Anton Nekrutenko
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    --- tags: BMMB554-23 --- [![](https://imgs.xkcd.com/comics/sigil_cycle.png)](https://xkcd.com/1306) # Lecture 5: Python 1 - Variables, expressions, statements, fuctions ---- ## Quiz The class will begin with a very short quiz. You will have results back to you today. ## Prep 1. Start [JupyterLab](https://mybinder.org/v2/gh/jupyterlab/jupyterlab-demo/try.jupyter.org?urlpath=lab) 2. Within JupyterLab start a new Python3 notebook 3. Open [this page](http://cs1110.cs.cornell.edu/tutor/#mode=edit) in a new browser tab :::info Preclass prep: Chapters [1](https://greenteapress.com/thinkpython2/html/thinkpython2002.html), [2](https://greenteapress.com/thinkpython2/html/thinkpython2003.html), [3](https://greenteapress.com/thinkpython2/html/thinkpython2004.html) from "Think Python" ::: ## [Indentation](https://peps.python.org/pep-0008/#indentation) is everything! :::warning Python is an indented language: code blocks are defined using indentation with [spaces](https://peps.python.org/pep-0008/#tabs-or-spaces)! ::: In Python, indentation is used to indicate the scope of control structures such as `for` loops, `if` statements, and function and class definitions. The amount of indentation is not fixed, but it must be consistent within a block of code. The recommended amount of indentation is 4 spaces, although some developers prefer to use 2 spaces. Indenting is important in Python because it is used to indicate the level of nesting and structure of the code, which makes it easier to read and understand. Additionally, indentation is also used to indicate which lines of code are executed together as a block. ## The story line In this lecture we will re-implement our Sanger sequencing simulator from the previous lecture and generate realistic gel images. ## Generate a random sequence First we import a module called [`random`](https://docs.python.org/3/library/random.html) which contains a number of functions for generating and working with random numbers ```python= import random ``` Next, we will write a simple loop that would generate a sequence of pre-set length: ```python= seq = '' for _ in range(100): seq += random.choice('ATCG') ``` ```python= seq ``` 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGACCGCGCCGCGTATGTAATTCATGGGTGTCGTCGCGCCCTCACAACTGCAAGGTCGTGGCACC' ## Simulate one polymerase molecule The code below iterates through each element of a sequence `seq` (assumed to be a string containing nucleotides) and it checks if the current nucleotide is equal to 'A'. If it is, it generates a random number between 0 and 1 using the `random.random()` function. It then checks if the random number is greater than 0.5. If it is, the code does nothing and proceeds to the next iteration. If the random number is less than or equal to 0.5, the code adds the lowercase version of the nucleotide ('a') to a string called `synthesized_strand` and then breaks out of the loop. In every iteration of the loop, regardless of whether the nucleotide is 'A' or not, the code then adds the current nucleotide to the `synthesized_strand` string. This means that when the current nucleotide is 'A', then the generated random number will decide whether the code will add the nucleotide 'A' or 'a' to the `synthesized_strand`, and it will break out of the loop after adding the nucleotide to the `synthesized_strand`. To get a good idea of what is going on let's visualize the code execution in ```python= synthesized_strand = '' for nucleotide in seq: if nucleotide == 'A': d_or_dd = random.random() if d_or_dd > 0.5: None else: synthesized_strand += 'a' break synthesized_strand += nucleotide ``` This can be simplified by first removing `d_or_dd` variable: ```python= synthesized_strand = '' for nucleotide in seq: if nucleotide == 'A': if random.random() > 0.5: None else: synthesized_strand += 'a' break synthesized_strand += nucleotide print(synthesized_strand) ``` CTTGCGGCTATa and removing unnecessary group of `if ... else` statements: ```python= synthesized_strand = '' for nucleotide in seq: if nucleotide == 'A' and random.random() > 0.5: synthesized_strand += 'a' break synthesized_strand += nucleotide print(synthesized_strand) ``` CTTGCGGCTATAGGAATa finally let's make `synthesized_strand += 'a'` a bit more generic: ```python= synthesized_strand = '' for nucleotide in seq: if nucleotide == 'A' and random.random() > 0.5: synthesized_strand += nucleotide.lower() break synthesized_strand += nucleotide print(synthesized_strand) ``` CTTGCGGCTATAGGa ## Simulating multiple molecules To simulate 10 polymerase molecules we simply wrap the code from above into a `for` loop: ```python= for _ in range(10): synthesized_strand = '' for nucleotide in seq: if nucleotide == 'A' and random.random() > 0.5: synthesized_strand += nucleotide.lower() break synthesized_strand += nucleotide print(synthesized_strand) ``` CTTGCGGCTa CTTGCGGCTa CTTGCGGCTa CTTGCGGCTa CTTGCGGCTa CTTGCGGCTa CTTGCGGCTATa CTTGCGGCTATAGGa CTTGCGGCTa CTTGCGGCTa One problem with this code is that does not actually save the newly synthesized strand: it simply prints it. To fix this we will create a [list](https://greenteapress.com/thinkpython2/html/thinkpython2011.html) (or an array) called `new_strands` and initialize it by assigning an empty array to it: ```python= new_strands = [] for _ in range(10): synthesized_strand = '' for nucleotide in seq: if nucleotide == 'A' and random.random() > 0.5: synthesized_strand += nucleotide.lower() break synthesized_strand += nucleotide new_strands.append(synthesized_strand) ``` ```python= new_strands ``` ['CTTGCGGCTa', 'CTTGCGGCTa', 'CTTGCGGCTATAGGAATAa', 'CTTGCGGCTATAGGAATa', 'CTTGCGGCTATa', 'CTTGCGGCTATAGGa', 'CTTGCGGCTATAGGa', 'CTTGCGGCTATa', 'CTTGCGGCTATAGGa', 'CTTGCGGCTa'] ## Simulating multiple molecules and all nucleotides And to repeat this for the remaining three nucleotides we will do the following crazy thing: ```python= new_strands = [] for _ in range(10): synthesized_strand = '' for nucleotide in seq: if nucleotide == 'A' and random.random() > 0.5: synthesized_strand += nucleotide.lower() break synthesized_strand += nucleotide new_strands.append(synthesized_strand) for _ in range(10): synthesized_strand = '' for nucleotide in seq: if nucleotide == 'C' and random.random() > 0.5: synthesized_strand += nucleotide.lower() break synthesized_strand += nucleotide new_strands.append(synthesized_strand) for _ in range(10): synthesized_strand = '' for nucleotide in seq: if nucleotide == 'G' and random.random() > 0.5: synthesized_strand += nucleotide.lower() break synthesized_strand += nucleotide new_strands.append(synthesized_strand) for _ in range(10): synthesized_strand = '' for nucleotide in seq: if nucleotide == 'T' and random.random() > 0.5: synthesized_strand += nucleotide.lower() break synthesized_strand += nucleotide new_strands.append(synthesized_strand) ``` ```python= len(new_strands) ``` 40 Repeating the same code four times is just plain stupid so instead we will write a function called `polymerase`. Here we need to worry about the scope of variables. The scope of a variable refers to the regions of the code where the variable can be accessed or modified. Variables that are defined within a certain block of code (such as a function or a loop) are said to have a *local* scope, meaning that they can only be accessed within that block of code. Variables that are defined outside of any block of code are said to have a *global* scope, meaning that they can be accessed from anywhere in the code. In most programming languages, a variable defined within a function has a local scope, and it can only be accessed within that function. If a variable with the same name is defined outside the function, it will have a global scope and can be accessed from anywhere in the code. However, if a variable with the same name is defined within the function, it will take precedence over the global variable and will be used within the function. There are also some languages that have block scope, where a variable defined within a block (such as an if statement or a for loop) can only be accessed within that block and not outside of it. In Python, variables defined in the main module have global scope and can be accessed from any function or module. Variables defined within a function have local scope, and they can only be accessed within that function. Variables defined within a loop or a block, can be accessed only within the scope of the loop or block. ```python= def ddN(number_of_iterations, template, base, ddN_ratio): new_strands = [] for _ in range(number_of_iterations): synthesized_strand = '' for nucleotide in template: if nucleotide == base and random.random() > ddN_ratio: synthesized_strand += nucleotide.lower() break synthesized_strand += nucleotide new_strands.append(synthesized_strand) return(new_strands) ``` ```python= ddN(10,seq,'A',0.5) ``` ['CTTGCGGCTATAGGa', 'CTTGCGGCTATa', 'CTTGCGGCTATa', 'CTTGCGGCTATAGGAATa', 'CTTGCGGCTa', 'CTTGCGGCTa', 'CTTGCGGCTa', 'CTTGCGGCTATa', 'CTTGCGGCTATAGGa', 'CTTGCGGCTATa'] To execute this function on all four types of ddNTPs with need to wrap it in a `for` loop iterating over the four possibilities: ```python= for nt in 'ATCG': ddN(10,seq,nt,0.5) ``` ## A bit about [lists](https://greenteapress.com/thinkpython2/html/thinkpython2011.html) To store the sequences being generated in the previous loop we will create and initialize a list called `seq_run`: ```python= seq_run = [] for nt in 'ATCG': seq_run.append(ddN(10,seq,nt,0.5)) ``` you will see that the seq run is a two-dimensional list: ```python= seq_run ``` [['CTTGCGGCTa', 'CTTGCGGCTATAGGa', 'CTTGCGGCTa', 'CTTGCGGCTATa', 'CTTGCGGCTATAGGa', 'CTTGCGGCTATa', 'CTTGCGGCTa', 'CTTGCGGCTATAGGAATAa', 'CTTGCGGCTa', 'CTTGCGGCTATa'], ['CTTGCGGCt', 'Ct', 'Ct', 'Ct', 'Ct', 'CTt', 'Ct', 'Ct', 'CTTGCGGCt', 'Ct'], ['CTTGc', 'c', 'c', 'c', 'c', 'CTTGCGGCTATAGGAATAAAAGGCTTTGc', 'c', 'CTTGCGGCTATAGGAATAAAAGGc', 'c', 'CTTGc'], ['CTTg', 'CTTGCg', 'CTTg', 'CTTg', 'CTTGCg', 'CTTGCGGCTATAGGAATAAAAg', 'CTTGCGGCTATAGGAATAAAAg', 'CTTg', 'CTTg', 'CTTg']] as you will read in your next home assignment list elements can be addressed by "index". The first element has number 0: ```python= seq_run[0] ``` ['CTTGCGGCTa', 'CTTGCGGCTATAGGa', 'CTTGCGGCTa', 'CTTGCGGCTATa', 'CTTGCGGCTATAGGa', 'CTTGCGGCTATa', 'CTTGCGGCTa', 'CTTGCGGCTATAGGAATAa', 'CTTGCGGCTa', 'CTTGCGGCTATa'] ## A bit about [dictionaries](https://greenteapress.com/thinkpython2/html/thinkpython2012.html) Another way to store these data is in a dictionary, which is a collection of key:value pairs where a key and value can be anything: ```python= seq_run = {} for nt in 'ATCG': seq_run[nt] = ddN(10,seq,nt,0.90) ``` ```python= seq_run ``` {'A': ['CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGACCGCGCCGCGTATGTAATTCATGGGTGTCGTCGCGCCCTCACa', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGACCGCGCCGCGTATGTa', 'CTTGCGGCTATAGGAATAa', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTa', 'CTTGCGGCTa', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGACCGCGCCGCGTATGTAATTCATGGGTGTCGTCGCGCCCTCACAACTGCa', 'CTTGCGGCTATAGGa', 'CTTGCGGCTATAGGAATAAAa', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGACCGCGCCGCGTATGTAATTCATGGGTGTCGTCGCGCCCTCACAACTGCAa', 'CTTGCGGCTATAGGAa'], 'T': ['CTTGCGGCTAt', 'CTTGCGGCTATAGGAATAAAAGGCTTt', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGACCGCGCCGCGTATGTAATTCATGGGTGTCGTCGCGCCCTCACAACt', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGACCGCGCCGCGTATGTAATTCATGGGTGTCGTCGCGCCCTCACAACTGCAAGGTCGTGGCACC', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGACCGCGCCGCGTATGTAATt', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGACCGCGCCGCGTAt', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGACCGCGCCGCGTATGTAATTCAt', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGACCGCGCCGCGTATGTAATTCATGGGTGTCGTCGCGCCCTCACAACTGCAAGGTCGTGGCACC', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGACCGCGCCGCGTATGTAATTCAt', 'CTt'], 'C': ['CTTGCGGCTATAGGAATAAAAGGc', 'CTTGCGGCTATAGGAATAAAAGGc', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGACCGCGCCGCGTATGTAATTCATGGGTGTc', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGAc', 'c', 'CTTGCGGCTATAGGAATAAAAGGc', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGACCGCGCCGCGTATGTAATTCATGGGTGTc', 'CTTGCGGc', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGAc', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGACCGCGCCGc'], 'G': ['CTTGCGGCTATAGg', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGACCGCGCCGCGTATGTAATTCATGGGTg', 'CTTGCg', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGACCGCGCCGCGTATGTAATTCATGGGTGTCGTCGCGCCCTCACAACTGCAAGGTCGTGGCACC', 'CTTg', 'CTTGCGGCTATAGGAATAAAAGg', 'CTTGCGGCTATAGGAATAAAAGGCTTTg', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGACCGCg', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGg', 'CTTGCGGCTATAGGAATAAAAg']} dictionary elements can be retrieved using a key: ```python= seq_run['A'] ``` ['CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGACCGCGCCGCGTATGTAATTCATGGGTGTCGTCGCGCCCTCACa', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGACCGCGCCGCGTATGTa', 'CTTGCGGCTATAGGAATAa', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTa', 'CTTGCGGCTa', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGACCGCGCCGCGTATGTAATTCATGGGTGTCGTCGCGCCCTCACAACTGCa', 'CTTGCGGCTATAGGa', 'CTTGCGGCTATAGGAATAAAa', 'CTTGCGGCTATAGGAATAAAAGGCTTTGCGGGTAGTGACCGCGCCGCGTATGTAATTCATGGGTGTCGTCGCGCCCTCACAACTGCAa', 'CTTGCGGCTATAGGAa'] ## Drawing a sequencing gel Now that we can simulate and store newly synthesized sequencing strands terminated with ddNTPs let us try to draw a realistic representation of the sequencing gel. For this we will use several components that will be discussed in a much greater detail in the upcoming lectures. These components are: - [`pandas`](https://pandas.pydata.org/) - a dataframe manipulation tool - [`altair`](https://altair-viz.github.io/) - a statistical visualization library built on top of `vega-light` visualization grammar These two libraries will be used in almost all lectures concerning Python in this class. [Gel electophoresis](https://en.wikipedia.org/wiki/Gel_electrophoresis) separates molecules based on mass, shape, or charge. In case of DNA all molecules are universally negatively charges and thus will always migrate to (+) electrode. All our molecules are linear single stranded pieces (our gel is *denaturing*) and so the only physical/chemical characteristic that distinguishes them is *length*. Therefore the first thing we will do is to convert our sequences into their lengths. For this we will initialize a new dictionary called `seq_lengths`: ```python= seq_lengths = {'base':[],'length':[]} for key in seq_run.keys(): for sequence in seq_run[key]: seq_lengths['base'].append(key) seq_lengths['length'].append(len(sequence)) ``` ```python= seq_lengths ``` {'base': ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'T', 'T', 'T', 'T', 'T', 'T', 'T', 'T', 'T', 'T', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'G'], 'length': [81, 54, 19, 34, 10, 87, 15, 21, 88, 16, 11, 27, 84, 100, 57, 51, 60, 100, 60, 3, 24, 24, 67, 39, 1, 24, 67, 8, 39, 47, 14, 65, 6, 100, 4, 23, 28, 43, 31, 22]} now let's import `pandas`: ```python= import pandas as pd ``` and inject `seq_lengths` into a pandas *dataframe*: ```python= sequences = pd.DataFrame(seq_lengths) ``` it looks pretty: ```python= sequences ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>base</th> <th>length</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>A</td> <td>81</td> </tr> <tr> <th>1</th> <td>A</td> <td>54</td> </tr> <tr> <th>2</th> <td>A</td> <td>19</td> </tr> <tr> <th>3</th> <td>A</td> <td>34</td> </tr> <tr> <th>4</th> <td>A</td> <td>10</td> </tr> <tr> <th>5</th> <td>A</td> <td>87</td> </tr> <tr> <th>6</th> <td>A</td> <td>15</td> </tr> <tr> <th>7</th> <td>A</td> <td>21</td> </tr> <tr> <th>8</th> <td>A</td> <td>88</td> </tr> <tr> <th>9</th> <td>A</td> <td>16</td> </tr> <tr> <th>10</th> <td>T</td> <td>11</td> </tr> <tr> <th>11</th> <td>T</td> <td>27</td> </tr> <tr> <th>12</th> <td>T</td> <td>84</td> </tr> <tr> <th>13</th> <td>T</td> <td>100</td> </tr> <tr> <th>14</th> <td>T</td> <td>57</td> </tr> <tr> <th>15</th> <td>T</td> <td>51</td> </tr> <tr> <th>16</th> <td>T</td> <td>60</td> </tr> <tr> <th>17</th> <td>T</td> <td>100</td> </tr> <tr> <th>18</th> <td>T</td> <td>60</td> </tr> <tr> <th>19</th> <td>T</td> <td>3</td> </tr> <tr> <th>20</th> <td>C</td> <td>24</td> </tr> <tr> <th>21</th> <td>C</td> <td>24</td> </tr> <tr> <th>22</th> <td>C</td> <td>67</td> </tr> <tr> <th>23</th> <td>C</td> <td>39</td> </tr> <tr> <th>24</th> <td>C</td> <td>1</td> </tr> <tr> <th>25</th> <td>C</td> <td>24</td> </tr> <tr> <th>26</th> <td>C</td> <td>67</td> </tr> <tr> <th>27</th> <td>C</td> <td>8</td> </tr> <tr> <th>28</th> <td>C</td> <td>39</td> </tr> <tr> <th>29</th> <td>C</td> <td>47</td> </tr> <tr> <th>30</th> <td>G</td> <td>14</td> </tr> <tr> <th>31</th> <td>G</td> <td>65</td> </tr> <tr> <th>32</th> <td>G</td> <td>6</td> </tr> <tr> <th>33</th> <td>G</td> <td>100</td> </tr> <tr> <th>34</th> <td>G</td> <td>4</td> </tr> <tr> <th>35</th> <td>G</td> <td>23</td> </tr> <tr> <th>36</th> <td>G</td> <td>28</td> </tr> <tr> <th>37</th> <td>G</td> <td>43</td> </tr> <tr> <th>38</th> <td>G</td> <td>31</td> </tr> <tr> <th>39</th> <td>G</td> <td>22</td> </tr> </tbody> </table> </div> In our data there is a number of DNA fragments that have identical length (just look at the dataframe above). We can condense these by grouping dataframe entries first by nucleotide (`['base']`) and then by length (`['length']`). For each group we will then compute `count` and put it into a new column named, ..., `count`: ```python= sequences_grouped_by_length = sequences.groupby( ['base','length'] ).agg( count=pd.NamedAgg( column='length', aggfunc='count' ) ).reset_index() ``` ```python= sequences_grouped_by_length ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>base</th> <th>length</th> <th>count</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>A</td> <td>10</td> <td>1</td> </tr> <tr> <th>1</th> <td>A</td> <td>15</td> <td>1</td> </tr> <tr> <th>2</th> <td>A</td> <td>16</td> <td>1</td> </tr> <tr> <th>3</th> <td>A</td> <td>19</td> <td>1</td> </tr> <tr> <th>4</th> <td>A</td> <td>21</td> <td>1</td> </tr> <tr> <th>5</th> <td>A</td> <td>34</td> <td>1</td> </tr> <tr> <th>6</th> <td>A</td> <td>54</td> <td>1</td> </tr> <tr> <th>7</th> <td>A</td> <td>81</td> <td>1</td> </tr> <tr> <th>8</th> <td>A</td> <td>87</td> <td>1</td> </tr> <tr> <th>9</th> <td>A</td> <td>88</td> <td>1</td> </tr> <tr> <th>10</th> <td>C</td> <td>1</td> <td>1</td> </tr> <tr> <th>11</th> <td>C</td> <td>8</td> <td>1</td> </tr> <tr> <th>12</th> <td>C</td> <td>24</td> <td>3</td> </tr> <tr> <th>13</th> <td>C</td> <td>39</td> <td>2</td> </tr> <tr> <th>14</th> <td>C</td> <td>47</td> <td>1</td> </tr> <tr> <th>15</th> <td>C</td> <td>67</td> <td>2</td> </tr> <tr> <th>16</th> <td>G</td> <td>4</td> <td>1</td> </tr> <tr> <th>17</th> <td>G</td> <td>6</td> <td>1</td> </tr> <tr> <th>18</th> <td>G</td> <td>14</td> <td>1</td> </tr> <tr> <th>19</th> <td>G</td> <td>22</td> <td>1</td> </tr> <tr> <th>20</th> <td>G</td> <td>23</td> <td>1</td> </tr> <tr> <th>21</th> <td>G</td> <td>28</td> <td>1</td> </tr> <tr> <th>22</th> <td>G</td> <td>31</td> <td>1</td> </tr> <tr> <th>23</th> <td>G</td> <td>43</td> <td>1</td> </tr> <tr> <th>24</th> <td>G</td> <td>65</td> <td>1</td> </tr> <tr> <th>25</th> <td>G</td> <td>100</td> <td>1</td> </tr> <tr> <th>26</th> <td>T</td> <td>3</td> <td>1</td> </tr> <tr> <th>27</th> <td>T</td> <td>11</td> <td>1</td> </tr> <tr> <th>28</th> <td>T</td> <td>27</td> <td>1</td> </tr> <tr> <th>29</th> <td>T</td> <td>51</td> <td>1</td> </tr> <tr> <th>30</th> <td>T</td> <td>57</td> <td>1</td> </tr> <tr> <th>31</th> <td>T</td> <td>60</td> <td>2</td> </tr> <tr> <th>32</th> <td>T</td> <td>84</td> <td>1</td> </tr> <tr> <th>33</th> <td>T</td> <td>100</td> <td>2</td> </tr> </tbody> </table> </div> The following chart is created using the `alt.Chart()` function and passing the data as an argument. The `mark_tick()` function is used to create a tick chart with a thickness of 4 pixels. The chart is encoded with two main axis: - y-axis which represents the length of the data and it is encoded by the `'length'` field of the data. - x-axis which represents the base of the data and it is encoded by the `'base'` field of the data. The chart also encodes a color, it encodes the `'count'` field of the data and it sets the legend to `None` and it uses the `'greys'` scale from the Altair library. Finally, the chart properties are set to a width of 100 pixels and a height of 800 pixels. ```python= import altair as alt alt.Chart(sequences_grouped_by_length).mark_tick(thickness=4).encode( y = alt.Y('length:Q'), x = alt.X('base'), color=alt.Color('count:Q',legend=None, scale=alt.Scale(scheme="greys")) ).properties( width=100, height=800) ``` ```vega { "config": {"view": {"continuousWidth": 400, "continuousHeight": 300}}, "data": {"name": "data-5650348fcc3dbf4a470160cf3ea573d2"}, "mark": {"type": "tick", "thickness": 4}, "encoding": { "color": { "field": "count", "legend": null, "scale": {"scheme": "greys"}, "type": "quantitative" }, "x": {"field": "base", "type": "nominal"}, "y": {"field": "length", "type": "quantitative"} }, "height": 800, "width": 100, "$schema": "https://vega.github.io/schema/vega-lite/v4.17.0.json", "datasets": { "data-5650348fcc3dbf4a470160cf3ea573d2": [ {"base": "A", "length": 10, "count": 1}, {"base": "A", "length": 15, "count": 1}, {"base": "A", "length": 16, "count": 1}, {"base": "A", "length": 19, "count": 1}, {"base": "A", "length": 21, "count": 1}, {"base": "A", "length": 34, "count": 1}, {"base": "A", "length": 54, "count": 1}, {"base": "A", "length": 81, "count": 1}, {"base": "A", "length": 87, "count": 1}, {"base": "A", "length": 88, "count": 1}, {"base": "C", "length": 1, "count": 1}, {"base": "C", "length": 8, "count": 1}, {"base": "C", "length": 24, "count": 3}, {"base": "C", "length": 39, "count": 2}, {"base": "C", "length": 47, "count": 1}, {"base": "C", "length": 67, "count": 2}, {"base": "G", "length": 4, "count": 1}, {"base": "G", "length": 6, "count": 1}, {"base": "G", "length": 14, "count": 1}, {"base": "G", "length": 22, "count": 1}, {"base": "G", "length": 23, "count": 1}, {"base": "G", "length": 28, "count": 1}, {"base": "G", "length": 31, "count": 1}, {"base": "G", "length": 43, "count": 1}, {"base": "G", "length": 65, "count": 1}, {"base": "G", "length": 100, "count": 1}, {"base": "T", "length": 3, "count": 1}, {"base": "T", "length": 11, "count": 1}, {"base": "T", "length": 27, "count": 1}, {"base": "T", "length": 51, "count": 1}, {"base": "T", "length": 57, "count": 1}, {"base": "T", "length": 60, "count": 2}, {"base": "T", "length": 84, "count": 1}, {"base": "T", "length": 100, "count": 2} ] } } ``` And here is a color version of the same graph using just one line of the gel: ```python= import altair as alt alt.Chart(sequences_grouped_by_length).mark_tick(thickness=4).encode( y = alt.Y('length:Q'), color=alt.Color('base:N',#legend=None, scale=alt.Scale(scheme="set1")) ).properties( width=20, height=800) ``` ```vega { "config": {"view": {"continuousWidth": 400, "continuousHeight": 300}}, "data": {"name": "data-5650348fcc3dbf4a470160cf3ea573d2"}, "mark": {"type": "tick", "thickness": 4}, "encoding": { "color": {"field": "base", "scale": {"scheme": "set1"}, "type": "nominal"}, "y": {"field": "length", "type": "quantitative"} }, "height": 800, "width": 20, "$schema": "https://vega.github.io/schema/vega-lite/v4.17.0.json", "datasets": { "data-5650348fcc3dbf4a470160cf3ea573d2": [ {"base": "A", "length": 10, "count": 1}, {"base": "A", "length": 15, "count": 1}, {"base": "A", "length": 16, "count": 1}, {"base": "A", "length": 19, "count": 1}, {"base": "A", "length": 21, "count": 1}, {"base": "A", "length": 34, "count": 1}, {"base": "A", "length": 54, "count": 1}, {"base": "A", "length": 81, "count": 1}, {"base": "A", "length": 87, "count": 1}, {"base": "A", "length": 88, "count": 1}, {"base": "C", "length": 1, "count": 1}, {"base": "C", "length": 8, "count": 1}, {"base": "C", "length": 24, "count": 3}, {"base": "C", "length": 39, "count": 2}, {"base": "C", "length": 47, "count": 1}, {"base": "C", "length": 67, "count": 2}, {"base": "G", "length": 4, "count": 1}, {"base": "G", "length": 6, "count": 1}, {"base": "G", "length": 14, "count": 1}, {"base": "G", "length": 22, "count": 1}, {"base": "G", "length": 23, "count": 1}, {"base": "G", "length": 28, "count": 1}, {"base": "G", "length": 31, "count": 1}, {"base": "G", "length": 43, "count": 1}, {"base": "G", "length": 65, "count": 1}, {"base": "G", "length": 100, "count": 1}, {"base": "T", "length": 3, "count": 1}, {"base": "T", "length": 11, "count": 1}, {"base": "T", "length": 27, "count": 1}, {"base": "T", "length": 51, "count": 1}, {"base": "T", "length": 57, "count": 1}, {"base": "T", "length": 60, "count": 2}, {"base": "T", "length": 84, "count": 1}, {"base": "T", "length": 100, "count": 2} ] } } ``` ## Putting everything together ```python= # Generate random sequences seq = '' for _ in range(300): seq += random.choice('ATCG') ``` ```python= seq ``` 'GTCGATGCCTGTTTGACCTAACTGGCGTGAAGGCTATATCAGTTATCCCAAGCGTAGGCTTTCAATTCGCCCGGTTGCGTCGCCCGATTATCAATCGCGGAAGGTGGGTGCGATTGGAAGTCCAAAACCTTTATCCTGACACACTTTCTGACTCGGCTTGGCAATGGGAAGTGTAGAACGTAGCGGGGACCTACATCATATCGTACATAACTGAGACGTGCTCACCCGCAGAGATAAGAACTGCAATACCCGGGTGAATACTTGGGGAGTCTCACCCAGATGGTTGGCCTGATCCTCCCC' ```python= # Function silulating a single run of a single polymerase molecule def ddN(number_of_iterations, template, base, ddN_ratio): new_strands = [] for _ in range(number_of_iterations): synthesized_strand = '' for nucleotide in template: if nucleotide == base and random.random() > ddN_ratio: synthesized_strand += nucleotide.lower() break synthesized_strand += nucleotide new_strands.append(synthesized_strand) return(new_strands) ``` ```python= # Generating simulated sequencing run seq_run = {} for nt in 'ATCG': seq_run[nt] = ddN(100000,seq,nt,0.95) ``` ```python= # Computing lengths seq_lengths = {'base':[],'length':[]} for key in seq_run.keys(): for sequence in seq_run[key]: seq_lengths['base'].append(key) seq_lengths['length'].append(len(sequence)) ``` ```python= # Converting dictionaty into Pandas dataframe sequences = pd.DataFrame(seq_lengths) ``` ```python= # Grouping by nucleotide and length sequences_grouped_by_length = sequences.groupby( ['base','length'] ).agg( count=pd.NamedAgg( column='length', aggfunc='count' ) ).reset_index() ``` ```python= # Plotting (note the quadratic scale for realism) import altair as alt alt.Chart(sequences_grouped_by_length).mark_tick(thickness=4).encode( y = alt.Y('length:Q',scale=alt.Scale(type='sqrt')), x = alt.X('base'), color=alt.Color('count:Q',legend=None, scale=alt.Scale(type='log',scheme="greys")), tooltip='count:Q' ).properties( width=100, height=800) ``` ```vega { "config": {"view": {"continuousWidth": 400, "continuousHeight": 300}}, "data": {"name": "data-a64e05465e355c9b5ce6518085e8479a"}, "mark": {"type": "tick", "thickness": 4}, "encoding": { "color": { "field": "count", "legend": null, "scale": {"scheme": "greys", "type": "log"}, "type": "quantitative" }, "tooltip": {"field": "count", "type": "quantitative"}, "x": {"field": "base", "type": "nominal"}, "y": {"field": "length", "scale": {"type": "sqrt"}, "type": "quantitative"} }, "height": 800, "width": 100, "$schema": "https://vega.github.io/schema/vega-lite/v4.17.0.json", "datasets": { "data-a64e05465e355c9b5ce6518085e8479a": [ {"base": "A", "length": 5, "count": 4987}, {"base": "A", "length": 16, "count": 4843}, {"base": "A", "length": 20, "count": 4538}, {"base": "A", "length": 21, "count": 4305}, {"base": "A", "length": 30, "count": 4227}, {"base": "A", "length": 31, "count": 3904}, {"base": "A", "length": 36, "count": 3626}, {"base": "A", "length": 38, "count": 3406}, {"base": "A", "length": 41, "count": 3381}, {"base": "A", "length": 45, "count": 3181}, {"base": "A", "length": 50, "count": 2949}, {"base": "A", "length": 51, "count": 2807}, {"base": "A", "length": 56, "count": 2639}, {"base": "A", "length": 64, "count": 2618}, {"base": "A", "length": 65, "count": 2444}, {"base": "A", "length": 87, "count": 2313}, {"base": "A", "length": 90, "count": 2083}, {"base": "A", "length": 93, "count": 2081}, {"base": "A", "length": 94, "count": 1935}, {"base": "A", "length": 101, "count": 1839}, {"base": "A", "length": 102, "count": 1832}, {"base": "A", "length": 113, "count": 1737}, {"base": "A", "length": 118, "count": 1607}, {"base": "A", "length": 119, "count": 1627}, {"base": "A", "length": 124, "count": 1458}, {"base": "A", "length": 125, "count": 1383}, {"base": "A", "length": 126, "count": 1325}, {"base": "A", "length": 127, "count": 1229}, {"base": "A", "length": 133, "count": 1198}, {"base": "A", "length": 139, "count": 1137}, {"base": "A", "length": 141, "count": 1081}, {"base": "A", "length": 143, "count": 1010}, {"base": "A", "length": 151, "count": 984}, {"base": "A", "length": 163, "count": 910}, {"base": "A", "length": 164, "count": 887}, {"base": "A", "length": 169, "count": 872}, {"base": "A", "length": 170, "count": 828}, {"base": "A", "length": 175, "count": 772}, {"base": "A", "length": 177, "count": 714}, {"base": "A", "length": 178, "count": 643}, {"base": "A", "length": 182, "count": 617}, {"base": "A", "length": 189, "count": 613}, {"base": "A", "length": 193, "count": 582}, {"base": "A", "length": 195, "count": 546}, {"base": "A", "length": 198, "count": 490}, {"base": "A", "length": 200, "count": 462}, {"base": "A", "length": 205, "count": 490}, {"base": "A", "length": 207, "count": 446}, {"base": "A", "length": 209, "count": 408}, {"base": "A", "length": 210, "count": 418}, {"base": "A", "length": 214, "count": 396}, {"base": "A", "length": 216, "count": 386}, {"base": "A", "length": 224, "count": 327}, {"base": "A", "length": 230, "count": 353}, {"base": "A", "length": 232, "count": 331}, {"base": "A", "length": 234, "count": 266}, {"base": "A", "length": 236, "count": 256}, {"base": "A", "length": 237, "count": 272}, {"base": "A", "length": 239, "count": 268}, {"base": "A", "length": 240, "count": 234}, {"base": "A", "length": 245, "count": 241}, {"base": "A", "length": 246, "count": 207}, {"base": "A", "length": 248, "count": 208}, {"base": "A", "length": 257, "count": 200}, {"base": "A", "length": 258, "count": 193}, {"base": "A", "length": 260, "count": 200}, {"base": "A", "length": 268, "count": 158}, {"base": "A", "length": 274, "count": 169}, {"base": "A", "length": 278, "count": 149}, {"base": "A", "length": 280, "count": 157}, {"base": "A", "length": 292, "count": 138}, {"base": "A", "length": 300, "count": 2479}, {"base": "C", "length": 3, "count": 5043}, {"base": "C", "length": 8, "count": 4712}, {"base": "C", "length": 9, "count": 4504}, {"base": "C", "length": 17, "count": 4268}, {"base": "C", "length": 18, "count": 4174}, {"base": "C", "length": 22, "count": 3963}, {"base": "C", "length": 26, "count": 3648}, {"base": "C", "length": 34, "count": 3415}, {"base": "C", "length": 40, "count": 3415}, {"base": "C", "length": 47, "count": 3189}, {"base": "C", "length": 48, "count": 2993}, {"base": "C", "length": 49, "count": 2828}, {"base": "C", "length": 53, "count": 2685}, {"base": "C", "length": 59, "count": 2504}, {"base": "C", "length": 63, "count": 2419}, {"base": "C", "length": 68, "count": 2382}, {"base": "C", "length": 70, "count": 2097}, {"base": "C", "length": 71, "count": 2072}, {"base": "C", "length": 72, "count": 2041}, {"base": "C", "length": 78, "count": 1863}, {"base": "C", "length": 81, "count": 1781}, {"base": "C", "length": 83, "count": 1694}, {"base": "C", "length": 84, "count": 1659}, {"base": "C", "length": 85, "count": 1505}, {"base": "C", "length": 92, "count": 1483}, {"base": "C", "length": 96, "count": 1342}, {"base": "C", "length": 98, "count": 1345}, {"base": "C", "length": 111, "count": 1339}, {"base": "C", "length": 122, "count": 1219}, {"base": "C", "length": 123, "count": 1184}, {"base": "C", "length": 128, "count": 1089}, {"base": "C", "length": 129, "count": 1012}, {"base": "C", "length": 135, "count": 935}, {"base": "C", "length": 136, "count": 904}, {"base": "C", "length": 140, "count": 846}, {"base": "C", "length": 142, "count": 790}, {"base": "C", "length": 144, "count": 776}, {"base": "C", "length": 148, "count": 771}, {"base": "C", "length": 152, "count": 698}, {"base": "C", "length": 154, "count": 654}, {"base": "C", "length": 157, "count": 653}, {"base": "C", "length": 162, "count": 593}, {"base": "C", "length": 179, "count": 609}, {"base": "C", "length": 184, "count": 537}, {"base": "C", "length": 190, "count": 509}, {"base": "C", "length": 191, "count": 510}, {"base": "C", "length": 194, "count": 495}, {"base": "C", "length": 197, "count": 416}, {"base": "C", "length": 202, "count": 380}, {"base": "C", "length": 206, "count": 408}, {"base": "C", "length": 211, "count": 386}, {"base": "C", "length": 217, "count": 350}, {"base": "C", "length": 221, "count": 321}, {"base": "C", "length": 223, "count": 321}, {"base": "C", "length": 225, "count": 318}, {"base": "C", "length": 226, "count": 314}, {"base": "C", "length": 227, "count": 300}, {"base": "C", "length": 229, "count": 259}, {"base": "C", "length": 241, "count": 241}, {"base": "C", "length": 244, "count": 230}, {"base": "C", "length": 249, "count": 248}, {"base": "C", "length": 250, "count": 231}, {"base": "C", "length": 251, "count": 224}, {"base": "C", "length": 261, "count": 210}, {"base": "C", "length": 271, "count": 195}, {"base": "C", "length": 273, "count": 179}, {"base": "C", "length": 275, "count": 186}, {"base": "C", "length": 276, "count": 161}, {"base": "C", "length": 277, "count": 151}, {"base": "C", "length": 288, "count": 145}, {"base": "C", "length": 289, "count": 125}, {"base": "C", "length": 294, "count": 121}, {"base": "C", "length": 295, "count": 108}, {"base": "C", "length": 297, "count": 118}, {"base": "C", "length": 298, "count": 99}, {"base": "C", "length": 299, "count": 111}, {"base": "C", "length": 300, "count": 1997}, {"base": "G", "length": 1, "count": 5066}, {"base": "G", "length": 4, "count": 4797}, {"base": "G", "length": 7, "count": 4535}, {"base": "G", "length": 11, "count": 4367}, {"base": "G", "length": 15, "count": 4031}, {"base": "G", "length": 24, "count": 3866}, {"base": "G", "length": 25, "count": 3731}, {"base": "G", "length": 27, "count": 3440}, {"base": "G", "length": 29, "count": 3285}, {"base": "G", "length": 32, "count": 3168}, {"base": "G", "length": 33, "count": 2950}, {"base": "G", "length": 42, "count": 2903}, {"base": "G", "length": 52, "count": 2643}, {"base": "G", "length": 54, "count": 2454}, {"base": "G", "length": 57, "count": 2543}, {"base": "G", "length": 58, "count": 2297}, {"base": "G", "length": 69, "count": 2163}, {"base": "G", "length": 73, "count": 2089}, {"base": "G", "length": 74, "count": 1969}, {"base": "G", "length": 77, "count": 1883}, {"base": "G", "length": 79, "count": 1745}, {"base": "G", "length": 82, "count": 1695}, {"base": "G", "length": 86, "count": 1653}, {"base": "G", "length": 97, "count": 1547}, {"base": "G", "length": 99, "count": 1444}, {"base": "G", "length": 100, "count": 1467}, {"base": "G", "length": 103, "count": 1299}, {"base": "G", "length": 104, "count": 1294}, {"base": "G", "length": 106, "count": 1214}, {"base": "G", "length": 107, "count": 1123}, {"base": "G", "length": 108, "count": 1075}, {"base": "G", "length": 110, "count": 1006}, {"base": "G", "length": 112, "count": 978}, {"base": "G", "length": 116, "count": 916}, {"base": "G", "length": 117, "count": 830}, {"base": "G", "length": 120, "count": 846}, {"base": "G", "length": 138, "count": 824}, {"base": "G", "length": 150, "count": 740}, {"base": "G", "length": 155, "count": 701}, {"base": "G", "length": 156, "count": 630}, {"base": "G", "length": 160, "count": 654}, {"base": "G", "length": 161, "count": 610}, {"base": "G", "length": 166, "count": 561}, {"base": "G", "length": 167, "count": 532}, {"base": "G", "length": 168, "count": 505}, {"base": "G", "length": 171, "count": 526}, {"base": "G", "length": 173, "count": 456}, {"base": "G", "length": 176, "count": 439}, {"base": "G", "length": 180, "count": 462}, {"base": "G", "length": 183, "count": 385}, {"base": "G", "length": 185, "count": 373}, {"base": "G", "length": 186, "count": 361}, {"base": "G", "length": 187, "count": 306}, {"base": "G", "length": 188, "count": 342}, {"base": "G", "length": 203, "count": 346}, {"base": "G", "length": 213, "count": 287}, {"base": "G", "length": 215, "count": 302}, {"base": "G", "length": 218, "count": 265}, {"base": "G", "length": 220, "count": 250}, {"base": "G", "length": 228, "count": 241}, {"base": "G", "length": 231, "count": 237}, {"base": "G", "length": 233, "count": 214}, {"base": "G", "length": 238, "count": 203}, {"base": "G", "length": 243, "count": 211}, {"base": "G", "length": 252, "count": 209}, {"base": "G", "length": 253, "count": 164}, {"base": "G", "length": 254, "count": 173}, {"base": "G", "length": 256, "count": 178}, {"base": "G", "length": 264, "count": 166}, {"base": "G", "length": 265, "count": 156}, {"base": "G", "length": 266, "count": 139}, {"base": "G", "length": 267, "count": 119}, {"base": "G", "length": 269, "count": 133}, {"base": "G", "length": 279, "count": 101}, {"base": "G", "length": 282, "count": 117}, {"base": "G", "length": 283, "count": 109}, {"base": "G", "length": 286, "count": 105}, {"base": "G", "length": 287, "count": 96}, {"base": "G", "length": 291, "count": 80}, {"base": "G", "length": 300, "count": 1680}, {"base": "T", "length": 2, "count": 5054}, {"base": "T", "length": 6, "count": 4775}, {"base": "T", "length": 10, "count": 4464}, {"base": "T", "length": 12, "count": 4272}, {"base": "T", "length": 13, "count": 3993}, {"base": "T", "length": 14, "count": 3904}, {"base": "T", "length": 19, "count": 3671}, {"base": "T", "length": 23, "count": 3538}, {"base": "T", "length": 28, "count": 3263}, {"base": "T", "length": 35, "count": 3192}, {"base": "T", "length": 37, "count": 2950}, {"base": "T", "length": 39, "count": 2871}, {"base": "T", "length": 43, "count": 2626}, {"base": "T", "length": 44, "count": 2569}, {"base": "T", "length": 46, "count": 2472}, {"base": "T", "length": 55, "count": 2318}, {"base": "T", "length": 60, "count": 2290}, {"base": "T", "length": 61, "count": 2059}, {"base": "T", "length": 62, "count": 2051}, {"base": "T", "length": 66, "count": 1922}, {"base": "T", "length": 67, "count": 1809}, {"base": "T", "length": 75, "count": 1608}, {"base": "T", "length": 76, "count": 1638}, {"base": "T", "length": 80, "count": 1609}, {"base": "T", "length": 88, "count": 1405}, {"base": "T", "length": 89, "count": 1370}, {"base": "T", "length": 91, "count": 1321}, {"base": "T", "length": 95, "count": 1252}, {"base": "T", "length": 105, "count": 1205}, {"base": "T", "length": 109, "count": 1133}, {"base": "T", "length": 114, "count": 1108}, {"base": "T", "length": 115, "count": 966}, {"base": "T", "length": 121, "count": 955}, {"base": "T", "length": 130, "count": 920}, {"base": "T", "length": 131, "count": 870}, {"base": "T", "length": 132, "count": 809}, {"base": "T", "length": 134, "count": 721}, {"base": "T", "length": 137, "count": 761}, {"base": "T", "length": 145, "count": 746}, {"base": "T", "length": 146, "count": 685}, {"base": "T", "length": 147, "count": 615}, {"base": "T", "length": 149, "count": 642}, {"base": "T", "length": 153, "count": 592}, {"base": "T", "length": 158, "count": 549}, {"base": "T", "length": 159, "count": 553}, {"base": "T", "length": 165, "count": 468}, {"base": "T", "length": 172, "count": 517}, {"base": "T", "length": 174, "count": 461}, {"base": "T", "length": 181, "count": 446}, {"base": "T", "length": 192, "count": 408}, {"base": "T", "length": 196, "count": 360}, {"base": "T", "length": 199, "count": 334}, {"base": "T", "length": 201, "count": 338}, {"base": "T", "length": 204, "count": 321}, {"base": "T", "length": 208, "count": 336}, {"base": "T", "length": 212, "count": 277}, {"base": "T", "length": 219, "count": 314}, {"base": "T", "length": 222, "count": 243}, {"base": "T", "length": 235, "count": 257}, {"base": "T", "length": 242, "count": 260}, {"base": "T", "length": 247, "count": 225}, {"base": "T", "length": 255, "count": 243}, {"base": "T", "length": 259, "count": 208}, {"base": "T", "length": 262, "count": 176}, {"base": "T", "length": 263, "count": 178}, {"base": "T", "length": 270, "count": 154}, {"base": "T", "length": 272, "count": 147}, {"base": "T", "length": 281, "count": 168}, {"base": "T", "length": 284, "count": 157}, {"base": "T", "length": 285, "count": 149}, {"base": "T", "length": 290, "count": 130}, {"base": "T", "length": 293, "count": 133}, {"base": "T", "length": 296, "count": 125}, {"base": "T", "length": 300, "count": 2371} ] } } ``` ```python= # Plotting using color import altair as alt alt.Chart(sequences_grouped_by_length).mark_tick(thickness=4).encode( y = alt.Y('length:Q',scale=alt.Scale(type="sqrt")), color=alt.Color('base:N',#legend=None, scale=alt.Scale(scheme="set1")), opacity=alt.Opacity('count:N',legend=None), tooltip='count:Q' ).properties( width=20, height=800) ``` ```vega { "config": {"view": {"continuousWidth": 400, "continuousHeight": 300}}, "data": {"name": "data-a64e05465e355c9b5ce6518085e8479a"}, "mark": {"type": "tick", "thickness": 4}, "encoding": { "color": {"field": "base", "scale": {"scheme": "set1"}, "type": "nominal"}, "opacity": {"field": "count", "legend": null, "type": "nominal"}, "tooltip": {"field": "count", "type": "quantitative"}, "y": {"field": "length", "scale": {"type": "sqrt"}, "type": "quantitative"} }, "height": 800, "width": 20, "$schema": "https://vega.github.io/schema/vega-lite/v4.17.0.json", "datasets": { "data-a64e05465e355c9b5ce6518085e8479a": [ {"base": "A", "length": 5, "count": 4987}, {"base": "A", "length": 16, "count": 4843}, {"base": "A", "length": 20, "count": 4538}, {"base": "A", "length": 21, "count": 4305}, {"base": "A", "length": 30, "count": 4227}, {"base": "A", "length": 31, "count": 3904}, {"base": "A", "length": 36, "count": 3626}, {"base": "A", "length": 38, "count": 3406}, {"base": "A", "length": 41, "count": 3381}, {"base": "A", "length": 45, "count": 3181}, {"base": "A", "length": 50, "count": 2949}, {"base": "A", "length": 51, "count": 2807}, {"base": "A", "length": 56, "count": 2639}, {"base": "A", "length": 64, "count": 2618}, {"base": "A", "length": 65, "count": 2444}, {"base": "A", "length": 87, "count": 2313}, {"base": "A", "length": 90, "count": 2083}, {"base": "A", "length": 93, "count": 2081}, {"base": "A", "length": 94, "count": 1935}, {"base": "A", "length": 101, "count": 1839}, {"base": "A", "length": 102, "count": 1832}, {"base": "A", "length": 113, "count": 1737}, {"base": "A", "length": 118, "count": 1607}, {"base": "A", "length": 119, "count": 1627}, {"base": "A", "length": 124, "count": 1458}, {"base": "A", "length": 125, "count": 1383}, {"base": "A", "length": 126, "count": 1325}, {"base": "A", "length": 127, "count": 1229}, {"base": "A", "length": 133, "count": 1198}, {"base": "A", "length": 139, "count": 1137}, {"base": "A", "length": 141, "count": 1081}, {"base": "A", "length": 143, "count": 1010}, {"base": "A", "length": 151, "count": 984}, {"base": "A", "length": 163, "count": 910}, {"base": "A", "length": 164, "count": 887}, {"base": "A", "length": 169, "count": 872}, {"base": "A", "length": 170, "count": 828}, {"base": "A", "length": 175, "count": 772}, {"base": "A", "length": 177, "count": 714}, {"base": "A", "length": 178, "count": 643}, {"base": "A", "length": 182, "count": 617}, {"base": "A", "length": 189, "count": 613}, {"base": "A", "length": 193, "count": 582}, {"base": "A", "length": 195, "count": 546}, {"base": "A", "length": 198, "count": 490}, {"base": "A", "length": 200, "count": 462}, {"base": "A", "length": 205, "count": 490}, {"base": "A", "length": 207, "count": 446}, {"base": "A", "length": 209, "count": 408}, {"base": "A", "length": 210, "count": 418}, {"base": "A", "length": 214, "count": 396}, {"base": "A", "length": 216, "count": 386}, {"base": "A", "length": 224, "count": 327}, {"base": "A", "length": 230, "count": 353}, {"base": "A", "length": 232, "count": 331}, {"base": "A", "length": 234, "count": 266}, {"base": "A", "length": 236, "count": 256}, {"base": "A", "length": 237, "count": 272}, {"base": "A", "length": 239, "count": 268}, {"base": "A", "length": 240, "count": 234}, {"base": "A", "length": 245, "count": 241}, {"base": "A", "length": 246, "count": 207}, {"base": "A", "length": 248, "count": 208}, {"base": "A", "length": 257, "count": 200}, {"base": "A", "length": 258, "count": 193}, {"base": "A", "length": 260, "count": 200}, {"base": "A", "length": 268, "count": 158}, {"base": "A", "length": 274, "count": 169}, {"base": "A", "length": 278, "count": 149}, {"base": "A", "length": 280, "count": 157}, {"base": "A", "length": 292, "count": 138}, {"base": "A", "length": 300, "count": 2479}, {"base": "C", "length": 3, "count": 5043}, {"base": "C", "length": 8, "count": 4712}, {"base": "C", "length": 9, "count": 4504}, {"base": "C", "length": 17, "count": 4268}, {"base": "C", "length": 18, "count": 4174}, {"base": "C", "length": 22, "count": 3963}, {"base": "C", "length": 26, "count": 3648}, {"base": "C", "length": 34, "count": 3415}, {"base": "C", "length": 40, "count": 3415}, {"base": "C", "length": 47, "count": 3189}, {"base": "C", "length": 48, "count": 2993}, {"base": "C", "length": 49, "count": 2828}, {"base": "C", "length": 53, "count": 2685}, {"base": "C", "length": 59, "count": 2504}, {"base": "C", "length": 63, "count": 2419}, {"base": "C", "length": 68, "count": 2382}, {"base": "C", "length": 70, "count": 2097}, {"base": "C", "length": 71, "count": 2072}, {"base": "C", "length": 72, "count": 2041}, {"base": "C", "length": 78, "count": 1863}, {"base": "C", "length": 81, "count": 1781}, {"base": "C", "length": 83, "count": 1694}, {"base": "C", "length": 84, "count": 1659}, {"base": "C", "length": 85, "count": 1505}, {"base": "C", "length": 92, "count": 1483}, {"base": "C", "length": 96, "count": 1342}, {"base": "C", "length": 98, "count": 1345}, {"base": "C", "length": 111, "count": 1339}, {"base": "C", "length": 122, "count": 1219}, {"base": "C", "length": 123, "count": 1184}, {"base": "C", "length": 128, "count": 1089}, {"base": "C", "length": 129, "count": 1012}, {"base": "C", "length": 135, "count": 935}, {"base": "C", "length": 136, "count": 904}, {"base": "C", "length": 140, "count": 846}, {"base": "C", "length": 142, "count": 790}, {"base": "C", "length": 144, "count": 776}, {"base": "C", "length": 148, "count": 771}, {"base": "C", "length": 152, "count": 698}, {"base": "C", "length": 154, "count": 654}, {"base": "C", "length": 157, "count": 653}, {"base": "C", "length": 162, "count": 593}, {"base": "C", "length": 179, "count": 609}, {"base": "C", "length": 184, "count": 537}, {"base": "C", "length": 190, "count": 509}, {"base": "C", "length": 191, "count": 510}, {"base": "C", "length": 194, "count": 495}, {"base": "C", "length": 197, "count": 416}, {"base": "C", "length": 202, "count": 380}, {"base": "C", "length": 206, "count": 408}, {"base": "C", "length": 211, "count": 386}, {"base": "C", "length": 217, "count": 350}, {"base": "C", "length": 221, "count": 321}, {"base": "C", "length": 223, "count": 321}, {"base": "C", "length": 225, "count": 318}, {"base": "C", "length": 226, "count": 314}, {"base": "C", "length": 227, "count": 300}, {"base": "C", "length": 229, "count": 259}, {"base": "C", "length": 241, "count": 241}, {"base": "C", "length": 244, "count": 230}, {"base": "C", "length": 249, "count": 248}, {"base": "C", "length": 250, "count": 231}, {"base": "C", "length": 251, "count": 224}, {"base": "C", "length": 261, "count": 210}, {"base": "C", "length": 271, "count": 195}, {"base": "C", "length": 273, "count": 179}, {"base": "C", "length": 275, "count": 186}, {"base": "C", "length": 276, "count": 161}, {"base": "C", "length": 277, "count": 151}, {"base": "C", "length": 288, "count": 145}, {"base": "C", "length": 289, "count": 125}, {"base": "C", "length": 294, "count": 121}, {"base": "C", "length": 295, "count": 108}, {"base": "C", "length": 297, "count": 118}, {"base": "C", "length": 298, "count": 99}, {"base": "C", "length": 299, "count": 111}, {"base": "C", "length": 300, "count": 1997}, {"base": "G", "length": 1, "count": 5066}, {"base": "G", "length": 4, "count": 4797}, {"base": "G", "length": 7, "count": 4535}, {"base": "G", "length": 11, "count": 4367}, {"base": "G", "length": 15, "count": 4031}, {"base": "G", "length": 24, "count": 3866}, {"base": "G", "length": 25, "count": 3731}, {"base": "G", "length": 27, "count": 3440}, {"base": "G", "length": 29, "count": 3285}, {"base": "G", "length": 32, "count": 3168}, {"base": "G", "length": 33, "count": 2950}, {"base": "G", "length": 42, "count": 2903}, {"base": "G", "length": 52, "count": 2643}, {"base": "G", "length": 54, "count": 2454}, {"base": "G", "length": 57, "count": 2543}, {"base": "G", "length": 58, "count": 2297}, {"base": "G", "length": 69, "count": 2163}, {"base": "G", "length": 73, "count": 2089}, {"base": "G", "length": 74, "count": 1969}, {"base": "G", "length": 77, "count": 1883}, {"base": "G", "length": 79, "count": 1745}, {"base": "G", "length": 82, "count": 1695}, {"base": "G", "length": 86, "count": 1653}, {"base": "G", "length": 97, "count": 1547}, {"base": "G", "length": 99, "count": 1444}, {"base": "G", "length": 100, "count": 1467}, {"base": "G", "length": 103, "count": 1299}, {"base": "G", "length": 104, "count": 1294}, {"base": "G", "length": 106, "count": 1214}, {"base": "G", "length": 107, "count": 1123}, {"base": "G", "length": 108, "count": 1075}, {"base": "G", "length": 110, "count": 1006}, {"base": "G", "length": 112, "count": 978}, {"base": "G", "length": 116, "count": 916}, {"base": "G", "length": 117, "count": 830}, {"base": "G", "length": 120, "count": 846}, {"base": "G", "length": 138, "count": 824}, {"base": "G", "length": 150, "count": 740}, {"base": "G", "length": 155, "count": 701}, {"base": "G", "length": 156, "count": 630}, {"base": "G", "length": 160, "count": 654}, {"base": "G", "length": 161, "count": 610}, {"base": "G", "length": 166, "count": 561}, {"base": "G", "length": 167, "count": 532}, {"base": "G", "length": 168, "count": 505}, {"base": "G", "length": 171, "count": 526}, {"base": "G", "length": 173, "count": 456}, {"base": "G", "length": 176, "count": 439}, {"base": "G", "length": 180, "count": 462}, {"base": "G", "length": 183, "count": 385}, {"base": "G", "length": 185, "count": 373}, {"base": "G", "length": 186, "count": 361}, {"base": "G", "length": 187, "count": 306}, {"base": "G", "length": 188, "count": 342}, {"base": "G", "length": 203, "count": 346}, {"base": "G", "length": 213, "count": 287}, {"base": "G", "length": 215, "count": 302}, {"base": "G", "length": 218, "count": 265}, {"base": "G", "length": 220, "count": 250}, {"base": "G", "length": 228, "count": 241}, {"base": "G", "length": 231, "count": 237}, {"base": "G", "length": 233, "count": 214}, {"base": "G", "length": 238, "count": 203}, {"base": "G", "length": 243, "count": 211}, {"base": "G", "length": 252, "count": 209}, {"base": "G", "length": 253, "count": 164}, {"base": "G", "length": 254, "count": 173}, {"base": "G", "length": 256, "count": 178}, {"base": "G", "length": 264, "count": 166}, {"base": "G", "length": 265, "count": 156}, {"base": "G", "length": 266, "count": 139}, {"base": "G", "length": 267, "count": 119}, {"base": "G", "length": 269, "count": 133}, {"base": "G", "length": 279, "count": 101}, {"base": "G", "length": 282, "count": 117}, {"base": "G", "length": 283, "count": 109}, {"base": "G", "length": 286, "count": 105}, {"base": "G", "length": 287, "count": 96}, {"base": "G", "length": 291, "count": 80}, {"base": "G", "length": 300, "count": 1680}, {"base": "T", "length": 2, "count": 5054}, {"base": "T", "length": 6, "count": 4775}, {"base": "T", "length": 10, "count": 4464}, {"base": "T", "length": 12, "count": 4272}, {"base": "T", "length": 13, "count": 3993}, {"base": "T", "length": 14, "count": 3904}, {"base": "T", "length": 19, "count": 3671}, {"base": "T", "length": 23, "count": 3538}, {"base": "T", "length": 28, "count": 3263}, {"base": "T", "length": 35, "count": 3192}, {"base": "T", "length": 37, "count": 2950}, {"base": "T", "length": 39, "count": 2871}, {"base": "T", "length": 43, "count": 2626}, {"base": "T", "length": 44, "count": 2569}, {"base": "T", "length": 46, "count": 2472}, {"base": "T", "length": 55, "count": 2318}, {"base": "T", "length": 60, "count": 2290}, {"base": "T", "length": 61, "count": 2059}, {"base": "T", "length": 62, "count": 2051}, {"base": "T", "length": 66, "count": 1922}, {"base": "T", "length": 67, "count": 1809}, {"base": "T", "length": 75, "count": 1608}, {"base": "T", "length": 76, "count": 1638}, {"base": "T", "length": 80, "count": 1609}, {"base": "T", "length": 88, "count": 1405}, {"base": "T", "length": 89, "count": 1370}, {"base": "T", "length": 91, "count": 1321}, {"base": "T", "length": 95, "count": 1252}, {"base": "T", "length": 105, "count": 1205}, {"base": "T", "length": 109, "count": 1133}, {"base": "T", "length": 114, "count": 1108}, {"base": "T", "length": 115, "count": 966}, {"base": "T", "length": 121, "count": 955}, {"base": "T", "length": 130, "count": 920}, {"base": "T", "length": 131, "count": 870}, {"base": "T", "length": 132, "count": 809}, {"base": "T", "length": 134, "count": 721}, {"base": "T", "length": 137, "count": 761}, {"base": "T", "length": 145, "count": 746}, {"base": "T", "length": 146, "count": 685}, {"base": "T", "length": 147, "count": 615}, {"base": "T", "length": 149, "count": 642}, {"base": "T", "length": 153, "count": 592}, {"base": "T", "length": 158, "count": 549}, {"base": "T", "length": 159, "count": 553}, {"base": "T", "length": 165, "count": 468}, {"base": "T", "length": 172, "count": 517}, {"base": "T", "length": 174, "count": 461}, {"base": "T", "length": 181, "count": 446}, {"base": "T", "length": 192, "count": 408}, {"base": "T", "length": 196, "count": 360}, {"base": "T", "length": 199, "count": 334}, {"base": "T", "length": 201, "count": 338}, {"base": "T", "length": 204, "count": 321}, {"base": "T", "length": 208, "count": 336}, {"base": "T", "length": 212, "count": 277}, {"base": "T", "length": 219, "count": 314}, {"base": "T", "length": 222, "count": 243}, {"base": "T", "length": 235, "count": 257}, {"base": "T", "length": 242, "count": 260}, {"base": "T", "length": 247, "count": 225}, {"base": "T", "length": 255, "count": 243}, {"base": "T", "length": 259, "count": 208}, {"base": "T", "length": 262, "count": 176}, {"base": "T", "length": 263, "count": 178}, {"base": "T", "length": 270, "count": 154}, {"base": "T", "length": 272, "count": 147}, {"base": "T", "length": 281, "count": 168}, {"base": "T", "length": 284, "count": 157}, {"base": "T", "length": 285, "count": 149}, {"base": "T", "length": 290, "count": 130}, {"base": "T", "length": 293, "count": 133}, {"base": "T", "length": 296, "count": 125}, {"base": "T", "length": 300, "count": 2371} ] } } ``` ```python= ```

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully