Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 最小多項式 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}}$ ```python from lingeo import random_int_list, random_good_matrix from linspace import mtov ``` ## Main idea Let $A$ be an $n\times n$ matrix. Define the **minimal polynomial** of $A$ as the nonzero polynomial $m_A(x)$ with the smallest degree such that - the leading coefficient of $m_A(x)$ is $1$, and - $m_A(A) = O$. By the Cayley–Hamilton Theorem, the minimal polynomial exists and has degree at most $n$. The minimal polynomial of $A$ has the following properties: - If $p(x)$ is a polynomial with $p(A) = O$, then $m_A(x) \mid p(x)$. - The minimal polynomial of $A$ is unique. - $m_A(x) \mid p_A(x)$. Suppose $\bv$ is a vector in $\mathbb{R}^n$. Define the **minimal polynomial** of $A$ at $\bv$ as the nonzero polynomial $m_{A,\bv}(x)$ with the smallest degree such that - the leading coefficient of $m_{A,\bv}(x)$ is $1$, and - $m_{A,v}(A)\bv = \bzero$. The minimal polynomial of $A$ at $\bv$ has the following properties: - If $p(x)$ is a polynomial with $p(A)\bv = \bzero$, then $m_{A,\bv}(x) \mid p(x)$. - The minimal polynomial of $A$ is unique. - $m_A(x) \mid m_A(x)$. - If $\lambda$ is an eigenvalue of $A$, then $(x - \lambda)$ is a factor of $m_A(x)$. ##### Theorem (Minimal polynomial and diagonalizability) Let $A$ be an $n\times n$ real matrix. Then $A$ is diagonalizable (over $\mathbb{C}$) if and only if $m_A(x)$ has no repeated roots. Let $A$ be an $n\times n$ matrix. One may use standard techniques on a vector space to find the minimal polynomial. Let $\beta$ be the standard basis of the space of $n\times n$ matrices; see 210. 1. Calculate the $n^2\times n$ matrix $$ \Psi = \begin{bmatrix} | & | & ~ & | \\ [I]_\beta & [A]_\beta & \cdots & [A^{n-1}]_\beta \\ | & | & ~ & | \\ \end{bmatrix}. $$ 2. Use the row operation to find the smallest $d$ such that $$ A^d \in \vspan\{I, A, \ldots, A^{d-1}\}. $$ (Indeed, $d$ corresponds to the left-most free variable.) 3. If $$ A_d = c_1A_{d-1} + \cdots + c_dI, $$ then $$ m_A(x) = x^d - c_1x^{d-1} - c_2x^{d-2} - \cdots - c_d $$ is the minimal polynomial of $A$. The minimal polynomial of $A$ at $\bv$ can be found in a similar mannar but focusing on the $n\times n$ matrix $$ \Psi = \begin{bmatrix} | & | & ~ & | \\ I\bv & A\bv & \cdots & A^{n-1}\bv \\ | & | & ~ & | \\ \end{bmatrix} $$ instead. ## Side stories - Jordan block - nilpotent matrix - idempotent ## Experiments ##### Exercise 1 執行以下程式碼。 令 $$ \Psi = \begin{bmatrix} | & | & ~ & | \\ [I]_\beta & [A]_\beta & \cdots & [A^{n-1}]_\beta \\ | & | & ~ & | \\ \end{bmatrix}. $$ 已知 $R$ 為 $\Psi$ 的最簡階梯型。 ```python ### code set_random_seed(0) print_ans = False n = 3 spec = random_int_list(n -1) spec.append(spec[-1]) Q = random_good_matrix(n,n,n,2) D = diagonal_matrix(spec) A = Q * D * Q.inverse() Psi = matrix([mtov(A^i) for i in range(n)]).transpose() R = Psi.rref() print("n =", n) pretty_print(LatexExpr("A ="), A) pretty_print(LatexExpr("R ="), R) if print_ans: pretty_print(LatexExpr(r"\Psi ="), Psi) print("minimal polynomial:", A.minpoly()) ``` :::warning - [x] 可以的話記錄一下 `seed = ?` - [x] $R$ 的第二列應該是 $0, 1, -1$ ::: $A = \begin{bmatrix} -74 & -70 & 28\\ 77 & 73 & -28 \\ 0 & 0 & 3 \\ \end{bmatrix}$ $R = \begin{bmatrix} 1 & 0 & 12\\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix}$ (seed=0) ##### Exercise 1(a) 求 $\Psi$。 \ \ 由於 $A^0 = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}, A^1 = \begin{bmatrix} -74 & -70 & 28\\ 77 & 73 & -28 \\ 0 & 0 & 3 \\ \end{bmatrix}, A^2 = \begin{bmatrix} 86 & 70 & -28\\ -77 & -61 & 28 \\ 0 & 0 & 9 \\ \end{bmatrix}$. 所以 $\Psi= \begin{bmatrix} 1 & -74 & 86\\ 0 & -70 & 70 \\ 0 & 28 & -28 \\ 0 & 77 & -77 \\ 1 & 73 & -61 \\ 0 & -28 & 28 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 3 & 9 \\ \end{bmatrix}$。 ##### Exercise 1(b) 計算 $m_A(x)$。 \ \ 利用 $R$ 可以推出 $12A^0 - A^1 - A^2 = O$ ,所以 $m_A(x) = x^2 + x - 12$. ## Exercises ##### Exercise 2 以下討論對角矩陣的最小多項式。 ##### Exercise 2(a) 令 $$ A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}. $$ 求 $m_A(x)$。 :::warning - [x] $P_A(x)$ --> $p_A(x)$ - [x] 由 Cayley-Hamilton Theorem 得知 --> 經直接計算可知(都對角矩陣了,沒必要用大定理) - [x] $deg$ --> $\deg$ ::: 由於 $A$ 已對角化,所以 $p_A(x) = (1 - x)(2 - x)(3 - x)$ , 經直接計算可知 $(I - A)(2I - A)(3I - A) = O$ 。 另外因為 $A^0 = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}, A^1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}, A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{bmatrix}$ , 且 $(1,1,1), (1,2,3) , (1,4,9)$ 顯然獨立,因此 $\deg(m_A(x)) > 2$ 。 所以 $m_A(x) = -(1 - x)(2 - x)(3 - x) = x^3 - 6x^2 + 11x - 6$. :::success Nice work. ::: ##### Exercise 2(b) 令 $$ A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}. $$ 求 $m_A(x)$。 :::warning - [x] $P_A(x)$ --> $p_A(x)$ ::: 同 2(a) , $p_A(x) = (2 - x)^2(3 - x)$, $(2I - A)^2(3I - A) = O$ , 觀察可發現 $(A - 2I)(A - 3I) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = O$ , 又 $(1,1,1), (2,2,3)$ 顯然獨立,因此 $\deg(m_A(x)) > 1$ ,所以 $m_A(x) = (2 - x)(3 - x) = x^2 - 5x + 6.$ ##### Exercise 2(c) 若 $r_1,\ldots,r_n$ 為 $n$ 個實數, 而扣掉重覆元素後,其相異實數為 $\lambda_1,\ldots,\lambda_q$。 令 $A$ 為一對角矩陣,其對角線上元素為 $r_1,\ldots,r_n$。 求 $m_A(x)$。 :::warning - [x] 最高次數最低 --> 次方數最低(一個多項式的次方數本來就是最高次數) - [x] $P_A(x)$ --> $p_A(x)$ ::: 因為 $p_A(x) = (-1)^n(x - r_1)(x - r_2) \ldots (x - r_n)$ 且 $m_A(x) \mid p_A(x)$ ,又要使第 $k$ 行 $k$ 列為零需要有 $(x - r_k)$ 之因式且我們需要使次方數最低($k \in [1,n], k \in \mathbb{Z }$),因此要取最少因式,也就是不取重複的。 所以 $m_A(x) = (x - \lambda_1)(x - \lambda_2) \ldots (x - \lambda_q).$ ##### Exercise 3 以下討論喬丹標準型的最小多項式。 ##### Exercise 3(a) 令 $$ A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}. $$ 求 $m_A(x)$。 \ \ 由 3(c) 可知, $m_A(x) = (x-2)^3$. ##### Exercise 3(b) 令 $$ A = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}. $$ 求 $m_A(x)$。 \ \ 由 3(d) 可知, $m_A(x) = (x-2)^3(x-3)^2$. ##### Exercise 3(c) 定義 $J_{\lambda,m}$ 為一 $m\times m$ 矩陣, 其對角線上的元素皆為 $\lambda$, 而在每個 $\lambda$ 的上面一項放一個 $1$(除了第一行), 其餘元素為 $0$。 求 $J_{\lambda,m}$ 的最小多項式。 :::warning - [x] $P_A(x)$ --> $p_A(x)$ - [x] $det$ --> $\det$ - [x] $\forall n \in \mathbb{Z}, 0 \leq n \leq m-1, (J_{\lambda,m} - \lambda I)^n \neq O$ --> 對於所有介在 ... 之間的整數 $n$ ...(正式寫作少用邏輯符號 $\forall$) ::: $p_{J_{\lambda,m}}(x) = \det(J_{\lambda,m} - xI) = (\lambda - x)^m$. 又 $m_{J_{\lambda,m}}(x) \mid p_{J_{\lambda,m}}(x)$, 所以 $m_{J_{\lambda,m}}(x) = (x - \lambda)^u$ $(u \leq m, u \in \mathbb{Z})$. 根據定義, $(J_{\lambda,m} - \lambda I)^u = O$. 觀察 $(J_{\lambda,m} - \lambda I)^2, (J_{\lambda,m} - \lambda I)^3, (J_{\lambda,m} - \lambda I)^4$ 可以發現每乘一次 $(J_{\lambda,m} - \lambda I)$ 都會使每一個 $1$ 往上一格(除了第一行的會消失),所以,對於所有介在 $0$ 到 $m-1$ 之間的整數 $n$,都有 $(J_{\lambda,m} - \lambda I)^n \neq O$. 因此 $m_{J_{\lambda,m}}(x) = (x - \lambda)^m$. ##### Exercise 3(d) 令矩陣 $A$ 是一個區塊對角矩陣, 其對角區塊皆由一些 $J_{\lambda,m}$ 組成。 說明 $A$ 的最小多項式為 $\prod_\lambda (x - \lambda)^h$, 其中 $\lambda$ 跑過對角線上所有的相異 $\lambda$, 而對每個 $\lambda$ 而言,$h$ 是所有 $J_{\lambda,m}$ 中最大的區塊的大小。 \ \ 先證明 **$m_{A \oplus B} = m_A(x)$ 與 $m_B(x)$ 之最小公倍式。** 當 $A,B$ 為任意大小方陣,定義 $A \oplus B = \begin{bmatrix} A & O \\ O & B \end{bmatrix}$. 可以發現 $(A \oplus B)^n = A^n \oplus B^n$ $(n \in \mathbb{Z})$ 也就可以推出 $f(A \oplus B) = f(A) \oplus f(B)$ ($f$ 為一多項式函數). 因此 $m_{A \oplus B} = m_A(x)$ 與 $m_B(x)$ 之最小公倍式。 \ 回到原題可以將 $A$ 當成是由一些 $J_{\lambda,m}$ 用 $\oplus$ 串接起來的矩陣,再由前面證明結果即可得知 $A$ 的最小多項式為 $\prod_\lambda (x - \lambda)^h$. :::success Well done! ::: ##### Exercise 4 令 $$ A = \begin{bmatrix} 4 & 6 & 2 \\ -4 & -10 & -4 \\ 11 & 33 & 13 \end{bmatrix}. $$ ##### Exercise 4(a) 計算 $A^0, A^1, A^2$, 並求出 $$ \Psi = \begin{bmatrix} | & | & | \\ [I]_\beta & [A]_\beta & [A^{2}]_\beta \\ | & | & | \\ \end{bmatrix}. $$ $Ans:$ 經計算得出 $$ A^0 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}. A^1 = \begin{bmatrix} 4 & 6 & 2 \\ -4 & -10 & -4 \\ 11 & 33 & 13 \end{bmatrix}. A^2 = \begin{bmatrix} 14 & 30 & 10 \\ -20 & -56 & -20 \\ 55 & 165 & 59 \end{bmatrix}. $$ 以及 $$ \Psi = \begin{bmatrix} 1 & 4 & 14 \\ 0 & 6 & 30 \\ 0 & 2 & 10 \\ 0 & -4 & -20 \\ 1 & -10 & -56 \\ 0 & -4 & -20 \\ 0 & 11 & 55 \\ 0 & 33 & 165 \\ 1 & 13 & 59 \end{bmatrix}. $$ ##### Exercise 4(b) 求 $m_A(x)$。 :::warning - [x] 最小多項式對了,但是 $A^3 =...$ 那部份應該是 $A^2 = ...$ ::: $Ans:$ 使用列運算求最小的 $d$ 使得 $A^d \in \vspan\{I, A^1, \ldots, A^{d-1}\}.$ 當 $d=2$ 時,經運算得出$A^2 = 5A^1 + (-6)A^0 ,$ 所以 $m_A(x) = x^2 - 5x + 6.$ ##### Exercise 4(c) 令 $\bv = (2, -8, 22)$。 計算 $A^0\bv, A^1\bv, A^2\bv$, 並求出 $$ \Psi = \begin{bmatrix} | & | & | \\ I\bv & A\bv & A^{2}\bv \\ | & | & | \\ \end{bmatrix}. $$ $Ans:$ 經計算得出 $$ A^0\bv = \begin{bmatrix} 2 \\ -8 \\ 22 \end{bmatrix}. A^1\bv = \begin{bmatrix} 4 \\ -16 \\ 44 \end{bmatrix}. A^2\bv = \begin{bmatrix} 8 \\ -32 \\ 88 \end{bmatrix}. $$ $$ \Psi = \begin{bmatrix} 2 & 4 & 8 \\ -8 & -16 & -32 \\ 22 & 44 & 88 \end{bmatrix}. $$ ##### Exercise 4(d) 求 $m_{A,\bv}(x)$。 $Ans:$ 有最小 $d$ 使得 $A^d\bv \in \vspan\{I\bv, A^1\bv, \ldots, A^{d-1}\bv\}.$ 當 $d=1$ 時,經運算得出 $$ A^1\bv = \begin{bmatrix} 4 \\ -16 \\ 44 \end{bmatrix}. $$ 且 $A^1\bv = 2A^0\bv,$ 所以 $m_{A,\bv}(x) = x-2.$ ##### Exercise 5 令 $A$ 為一 $n\times n$ 矩陣。 說明若 $A^d \in \vspan\{I, A, \ldots, A^{d-1}\}$ 則對任何 $k\geq d$ 都有 $A^k \in \vspan\{I, A, \ldots, A^{d-1}\}$。 因此若 $A$ 的最小多項式為 $d$ 次時, $\{I, A, \ldots, A^{d-1}\}$ 為 $\vspan\{I, A, A^2, \ldots \}$ 的一組基底。 $Ans:$ 若 $A^d \in \vspan\{I, A, \ldots, A^{d-1}\}$, 則 $A^d$ 為由 $I, A, \ldots, A^{d-1}$ 所組成的 $n\times n$ 矩陣, 意即 $A^d = c_1A^{d-1} + \cdots + c_dI$, 我們利用數學歸納法說明所有 $k\geq d$ 都有 $A^k \in \vspan\{I, A, \ldots, A^{d-1}\}$, $k=d$ 時, $A^k = c_1A^{d-1} + \cdots + c_dI$,此時 $A^k \in \vspan\{I, A, \ldots, A^{d-1}\}$ 成立。 假設 $k=k'$ 時,$A^k \in \vspan\{I, A, \ldots, A^{d-1}\}$ 成立, 則 $k=k'+1$ 時,由於 $A^{k'} \in \vspan\{I, A, \ldots, A^{d-1}\}$,所以假設 $A^{k'} = e_1A^{d-1} + \cdots + e_dI$ , 則 $$ \begin{aligned} A^{k'+1} &= A^{k'}A \\ &= e_1A^d + \cdots + e_dA \\ &= e_1(c_1A^{d-1} + \cdots + c_dI) + e_2A^{d-1} + \cdots + e_dA \in \vspan\{I, A, \ldots, A^{d-1}\} \end{aligned} $$ 因此若 $A$ 的最小多項式為 $d$ 次時, $\{I, A, \ldots, A^{d-1}\}$ 為 $\vspan\{I, A, A^2, \ldots \}$ 的一組基底。 :::success Nice. ::: ##### Exercise 6 令 $A$ 為一 $n\times n$ 矩陣。 以下探討 $m_A(x)$ 的一些基本性質。 ##### Exercise 6(a) 若 $p(x)$ 為一多項式且 $p(A) = O$, 說明對於任何多項式 $a(x)$ 和 $b(x)$, 把多項式 $a(x)p(x) + b(x)m_A(x)$ 代入 $A$ 也會是 $O$。 因此把 $g(x) = \gcd(p(x), m_A(x))$ 代入 $A$ 也是 $O$。 由於 $m_A(x)$ 已經是次方數最小的,$g(x) = m_A(x)$,且 $m_A(x) \mid p(x)$。 提示:參考 312。 :::warning - [x] 第一行可以刪掉;這題的 $p(x)$ 不見得是特徵多項式,但題目已經說 $p(A) = O$ 了 ::: $Ans:$ 根據最小多項式的定義,我們可以得到 $m_A(A) = O$, 因此 $a(A)p(A) + b(A)m_A(A) = O$。 令 $g(x) = \gcd(p(x), m_A(x))$,則存在 $a(x)$ 和 $b(x)$ 使得 $g(x) = a(x)p(x) + b(x)m_A(x)$。 因此 $g(A) = O$, 由於 $m_A(x)$ 已經是次方數最小的,$g(x) = m_A(x)$,且 $m_A(x) \mid p(x)$。 ##### Exercise 6(b) 說明每個矩陣的最小多項式是唯一的。 $Ans:$ 若存在兩個相異的的最小多項式 $$ m_{A,1}(x) , m_{A,2}(x) , $$ 因為最小多項式的首項係數等於$1$,且兩個最小多項式互相整除,所以這兩個最小多項式相等(矛盾),故最小多項式是唯一的。 ##### Exercise 6(c) 說明 $m_A(x) \mid p_A(x)$。 :::warning - [x] 這題反而走錯路了喔,$r(A) = O$ 不見得表示 $r(x) = 0$;實際上這題靠 6(a) 就直接出來了 ::: $Ans:$ 根據 Cayley–Hamilton 定理,$p_A(A) = O$, 再根據6(a)的結論,我們可以得到$m_{A,\bv} \mid p_A(A)。$ ##### Exercise 7 令 $A$ 為一 $n\times n$ 矩陣、 而 $\bv$ 為一 $\mathbb{R}^n$ 中的向量。 以下探討 $m_{A,\bv}(x)$ 的一些基本性質。 ##### Exercise 7(a) 若 $p(x)$ 為一多項式且 $p(A)\bv = \bzero$, 說明對於任何多項式 $a(x)$ 和 $b(x)$, 把多項式 $a(x)p(x) + b(x)m_{A,\bv}(x)$ 代入 $A$ 後再乘上 $\bv$ 也會是 $\bzero$。 因此把 $g(x) = \gcd(p(x), m_{A,\bv}(x))$ 代入 $A$ 後再乘上 $\bv$ 也是 $\bzero$。 由於 $m_{A,\bv}(x)$ 已經是次方數最小的,$g(x) = m_{A,\bv}(x)$,且 $m_{A,\bv}(x) \mid p(x)$。 $Ans:$ 因為 $p(A)\bv = 0$, 再根據定義,我們可以得到 $m_{A,\bv}(A)\bv = 0$, 因此 $a(A)p(A)\bv + b(A)m_{A,\bv}(A)\bv = 0$。 令 $g(x) = \gcd(p(x), m_{A,\bv}(x))$, 則存在 $a(x)$ 和 $b(x)$ 使得 $g(x)\bv=a(x)p(x)\bv + b(x)m_{A,\bv}(x)\bv$ 。 因此 $g(A)\bv=0$, 由於 $m_{A,\bv}(x)$ 已經是次方數最小的, $g(x) = m_{A,\bv}(x)$,且 $m_{A,\bv}(x) \mid p(x)。$ ##### Exercise 7(b) 說明每個矩陣在任一向量上的最小多項式是唯一的。 :::warning - [x] 向量粗體 ::: **Ans:** 若存在兩個相異的最小多項式 $$ m_{A,\bv,1}(x) , m_{A,\bv,2}(x) , $$ 因為最小多項式的首項係數等於$1$,且兩個最小多項式互相整除,所以這兩個最小多項式相等(矛盾),故最小多項式是唯一的。 ##### Exercise 7(c) 說明 $m_{A,\bv}(x) \mid m_A(x)$。 :::warning - [x] 參考 6(c) ::: $Ans:$ 根據定義,$m_A(A)=O$, 再根據7(a)的結論,我們可以得到$m_{A,\bv} \mid m_A(A)。$ ##### Exercise 7(d) 說明任何 $p_A(x)$ 的根也是 $m_A(x)$ 的根。 $Ans:$ 若 $\lambda$ 是 $p_A(x)$ 的一個根,就找得到一個非零向量 $\bv$ 使得 $A\bv= \lambda\bv$, 利用性質$A^d\bv= \lambda^d\bv,$ $m_A(A)\bv = (s_0(A)^n + s_1(A)^{n-1} + \cdots + s_nI)\bv = (s_0(\lambda)^n + s_1(\lambda)^{n-1} + \cdots + s_nI)\bv = m_A(\lambda)\bv,$ 但因為 $m_A(A) = O$ ,所以 $m_A(\lambda) = O$。 ##### Exercise 8 依照以下步驟證明以下敘述等價: 1. $A$ 可以在複數中對角化。 2. $A$ 的最小多項式沒有重根。 (由本節第 2 題已看出條件 1 會推得條件 2,所以以下著重在另一個方向的推導。) ##### Exercise 8(a) 令 $B_1,\ldots, B_q$ 為 $n\times n$ 矩陣。 證明若 $B_1\cdots B_q = O$,則 $\nul(B_1) + \cdots + \nul(B_q) \geq n$。 :::warning 這題掛懸賞,以下是提示: 考慮函數 $$ \mathbb{R}^n \xrightarrow{f_q} \Col(B_q) \xrightarrow{f_{q-1}} \Col(B_{q-1}B_q) \xrightarrow{f_{q-2}}\cdots \xrightarrow{f_{2}} \Col(B_2\cdots B_q) \xrightarrow{f_1} \Col(B_1\cdots B_q) = \{\bzero\} $$ 其中 $f_k(\bv) = B_k\bv$。 1. 利用維度定理說明 $\nul(f_k) = \dim\Col(B_{k-1}\cdots B_q) - \dim\Col(B_k\cdots B_q)$ 2. 說明 $\nul(B_k) \geq \nul(f_k)$ ::: ##### Exercise 8(b) 令 $\lambda_1,\ldots,\lambda_q$ 為 $A$ 的相異特徵值。 若 $A$ 的最小多項式沒有重根, 說明 $\gm(\lambda_1) + \cdots + \gm(\lambda_q) \geq n$。 $Ans:$ $A$ 的最小多項式可寫成 $m(x) = (x - \lambda_1)\dotsb(x - \lambda_q)$, 已知 $m(A) = O$,故 $(A - \lambda_1I)\dotsb(A - \lambda_qI) = 0$。 由於 $\gm(\lambda) = \nul(A - \lambda I)$ 以及上題可知 $\gm(\lambda_1) + \cdots + \gm(\lambda_q) \geq n$。 ##### Exercise 8(c) 證明若 $A$ 的最小多項式沒有重根,則 $A$ 可對角化。 :::warning 懸賞 ::: ##### Exercise 9 以下探討最小多項式的應用。 ##### Exercise 9(a) 若一個 $n\times n$ 矩陣 $A$ 滿足 $A^2 = A$,則稱之為**冪等矩陣(idempotent matrix)** 。 說明任何冪等矩陣一定可以對角化,並找出所有的相異特徵值。 :::warning - [x] 小多項式為 $x(x - 1)= 0$ --> 小多項式為 $x(x - 1)$ ::: $Ans:$ 假設 $\lambda$ 為 $A$ 之特徵根,則存在 $\bx$ 不為零向量使得 $A\bx = \lambda \bx$ 。 那麼,$\lambda \bx = A\bx = A^2\bx = A(A)\bx = A(\lambda \bx) = \lambda A \bx = \lambda^2 \bx$,$(\lambda^2 - \lambda)\bx = 0$ 因為 $\bx$ 不為零,所以 $\lambda^2 - \lambda = \lambda(\lambda - 1) = 0$,因此 $\lambda = 0$ 或是 $1$。 由題目可推論其最小多項式為 $x(x - 1)$,再由上面的證明可知,因為沒有重根,所以可以對角化。 ##### Exercise 9(b) 若一個 $n\times n$ 矩陣 $A$ 找得到一個整數 $k \geq 0$ 使得 $A^k = O$,則稱之為**冪零矩陣(nilpotent matrix)** 。 找出一個冪等矩陣所有的相異特徵值。 $Ans:$ 假設 $\lambda$ 是 $A$ 的特徵根,則存在 $\bx$ 不為零向量使得 $A\bx = \lambda\bx$。 那麼,$O = A^k\bx = \lambda^k\bx$,所以 $\lambda^k = 0$,$\lambda = 0$。 :::info 目前分數 = 6.5 × 檢討 = 7 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully