Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 行列式值的定義 Definition of the determinant ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}$ ```python from lingeo import random_int_list ``` ## Main idea For $n\times n$ matrices $A$, the **determinant** $\det(A)$ is defined through the following rules. - $\det(I_n) = 1$. - If $E$ is the elementary matrix of $\rho_i\leftrightarrow\rho_j$, then $\det(EA) = -\det(A)$ and we define $\det(E) = -1$. - If $E$ is the elementary matrix of $\rho_i:\times k$, then $\det(EA) = k\det(A)$ and we define $\det(E) = k$. (Note that this statement still holds even when $k = 0$.) - If $E$ is the elementary matrix of $\rho_i:+k\rho_j$, then $\det(EA) = \det(A)$ and we define $\det(E) = 1$. Note that the determinants for $2\times 2$ and $3\times 3$ matrices agree with this definition. As a consequence, if a matrix $A$ is invertible and can be written as the product a sequence of elementary matrices $F_1\cdots F_k$, then $\det(A) = \det(F_1)\cdots\det(F_k)\det(I_n) = \det(F_1)\cdots\det(F_k)$. In contrast, if $A$ is not invertible, then $\det(A) = 0$. In particular, this happens when - $A$ has a zero row, or - $A$ has repeated rows. By definitions, $\det(A) = \Vol_C(A) = \Vol_R(A)$ for any matrix $A$. ##### Remark Thanks to row operations, the definition of $\det(A)$ assigns at least a value to $\det(A)$. However, _maybe_ the rules assigns more than one values to it. That is, the function might not be _well-defined_. A matrix $A$ can be written as the product of different sequences of elementary matrices. For example, one may write $$ A = F_1 \cdots F_k = E_1 \cdots E_h $$ for elementary matrices $F_1,\ldots, F_k$ and $E_1,\ldots, E_h$. However, it is not yet clear by the definition that $\det(F_1) \cdots \det(F_k) = \det(E_1) \cdots \det(E_h)$. We will deal with this issue at the end of this chapter. ## Side stories - well-defined - permutation matrices ## Experiments ##### Exercise 1 執行以下程式碼。 <!-- eng start --> Run the code below. <!-- eng end --> ```python ### code set_random_seed(0) print_ans = False n = 4 while True: A = matrix(n, random_int_list(n^2, 3)) if A.det() != 0: break print("A =") pretty_print(A) if print_ans: print("determinant of A =", A.det()) ``` ##### Exercise 1(a) 將 $A$ 消成最簡階梯形式、 並記錄下每一步的列運算。 <!-- eng start --> Find the reduced echelon form of $A$ and record each step of the row operation. <!-- eng end --> ##### Exercise 1(a) - answer here Let `seed = 15`, $$\begin{aligned} A = \left[\begin{array}{cccc} 2 & 2 & 2 & 0 \\ -2 & -1 & 2 & -2\\ 2 & 0 & -2 & 1\\ 2 & 0 & -2 & -2 \end{array}\right] \xrightarrow[\rho_2:\rho_1+\rho_2]{\rho_3:\rho_3-\rho_1}\left[\begin{array}{cccc} 2 & 2 & 2 & 0\\ 0 & 1 & 4 & -2\\ 0 & -2 & -4 & 1\\ 2 & 0 & -2 & -2 \end{array}\right]\\ \xrightarrow[\rho_3:\rho_3+2\rho_2]{\rho_4:\rho_4-\rho_1}\left[\begin{array}{cccc} 2 & 2 & 2 & 0\\ 0 & 1 & 4 & -2\\ 0 & 0 & 4 & -3\\ 0 & -2 & -4 & -2 \end{array}\right]\\ \xrightarrow[\rho_1:\frac{1}{2}\rho_1]{\rho_4:\rho_4+2\rho_2}\left[\begin{array}{cccc} 1 & 1 & 1 & 0\\ 0 & 1 & 4 & -2\\ 0 & 0 & 4 & -3\\ 0 & 0 & 4 & -6 \end{array}\right]\\ \xrightarrow[\rho_4:\rho_4-\rho_3]{\rho_2:\rho_2-\rho_3}\left[\begin{array}{cccc} 1 & 1 & 1 & 0\\ 0 & 1 & 0 & 1\\ 0 & 0 & 4 & -3\\ 0 & 0 & 0 & -3 \end{array}\right]\\ \xrightarrow[\rho_1:\rho_1-\rho_2]{\rho_4:-\frac{1}{3}\rho_4}\left[\begin{array}{cccc} 1 & 0 & 1 & -1\\ 0 & 1 & 0 & 1\\ 0 & 0 & 4 & -3\\ 0 & 0 & 0 & 1 \end{array}\right]\\ \xrightarrow[\rho_2:\rho_2-\rho_4]{\rho_3:\frac{1}{4}\rho_3}\left[\begin{array}{cccc} 1 & 0 & 1 & -1\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & -\frac{3}{4}\\ 0 & 0 & 0 & 1 \end{array}\right]\\ \xrightarrow[\rho_3:\rho_3+\frac{3}{4}\rho_4]{\rho_1:\rho_1+\rho_3}\left[\begin{array}{cccc} 1 & 0 & 1 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{array}\right]\\ \xrightarrow[]{\rho_1:\rho_1-\rho_3}\left[\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{array}\right]\\ \end{aligned} $$ :::success Nice work! ::: ##### Exercise 1(b) 求出 $\det(A)$。 <!-- eng start --> Find $\det(A)$. <!-- eng end --> ##### Exercise 1(b) -- answer here $\det(A)=1\cdot 4\cdot (-3)\cdot 2= -24.$ :::info What do the experiments try to tell you? (open answer) > We can know that after rref, we can find $\det(A)$ more easily . ::: :::success Good. - [x] No space before a comma, put a space after a comma. ::: ## Exercises ##### Exercise 2 對以下矩陣 $A$, 求出 $\det(A)$。 <!-- eng start --> For the following matrices $A$, find $\det(A)$. <!-- eng end --> ##### Exercise 2(a) $$ A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ \end{bmatrix}. $$ ##### Exercise 2(a) - answer here We have to turn the last row to the first row, so we times $-1$ three times. Because we swap the rows three times, then we can get the matrix after swapping. $$ A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ \end{bmatrix}\rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}. $$ Then we can calculate $\det(A)=-1\cdot -1\cdot -1\cdot 1\cdot 1\cdot 1\cdot 1= -1.$ :::warning The idea is correct. However, $$ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}\cdot(-1)\cdot(-1)\cdot(-1) = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix} $$ is not related to $A$. ::: ##### Exercise 2(b) $$ A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \end{bmatrix}. $$ ##### Exercise 2(b) - answer here First swap the third row to the first row and last row to the second row. So we have to times -1 four times, then we can get the matrix after swapping. $$ A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \end{bmatrix}\rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}. $$ Then we can calculate $\det(A)=-1\cdot -1\cdot -1\cdot -1\cdot 1\cdot 1\cdot 1\cdot 1 = 1.$ :::warning Same as 2(b). ::: ##### Exercise 2(c) $$ A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ \end{bmatrix} $$ ##### Exercise 2(c) - answer here First swap the third row to the first row and last row to the second row. So we have to times -1 two times, then we can get the matrix after swapping. $$ A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ \end{bmatrix}\rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}. $$ $\det(A)= (-1)^2\cdot 1\cdot 1\cdot 1\cdot 1=1$. :::warning Same as 2(b). ::: ##### Exercise 2(d) $$ A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ 4 & 0 & 0 & 0 \\ \end{bmatrix}. $$ ##### Exercise 2(d) - answer here $$ A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ 4 & 0 & 0 & 0 \\ \end{bmatrix}\rightarrow \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}. $$ By observing 2(c), we can know that $\det(A)=1\cdot 2\cdot 3\cdot 4 = 24.$ ##### Exercise 2(e) $$ A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ 3 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ \end{bmatrix}. $$ ##### Exercise 2(e) - answer here First swap the third row to the first row and last row to the second row. So we have to times -1 four times, then we can get the matrix after swapping. $$ A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ 3 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ \end{bmatrix}\rightarrow \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ \end{bmatrix}. $$ Then we can calculate $\det(A)$. $\det(A)=-1\cdot -1\cdot -1\cdot -1\cdot 3\cdot 4\cdot 1\cdot 2 = 24.$ :::warning Same as 2(b). ::: ##### Exercise 3 對以下矩陣 $A$, 求出 $\det(A)$。 <!-- eng start --> For the following matrices $A$, find $\det(A)$. <!-- eng end --> ##### Exercise 3(a) $$ A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}. $$ ##### Exercise 3(a) -- answer here Subtracting the other rows by first row to get, $$ A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 1 & 2 & 3 \end{bmatrix}, $$ and use second row to kill rows beneath it, $$ A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}, $$ $$ A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, $$ $$ A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}. $$ Since row subtraction doesn't change determinant, $\det(A)=1.$ :::success Good. ::: --- ##### Exercise 3(b) $$ A = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 2 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 2 & \cdots & n \end{bmatrix}. $$ **[由 :cloud: 提供]** ##### Exercise 3(b) -- answer here By applying the same way of **Exercise 3(a)**, we found that $\det(A)=1.$ ##### Exercise 4 對以下矩陣 $A$, 求出 $\det(A)$。 <!-- eng start --> For the following matrices $A$, find $\det(A)$. <!-- eng end --> ##### Exercise 4(a) $$ A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{bmatrix}. $$ ##### Exercise 4(a) - answer here Subtracting the other rows by first row to get, $$ A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 7 \\ 0 & 2 & 8 & 26 \\ 0 & 3 & 15 & 63 \end{bmatrix}, $$ and do the row operation by second row to obtain $$ A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 7 \\ 0 & 0 & 2 & 12 \\ 0 & 0 & 6 & 42 \end{bmatrix}. $$ Now we can do the matrix deflation to calculate the determinant of A. $\det(A)=1\cdot 1\cdot (2\cdot 42 - 12\cdot 6) = 12.$ :::success Good. ::: ##### Exercise 4(b) $$ A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1\\ 1 & 2 & 4 & 8 & 16 \\ 1 & 3 & 9 & 27 & 81 \\ 1 & 4 & 16 & 64 & 256 \\ 1 & 5 & 25 & 125 & 625 \end{bmatrix}. $$ ##### Exercise 4(b) - answer here We do the row operation to matrix A to get $$ A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1\\ 0 & 1 & 3 & 7 & 15 \\ 0 & 0 & 2 & 12 & 50 \\ 0 & 0 & 0 & 6 & 60 \\ 0 & 0 & 0 & 0 & 24 \end{bmatrix}, $$ and we do the matrix deflation to calculate the determinant of A. $\det(A)=1\cdot 1\cdot 2\cdot (6\cdot 24 - 60\cdot 0) = 288.$ :::success Good. ::: ##### Exercise 5 對以下矩陣 $A$, 求出 $\det(A)$。 提示:把所有列加到第一列。 <!-- eng start --> For the following matrices $A$, find $\det(A)$. Hint: Add each row to the first row. <!-- eng end --> ##### Exercise 5(a) $$ A = \begin{bmatrix} 4 & -1 & -1 & -1 \\ -1 & 4 & -1 & -1 \\ -1 & -1 & 4 & -1 \\ -1 & -1 & -1 & 4 \end{bmatrix}. $$ **[由 :cloud: 提供]** After adding each row to the first row, the matrix $A$ becomes $$ \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 4 & -1 & -1 \\ -1 & -1 & 4 & -1 \\ -1 & -1 & -1 & 4 \end{bmatrix}. $$ Next, we subtract the the first row from other rows, eliminating the remaining $(-1)$'s. Then we divide these rows by $5$ to make an upper triangular matrix as follows. $$ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix}, $$ $$ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, $$ Thus, $\det(A)=1\cdot 5\cdot 5\cdot 5=125.$ ##### Exercise 5(b) 令 $A$ 為一 $n\times n$ 矩陣 $$ \begin{bmatrix} n & -1 & \cdots & -1 \\ -1 & n & \ddots & \vdots \\ \vdots & \ddots & \ddots & -1 \\ -1 & \cdots & -1 & n \end{bmatrix}. $$ <!-- eng start --> Let $A$ be the $n\times n$ matrix $$ \begin{bmatrix} n & -1 & \cdots & -1 \\ -1 & n & \ddots & \vdots \\ \vdots & \ddots & \ddots & -1 \\ -1 & \cdots & -1 & n \end{bmatrix}. $$ <!-- eng end --> **[由 :cloud: 提供]** ##### Exercise 5(b) -- answer here By applying the same way of **Exercise 5(a)**, it will become something like $$ \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 0 & (n+1) & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & (n+1) \end{bmatrix}. $$ So $\det(A)=1\cdot (n+1)^{(n-1)}.$ ##### Exercise 6 利用 $\det$ 定義中的四條準則,說明以下性質。 <!-- eng start --> Use the four rules in the definition of the determinant to explain the following properties. <!-- eng end --> ##### Exercise 6(a) 若 $A$ 中有一列為零向量,說明 $\det(A) = 0$。 <!-- eng start --> If $A$ has a zero row, then $\det(A) = 0$. <!-- eng end --> **[由 :cloud: 提供]** ##### Exercise 6(a) -- answer here Suppose the $i$th row of $A$ are zero, after applied row operation : $$ A\xrightarrow{\rho_i:\times k}B. $$ By the definition, $\det(B)=k\cdot \det(A),$ and since the $i$th row are all $0$ times any number is still $0$, so actually $B=A.$ We can know from $B=A$ that $\det(B)=\det(A),$ to achieve this equality (with any $k\neq 1$), the only possibility is $\det(A)=0.$ ##### Exercise 6(b) 若 $A$ 中有兩列向量相等,說明 $\det(A) = 0$。 <!-- eng start --> If $A$ has two rows in common, then $\det(A) = 0$. <!-- eng end --> **[由 :cloud: 提供]** ##### Exercise 6(b) -- answer here Suppose $A$ has two rows in common, we can eliminate one of them by subtracting each other. There will be a zero row in $A$, applying the same way in **Exercise 6(a)**, we can find $\det(A) = 0.$ ##### Exercise 6(c) 若 $A$ 中的列向量集合線性相依,說明 $\det(A) = 0$。 <!-- eng start --> If some rows of $A$ form a linearly dependent set, then $\det(A) = 0$. <!-- eng end --> **[由 :cloud: 提供]** ##### Exercise 6(c) -- answer here Since some rows of $A$ form a linearly dependent set, there are coefficients $c_1,\ldots, c_n$ that is not all zero such that $$ c_1\br_1 + \cdots + c_n\br_n = \bzero, $$ where $\br_1,\ldots,\br_n$ are the rows of $A$. Without loss of generality, we may assume $c_1 \neq 0$. $$ \br_1 = -\frac{1}{c_1}(c_2\br_2 + \cdots + c_n\br_n). $$ Consequently, we may apply a sequence of row operations $\rho_1: +\frac{c_2}{c_1}\br_2$, $\ldots$, $\rho_1: +\frac{c_n}{c_1}\br_n$ to generate a zero row. Therefore, $\det(A)=0.$ :::info collaboration: 2 3 problems: 3 * 2a~c extra problems: 2.5 * 2d~e, 3a, 4a~b moderator: 1 qc: 1 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully