bomo
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    --- title: 'Thread Binary Tree' disqus: hackmd --- [TOC] # Threaded Binary Tree - 引線二元樹 * 根據 [Binary Tree - Linked List](https://hackmd.io/jALze7TIS6a9A_LYNoVidA#Linked-List) 有 $n+1$ 條 Link 未使用 而在該缺點提到的:對於Leaf Link 的作法,**引線二元樹** 就是其中一個 * 我們將利用這 $n+1$ 條 Link 指向同一棵樹裡的其它 Node * 規則將依照 [Binary Tree Traversal](https://hackmd.io/jALze7TIS6a9A_LYNoVidA#Binary-Tree-Traversal) 的 **Inorder (中序)** 性質來規定 ![](https://upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Threaded_tree.svg/1200px-Threaded_tree.svg.png =500x) :::success * **Def** <br> 1. 若某 Node 的 Left Child 為 Null 則我們將 **"假裝"** 它是一條左邊的 Thread ,假設這個 Node 為 C 它會指向這顆 Binary Tree 以 Inorder Expression 裡 C 的前一個資料所在的 Node 2. 這棵樹的 Inorder Expression 為:**ABCDEFGHI** Node C 的 Left Thread (Left Link) 就會指向 B Node: **... A`B`<-`C`DEFGHI ...** 3. 同理,若 Right Child 為 Null,則指向 Inorder Expression 下一個資料所在的 Node 也就是 D Node: **... AB`C`->`D`EFGHI ...** ::: --- # Representation in Data Structure * 在 Data Structure 中我們可以將一個 Node 想像如下 ![](https://i.imgur.com/EClG3TY.png) * 在定義中提到 **"假裝"** 它是一個 Thread 原因是實際上它還是 Link 避免因為稱作 Thread 而與其他類似的東西搞混 * 既然實際上還是一條 Link 我們當然需要某些方法來分辨它到底是指向兒子的 Link 還是指向 Null 而變成 Thread 的 Link * 所以我們使用 Boolean 作為判斷該條件的參數,若它是 Thread 則 `Ture` 反之 `False` 根據上述的規則我們建立了一顆 Thread Binay Tree 圖中實線為 Link , 虛線則為 Thread 綠色 Thread 代表有 Node 可以指向,那紅色 Thread 呢? ![](https://i.imgur.com/0Fn144W.png) * 沒錯,紅色 Thread 沒有 Node 可以指向 **Inorder Expression:42135** 中 Node 4 , 5 也就是 Expression 的頭尾並不存在左右 Node 可以讓 Thread 指向 * 因此我們需要一個類似於 Linked List 中的 Head Node 來當這輛火車的領頭羊 --- ## Dummy Node - 虛擬節點 * 我們特定使用一個 Node 稱作 Dummy Node,做為這隻領頭羊 ![](https://i.imgur.com/Ig9URKU.png) * 有別於 Linked List 裡的 Head Pointer , Head 有可能會因為被 Release() 而為 Null * 只要 Threaded Binary Tree 被建立,Dummy Node 將始終存在於程式當中,直到程式結束 * 我們可以看到 Dummy Node 有幾個特點 1. 沒有存放 Data 2. Right Thread 永遠都是 False,代表他的 Right Link 永遠會指向某個 Node 3. 那個 Node 就是 Dummy Node 本身 4. 新增第一個 Node 時將放在 Dummy Node 的 Left Child * 插入第一個 Node 5 後 * **Dummy Node** 1. `Left Child = Node 5` 左兒子指向 Node 5 2. `Left Thread = false` 左 Link 不是 Thread * **Node 5** 1. `Left Child = Dummy Node` 左兒子指向 Dummy Node 2. `Left Thread = true` 左 Link 是 Thread 3. `Right Child = Dummy Node` 右兒子指向 Dummy Node 2. `Right Thread = true` 右 Link 是 Thread ![](https://i.imgur.com/CInIc4A.png =400x) --- #### **Threaded Binary Tree Insertion** * 承續上面的狀態,我們將依照 **BST** 的規則來做 Insertion * 這裡只解釋 Threaded Binary Tree 的獨特性質 1. 插入 Node 1,以藍色表示 新的 及 更動的 Link * **Node 5** * ```Left Child = Node 1``` 左兒子指向 Node 1 * ```Left Thread = false``` 左 Link 不是 Thread * **Node 1** * ```Right Child = Node 5``` 右兒子指向 Node 5 * ```Right Thread = true``` 右 Link 是 Thread * ```Left Child = Dummy Node``` 左兒子指向 Dummy Node * ```Left Thread = true``` 左 Link 是 Thread ![](https://i.imgur.com/FQEW3eQ.png =450x) 1. 插入 Node 8 * **Node 5** * ```Right Child = Node 8``` 右兒子指向 Node 8 * ```Right Thread = false``` 右 Link 不是 Thread * **Node 8** * ```Right Child = Dummy Node``` 右兒子指向 Dummy Node * ```Right Thread = true``` 右 Link 是 Thread * ```Left Child = Node 5``` 左兒子指向 Node 5 * ```Left Thread = true``` 左 Link 是 Thread ![](https://i.imgur.com/ouJ6OGW.png =450x) --- # Thread 的作用 * 講了這麼多, Thread 到底要怎麼使用,跟 Binary Traversal 又有甚麼關係 * 回想當初提到的 :::success 2. 這棵樹的 Inorder Expression 為:**ABCDEFGHI** Node C 的 Left Thread (Left Link) 就會指向 B Node: **... A`B`<-`C`DEFGHI ...** 3. 同理,若 Right Child 為 Null,則指向 Inorder Expression 下一個資料所在的 Node 也就是 D **... AB`C`->`D`EFGHI ...** ::: :::warning Right Link 會指向 Inorder Expression 裡面的後一個 Node 那麼如果我已經知道 **A** 的位置,也就是 Inorder Expression 第一個 Node 就可以不停的從 **A** 開始使用 **Right Link** :**`A`->`B`->`C`->`D`->`E`->`F`->`G`->`H`->`I`** ,求出整棵樹的 Inorder Expression , Left Link 也同理 ::: * 我們藉由圖案來理解一次,第一個點為:**`A`** 沿著右邊 Link 之依序為 **`A`->`B`->`D`->`E`->`F`->`G`->`I`** ![](https://i.imgur.com/6cHBEmy.png) <br> ???????? > [color=#476b00]如果你毫無疑問地看下來,我會很難過 知道原因的以下敘述可以略過 <br> * 到這裡你可能還沒弄清楚 Threaded Binary Tree 的定義,回想一下我們的初衷 :::info 3. 同理,若 Right Child 為 **Null**,則指向 Inorder Expression 下一個資料所在的 Node 也就是 D Node: **... AB`C`->`D`EFGHI ...** ... ::: :::danger 我們所謂的 **"指向下一個資料"** 是建立在原本是指向 **Null** 的那些 Link ::: ![](https://i.imgur.com/UDt0j1W.png) * 綠色圈圈的 Link 通通不是原本指向 Null 的 Link,代表他們的 `Right Thread == false` 這是本章節最重要的一點,也是 Threaded Binary Tree 的特色 * 由此可知,我們在使用 Thread 的時候必定是需要一些條件才能夠順暢的求出 Inorder Expression,接下來就讓我們來探討這箇中精華 - **Predecessor & Successor** --- ## Predecessor ``` presucc(tree) Input : Threaded Pointer Output : inorder predecessor of a node Begin Define Threaded Pointer : tmp; if(!tree->lThread) //如果左 link 不是引線 tmp = tree->lChild; //指向左兒子 while(!tmp->rThread) //將左兒子往右找,直到他的右 link 是引線 tmp = tmp->rChild; return temp; END ``` --- ## Successor ``` insucc(tree) Input : Threaded Pointer Output : inorder successor of a node Begin Define Threaded Pointer : tmp; if(!tree->rThread) //如果右 link 不是引線 tmp = tree->rChild; //指向右兒子 while(!tmp->lThread) //將右兒子往左找,直到他的左 link 是引線 tmp = tmp->lChild; return temp; END ``` --- ## 中序走訪 - Iterative * 這部分很容易,仔細回想 Inorder Traversal 的順序關係 第一步位置是樹中的 Leftmost Node ```graphviz digraph graphname{ 1[label="1" color=red] 2->1 2->3 } ``` * 起點:紅色三角形為最大的一棵樹 * Root:F * Left Child:橘色三角形,它的 Root 為 B * Right Child:淺藍三角形,它的 Root 為 G * 以下程式步驟將根據此圖,Thread 請自行想像 ![](https://i.imgur.com/svt4zJf.png) * **第一式 - 千里尋左子** 處理 F 的 Leftmost Child:橘色三角形 1. ``` while( CurrentNode->LeftThread!=true ){ //當前節點的 LeftLink 不是 Thread CurrentNode = CurrentNode->LeftLink; //往左 Link 移動 } printf("%c",CurrentNode->Data); //找到該樹第一個 Node 這樣一來我們便可以找到 Inorder Expression 第一個:`A` <br> * **第二式 - 穿針引右線(上冊)** 再來我們只要檢查這個 Node 的 Right Link 是不是 Thread 如果是,我們就可以透過 Thread 找到第二個資料 ```graphviz digraph graphname{ 2[label="2" color=red] 2->A 2->3 } ``` 2. ``` if( CurrentNode->RightThread == true ){ //右 Link 是 Thread CurrentNode = Current->RightLink; //移動到右 Link 指的 Node printf("Current->Data"); } 恭喜透過 Thread 找到了第二個資料:`B` ```graphviz digraph graphname{ 2[label="B" color=red] 2->A 2->3 } ``` 接著我們繼續使用 **穿針引右線** 看看能不能運氣好又找到 Thread ```graphviz digraph graphname{ 1[label="A"] 2[label="B"] 3[label="3-2" color=green] 4[label="3-1" color=green] 5[label="3-3" color=green] 2->1[] 2->3 3->4 3->5 } ``` 我們發現了一顆野生的新樹:綠色三角形 這也表示 **穿針引右線** 失敗了,我們將 **當前節點** 往野生的新樹移動 * **穿針引右線(上、中冊)** ``` if( CurrentNode->RightThread == true ){ //右 Link 是 Thread CurrentNode = Current->RightLink; //移動到右 Link 指的 Node printf("Current->Data"); } else{ Current = Current->RightChild //往野生的新樹移動 } ``` * 發現野生的新樹就是要用 **千里尋左子**,我們將兩招搭配起來 ``` if( CurrentNode->RightThread == true ){ //右 Link 是 Thread CurrentNode = Current->RightLink; //移動到右 Link 指的 Node printf("CurrentNode->Data"); } else{ CurrentNode = Current->RightChild; //往野生的新樹移動 千里尋左子(CurrentNode); } ``` ```graphviz digraph graphname{ 1[label="A"] 2[label="B"] 3[label="3-2" ] 4[label="C" color=red] 5[label="3-3" ] 2->1[] 2->3 3->4 3->5 } ``` * **穿針引右線** ```graphviz digraph graphname{ 1[label="A"] 2[label="B"] 3[label="D" color=red] 4[label="C"] 5[label="3-3" ] 2->1[] 2->3 3->4 3->5 } ``` * **穿針引右線** ```graphviz digraph graphname{ 1[label="A"] 2[label="B"] 3[label="D" ] 4[label="C"] 5[label="4-2" color=green] 6[label="4-1" color=green] 7[label="4-3" color=green] 2->1[] 2->3 3->4 3->5 5->6 5->7 } ``` * **千里尋左子** ```graphviz digraph graphname{ 1[label="A"] 2[label="B"] 3[label="D" ] 4[label="C"] 5[label="4-2"] 6[label="Null" style=dashed color=red] 7[label="4-3" ] 2->1[] 2->3 3->4 3->5 5->6 5->7 } ``` * **穿針引右線** ```graphviz digraph graphname{ 1[label="A"] 2[label="B"] 3[label="D" ] 4[label="C"] 5[label="E" color=red] 6[label="Null" style=dashed] 7[label="4-3" ] 2->1[] 2->3 3->4 3->5 5->6 5->7 } ``` * **穿針引右線** 這一步可能需要稍微思考一下,第一步我們直接從橘色三角形開始 但其實要從紅色三角形開始**千里尋左子**, 所以這步相當於紅色三角形 **千里尋左子** 結束(左子樹已經拜訪完了) 再 **穿針引右線** E->F ```graphviz digraph graphname{ 1[label="A"] 2[label="B"] 3[label="D" ] 4[label="C"] 5[label="E"] 7[label="F (4-3)" color=red] 8[label="5"] 2->1[] 2->3 3->4 3->5 7->2 7->8 } ```` * **穿針引右線** ```graphviz digraph graphname{ 1[label="A"] 2[label="B"] 3[label="D" ] 4[label="C"] 5[label="E"] 7[label="F"] 8[label="5-2" color=green] 11[label="5-1" color=green] 12[label="5-3" color=green] 2->1[] 2->3 3->4 3->5 7->2 7->8 8->11 8->12 } ```` * **千里尋左子** ```graphviz digraph graphname{ 1[label="A"] 2[label="B"] 3[label="D" ] 4[label="C"] 5[label="E"] 7[label="F"] 8[label="5-2"] 11[label="Null" style=dashed color=red] 12[label="5-3"] 2->1[] 2->3 3->4 3->5 7->2 7->8 8->11 8->12 } ```` * **穿針引右線** ```graphviz digraph graphname{ 1[label="A"] 2[label="B"] 3[label="D" ] 4[label="C"] 5[label="E"] 7[label="F"] 8[label="G" color=red] 11[label="Null" style=dashed] 12[label="5-3"] 2->1[] 2->3 3->4 3->5 7->2 7->8 8->11 8->12 } ```` * **穿針引右線** ```graphviz digraph graphname{ 1[label="A"] 2[label="B"] 3[label="D" ] 4[label="C"] 5[label="E"] 7[label="F"] 8[label="G"] 12[label="6-2" color=green] 13[label="6-1" color=green] 14[label="6-3" color=green] 2->1[] 2->3 3->4 3->5 7->2 7->8 8->12 12->13 12->14 } ```` * **千里尋左子** ```graphviz digraph graphname{ 1[label="A"] 2[label="B"] 3[label="D" ] 4[label="C"] 5[label="E"] 7[label="F"] 8[label="G"] 12[label="6-2"] 13[label="H" color=red] 14[label="6-3"] 2->1[] 2->3 3->4 3->5 7->2 7->8 8->12 12->13 12->14 } ```` * **穿針引右線** ```graphviz digraph graphname{ 1[label="A"] 2[label="B"] 3[label="D" ] 4[label="C"] 5[label="E"] 7[label="F"] 8[label="G"] 12[label="I" color=red ] 13[label="H"] 14[label="6-3"] 2->1[] 2->3 3->4 3->5 7->2 7->8 8->12 12->13 12->14 } ```` * **穿針引右線** (恭喜你,已經找不到野生的新樹了) ```graphviz digraph graphname{ 1[label="A"] 2[label="B"] 3[label="D" ] 4[label="C"] 5[label="E"] 7[label="F"] 8[label="G"] 12[label="I"] 13[label="H"] 14[label="Null" color=red style=dashed] 2->1[] 2->3 3->4 3->5 7->2 7->8 8->12 12->13 12->14 } ```` * 請別以為就這樣結束了,讓我們來回憶一下 :::success Inorder Expression:42135 中 Node 4 , 5 也就是 Expression 的頭尾並不存在左右 Node 可以讓 Thread 指向 ::: 想起我們的領頭羊了嗎,結束的條件是回到 **Dummy Node** ! ```graphviz digraph graphname{ 1[label="A"] 2[label="B"] 3[label="D" ] 4[label="C"] 5[label="E"] 7[label="F"] 8[label="G"] 12[label="I"] 13[label="H"] 14[label="Dummy Node" color=red] 2->1[] 2->3 3->4 3->5 7->2 7->8 8->12 12->13 12->14[ style=dashed] } ```` * **穿針引右線(全冊)** ``` if( CurrentNode->RightThread == true && CurrentNode->RightLink != DummyNode){ //右Link是Thread 且不是DummyNode CurrentNode = Current->RightLink; //移動到右Link指的Node printf("CurrentNode->Data"); } if( CurrentNode->RightThread == false && CurrentNode->RightLink != DummyNode){ CurrentNode = Current->RightChild; //往野生的新樹移動 CurrentNode = 千里尋左子(CurrentNode); } else{ printf("程式結束!"); } ``` :::warning **Time Complexity:** ::: > [time=Wed, May 8, 2019 6:20 PM] --- # 待補充 ### 引線由來 畫線 inorder 插入 1.找到該樹的最右子點 即是 中旭表達最後一個 2.插入在該點的右邊 ### 使用引線樹的原因 搭配插入的方式 (有待商討) 引線樹:對樹裡面 DATA 前中後序輸出會很快 插入的方法: 1. 大放右,小放左:跟前中後續完全無關 2. 根據predecessor successor來放:跟前中後續相關 * Pre-Order * Post-Order * In-Order * Level-Order ### 遺漏 * 講解程式如何處理引線接到何處 * 寫完 Traversal 再來修改此篇針對 Traversal 不必要的描述,再新增 preorder、postorder 的方法 ###### tags: `Data Structure`

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully