度各為 $1$。由此,我們可以找到 $\bu_3 = \bu_1 \times \bu_2$ 使得 $$ \beta = {\{ \bu_1,\bu_2,\bu_3 }\} $$ 為 $\mathbb R^3$ 中的一組基底。 另令 $$ \begin{array}{c} f: &\bu_1 \mapsto \bu_1, \\ &\bu_2 \mapsto \bu_2, \\ &\bu_3 \mapsto \bzero. \end{array} $$ 已知投影矩陣的函數是線性函數。 令 $\bu = c_1\bu_1 + c_2 \bu_2 + c_3\bu_3$,那麼我們也能得知 $$ \bu \mapsto [f] \bu. $$ 利用 $\beta$,我們可以改寫成 $$ [\bu]_{\beta} \mapsto [f]_{\beta}^{\beta} [\bu]_{\beta}. $$ 利用 $[\bu_1]_{\beta},[\bu_2]_{\beta},[\bu_3]_{\beta}$,我們就能求到 $$ [f]_{\beta}^{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}. $$ 令 $\varepsilon_3$ 為 $\mathbb R^3$ 中的標準基底,由於 $$ [f] = [\idmap]_{\beta}^{\varepsilon_3} [f]_{\beta}^{\beta} [\idmap]_{\varepsilon_3}^{\beta}, $$ 符合 $A = Q D Q^{-1}$ 的形式,因此這兩個矩陣相似。 所以,特徵方程式: $$ p_f(x) = p_{[f]_{\beta}^{\beta}}(x) = (-x)(1-x)^2. $$ ##### Exercise 9 令 $V$ 為 $\mathbb{R}^3$ 中的一個二維空間, 而 $f:\mathbb{R}^3 \rightarrow \mathbb{R}^3$ 將向量 $\bv\in\mathbb{R}^3$ 鏡射到 $V$ 的對面。 求 $f$ 的特徵多項式。 $Ans:$ 承 **Exercise 8**,以下將 **Exercise 8** 中的 $f$ 稱為 $f_8$。 由於我們知道 $f_8$ 可以表示成一個投影矩陣 $[f_8]$,那麼我們就能將 $f$ 寫成一個鏡射矩陣 $2[f_8] - I_3$。那麼, $$ \bu \mapsto [f]\bu. $$ 利用同樣的方式我們也可以知道 $$ [\bu]_\beta \mapsto [f]_\beta^\beta[\bu]_\beta, $$ 其中 $[f]_\beta^\beta=2[f_8]_\beta^\beta-I_3$。 如此我們也能輕易求得 $$ [f]_{\beta}^{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}. $$ 令 $\varepsilon_3$ 為 $\mathbb R^3$ 中的標準基底,由於 $$ [f] = [\idmap]_{\beta}^{\varepsilon_3} [f]_{\beta}^{\beta} [\idmap]_{\varepsilon_3}^{\beta} $$ 符合 $A = Q D Q^{-1}$ 的形式,因此這兩個矩陣相似。 所以我們就能求特徵方程式: $$ p_f(x) = p_{[f]_{\beta}^{\beta}}(x) = -(1+x)(1-x)^2. $$ ##### Exercise 10 令 $A$ 為一 $n\times n$ 矩陣。 對 $i = 1,\ldots,n$,令 $A(i)$ 為將 $A$ 的第 $i$ 行及第 $i$ 列拿掉所得的子矩陣。 證明 $$ \frac{dp_A(x)}{dx} = -\sum_{i = 1}^n p_{A(i)}(x). $$ 提示: 在計算 $\det(A - xI)$ 時可以先把裡面的 $n$ 個 $x$ 當作獨立的變數 $x_1,\ldots, x_n$。 接下來搭配 409-2 及連鎖律 $$ \frac{dp_A(x)}{dx} = \sum_{i = 1}^n \frac{\partial p_A(x)}{\partial x_i} \frac{d x_i}{dx} $$ 來計算微分。 $Ans:$ 令 $p_A(x)$ 中對應矩陣第 $n$ 行第 $n$ 列中的 $x$ 為 $x_n$,$A$ 中 第 $i$ 列第 $j$ 行為 $a_{ij}$,那麼我們由 409-2 可以得知 $$ p_A(x) = \det \begin{bmatrix} a_{11}-x_1 & a_{12} &\cdots & a_{1n} \\ a_{21} & \ddots & ~ & \vdots\\ \vdots & ~ & \ddots & a_{n-1 \ n} \\ a_{n1} & \cdots & a_{n \ n-1} & a_{nn} - x_n \end{bmatrix} = \det \begin{bmatrix} a_{11} & a_{12} &\cdots & a_{1n} \\ a_{21} & \ddots & ~ & \vdots\\ \vdots & ~ & \ddots & a_{n-1 \ n} \\ a_{n1} & \cdots & a_{n \ n-1} & a_{nn} - x_n \end{bmatrix} + \det \begin{bmatrix} -x_1 & 0 &\cdots & 0 \\ a_{21} & a_{22}-x_2 & ~ & \vdots\\ \vdots & ~ & \ddots & a_{n-1 \ n} \\ a_{n1} & \cdots & a_{n \ n-1} & a_{nn} - x_n \end{bmatrix}. $$ 此時我們可以知道 $$ \frac{\partial p_A(x)}{\partial x_1} \cdot \frac{dx_1}{dx} = (-1) \cdot \det \begin{bmatrix} a_{22}-x_2 & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \cdots & a_{nn} - x_n \end{bmatrix} = (-1) \cdot p_{A(1)}(x). $$ 同樣的方式求得 $$ \frac{\partial p_A(x)}{\partial x_2}\frac{dx_2}{dx} = (-1) \cdot p_{A(2)}(x) \ , \frac{\partial p_A(x)}{\partial x_3}\frac{dx_3}{dx} = (-1) \cdot p_{A(3)}(x) \ , \ \ldots \ , \frac{\partial p_A(x)}{\partial x_n}\frac{dx_n}{dx} = (-1) \cdot p_{A(n)}(x). $$ \ 根據連鎖律,我們就能求出 $$ \frac{dp_A(x)}{dx} = \sum_{i = 1}^n \frac{\partial p_A(x)}{\partial x_i} \frac{d x_i}{dx} = (-1) \cdot p_{A(1)}(x) + \cdots + (-1) \cdot p_{A(n)}(x) = \sum_{i = 1}^n (-1) \cdot p_{A(i)}(x) = - \sum_{i = 1}^n p_{A(i)}(x). $$ :::success 漂亮! ::: :::info 目前分數 = 6 &times; 檢討 = 6.5 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully