LiaoZZ
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    1
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # paper整理-deep learning object detection --- > 處理時間:2022/03/10 > forked from [xialeiliu/Awesome-Incremental-Learning](https://github.com/hoya012/deep_learning_object_detection) --- --- ## 2014 - <font color="#f00">**重要**</font> **[R-CNN]** Rich feature hierarchies for accurate object detection and semantic segmentation | **[CVPR' 14]** |[`[pdf]`](https://arxiv.org/pdf/1311.2524.pdf) [`[official code - caffe]`](https://github.com/rbgirshick/rcnn) - <font color="#f00">**重要**</font> **[OverFeat]** OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks | **[ICLR' 14]** |[`[pdf]`](https://arxiv.org/pdf/1312.6229.pdf) [`[official code - torch]`](https://github.com/sermanet/OverFeat) - <font color="#f00">**重要**</font> **[SPPnet]** Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition | |[`[pdf]`](https://arxiv.org/abs/1406.4729) - <font color="#f00">**重要-影像分類**</font> **[ResNet]** Deep Residual Learning for Image Recognition [`[pdf]`](https://arxiv.org/abs/1512.03385) - <font color="#f00">**重要-影像分類**</font> **[VGG]** Very Deep Convolutional Networks for Large-Scale Image Recognition [`[pdf]`](https://arxiv.org/abs/1409.1556) --- ## 2015 - <font color="#f00">**重要**</font> **[Fast R-CNN]** Fast R-CNN | **[ICCV' 15]** |[`[pdf]`](https://arxiv.org/pdf/1504.08083.pdf) [`[official code - caffe]`](https://github.com/rbgirshick/fast-rcnn) - <font color="#f00">**重要**</font> **[Faster R-CNN, RPN]** Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks | **[NIPS' 15]** |[`[pdf]`](https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf) [`[official code - caffe]`](https://github.com/rbgirshick/py-faster-rcnn) [`[unofficial code - tensorflow]`](https://github.com/endernewton/tf-faster-rcnn) [`[unofficial code - pytorch]`](https://github.com/jwyang/faster-rcnn.pytorch) --- ## 2016 - <font color="#f00">**重要**</font> **[YOLO v1]** You Only Look Once: Unified, Real-Time Object Detection | **[CVPR' 16]** |[`[pdf]`](https://arxiv.org/pdf/1506.02640.pdf) [`[official code - c]`](https://pjreddie.com/darknet/yolo/) - <font color="#f00">**重要**</font> **[OHEM]** Training Region-based Object Detectors with Online Hard Example Mining | **[CVPR' 16]** |[`[pdf]`](https://arxiv.org/pdf/1604.03540.pdf) [`[official code - caffe]`](https://github.com/abhi2610/ohem) - <font color="#f00">**重要**</font> **[SSD]** SSD: Single Shot MultiBox Detector | **[ECCV' 16]** |[`[pdf]`](https://arxiv.org/pdf/1512.02325.pdf) [`[official code - caffe]`](https://github.com/weiliu89/caffe/tree/ssd) [`[unofficial code - tensorflow]`](https://github.com/balancap/SSD-Tensorflow) [`[unofficial code - pytorch]`](https://github.com/amdegroot/ssd.pytorch) - <font color="#f00">**重要**</font> **[R-FCN]** R-FCN: Object Detection via Region-based Fully Convolutional Networks | **[NIPS' 16]** |[`[pdf]`](https://arxiv.org/pdf/1605.06409.pdf) [`[official code - caffe]`](https://github.com/daijifeng001/R-FCN) [`[unofficial code - caffe]`](https://github.com/YuwenXiong/py-R-FCN) --- ## 2017 - <font color="#f00">**重要**</font> **[FPN]** Feature Pyramid Networks for Object Detection | **[CVPR' 17]** |[`[pdf]`](http://openaccess.thecvf.com/content_cvpr_2017/papers/Lin_Feature_Pyramid_Networks_CVPR_2017_paper.pdf) [`[unofficial code - caffe]`](https://github.com/unsky/FPN) - <font color="#f00">**重要**</font> **[YOLO v2]** YOLO9000: Better, Faster, Stronger | **[CVPR' 17]** |[`[pdf]`](https://arxiv.org/pdf/1612.08242.pdf) [`[official code - c]`](https://pjreddie.com/darknet/yolo/) [`[unofficial code - caffe]`](https://github.com/quhezheng/caffe_yolo_v2) [`[unofficial code - tensorflow]`](https://github.com/nilboy/tensorflow-yolo) [`[unofficial code - tensorflow]`](https://github.com/sualab/object-detection-yolov2) [`[unofficial code - pytorch]`](https://github.com/longcw/yolo2-pytorch) - <font color="#f00">**重要**</font> **[RetinaNet]** Focal Loss for Dense Object Detection | **[ICCV' 17]** |[`[pdf]`](https://arxiv.org/pdf/1708.02002.pdf) [`[official code - keras]`](https://github.com/fizyr/keras-retinanet) [`[unofficial code - pytorch]`](https://github.com/kuangliu/pytorch-retinanet) [`[unofficial code - mxnet]`](https://github.com/unsky/RetinaNet) [`[unofficial code - tensorflow]`](https://github.com/tensorflow/tpu/tree/master/models/official/retinanet) - **[SMN]** Spatial Memory for Context Reasoning in Object Detection | **[ICCV' 17]** |[`[pdf]`](http://openaccess.thecvf.com/content_ICCV_2017/papers/Chen_Spatial_Memory_for_ICCV_2017_paper.pdf) 、引用次數133 - **[Light-Head R-CNN]** Light-Head R-CNN: In Defense of Two-Stage Object Detector | **[arXiv' 17]** |[`[pdf]`](https://arxiv.org/pdf/1711.07264.pdf) [`[official code - tensorflow]`](https://github.com/zengarden/light_head_rcnn) 、引用次數261 - <font color="#f00">**重要**</font> **[Soft-NMS]** Improving Object Detection With One Line of Code | **[ICCV' 17]** |[`[pdf]`](https://arxiv.org/pdf/1704.04503.pdf) [`[official code - caffe]`](https://github.com/bharatsingh430/soft-nms)、引用次數1055 - <font color="#f00">**重要-SSD家族**</font> **[DSSD]** DSSD : Deconvolutional Single Shot Detector | [`[pdf]`](https://arxiv.org/pdf/1704.04503.pdf) 、引用次數1570 - <font color="#f00">**重要-SSD家族**</font> **[FSSD]** FSSD: Feature Fusion Single Shot Multibox Detector | [`[pdf]`](https://arxiv.org/abs/1712.00960) 、引用次數308 ## 2018 - <font color="#f00">**重要**</font> **[YOLO v3]** YOLOv3: An Incremental Improvement | **[arXiv' 18]** |[`[pdf]`](https://pjreddie.com/media/files/papers/YOLOv3.pdf) [`[official code - c]`](https://pjreddie.com/darknet/yolo/) [`[unofficial code - pytorch]`](https://github.com/ayooshkathuria/pytorch-yolo-v3) [`[unofficial code - pytorch]`](https://github.com/eriklindernoren/PyTorch-YOLOv3) [`[unofficial code - keras]`](https://github.com/qqwweee/keras-yolo3) [`[unofficial code - tensorflow]`](https://github.com/mystic123/tensorflow-yolo-v3) - <font color="#f00">**重要**</font> **[RefineDet-SSD家族]** Single-Shot Refinement Neural Network for Object Detection | **[CVPR' 18]** |[`[pdf]`](http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Single-Shot_Refinement_Neural_CVPR_2018_paper.pdf) [`[official code - caffe]`](https://github.com/sfzhang15/RefineDet) [`[unofficial code - chainer]`](https://github.com/fukatani/RefineDet_chainer) [`[unofficial code - pytorch]`](https://github.com/lzx1413/PytorchSSD)、引用次數1055 - <font color="#f00">**重要**</font> **[Cascade R-CNN]** Cascade R-CNN: Delving into High Quality Object Detection | **[CVPR' 18]** |[`[pdf]`](http://openaccess.thecvf.com/content_cvpr_2018/papers/Cai_Cascade_R-CNN_Delving_CVPR_2018_paper.pdf) [`[official code - caffe]`](https://github.com/zhaoweicai/cascade-rcnn) 、引用次數2129 - <font color="#f00">**重要**</font> **[CornerNet]** CornerNet: Detecting Objects as Paired Keypoints | **[ECCV' 18]** |[`[pdf]`](https://arxiv.org/pdf/1808.01244.pdf) [`[official code - pytorch]`](https://github.com/princeton-vl/CornerNet)、引用次數1806 - **[Softer-NMS]** Softer-NMS: Rethinking Bounding Box Regression for Accurate Object Detection | **[arXiv' 18]** |[`[pdf]`](https://arxiv.org/pdf/1809.08545.pdf) 、引用次數259 --- ## 2019 - <font color="#f00">**重要**</font> **[M2Det]** M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network | **[AAAI' 19]** |[`[pdf]`](https://arxiv.org/pdf/1811.04533.pdf) [`[official code - pytorch]`](https://github.com/qijiezhao/M2Det) 、引用次數436 - <font color="#f00">**重要**</font> **[GIoU]** Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1902.09630.pdf) 、引用次數1233 - <font color="#f00">**重要**</font> **[Libra R-CNN]** Libra R-CNN: Towards Balanced Learning for Object Detection | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1904.02701.pdf) 、引用次數613 - <font color="#f00">**重要**</font> **[NAS-FPN]** NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1904.07392.pdf) 、引用次數697 - **[Adaptive NMS]** Adaptive NMS: Refining Pedestrian Detection in a Crowd | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1904.03629.pdf) 、引用次數152 - Diversify and Match: A Domain Adaptive Representation Learning Paradigm for Object Detection | **[CVPR' 19]** |[`[pdf]`](https://arxiv.org/pdf/1905.05396.pdf)、引用次數138 - Multi-adversarial Faster-RCNN for Unrestricted Object Detection | **[ICCV' 19]** |[`[pdf]`](https://arxiv.org/pdf/1907.10343v1.pdf)、引用次數127 - A Robust Learning Approach to Domain Adaptive Object Detection | **[ICCV' 19]** |[`[pdf]`](https://arxiv.org/pdf/1904.02361.pdf) 、引用次數103 - Selectivity or Invariance: Boundary-Aware Salient Object Detection | **[ICCV' 19]** |[`[pdf]`](https://arxiv.org/pdf/1812.10066.pdf) 、引用次數104 - <font color="#f00">**重要**</font> **[TridentNet]** Scale-Aware Trident Networks for Object Detection | **[ICCV' 19]** |[`[pdf]`](https://arxiv.org/pdf/1901.01892.pdf) 、引用次數504 - <font color="#f00">**重要**</font> **[CenterNet]** CenterNet: Keypoint Triplets for Object Detection | **[ICCV' 19]** |[`[pdf]`](https://arxiv.org/pdf/1904.08189.pdf)、引用次數962 - **[Auto-FPN]** Auto-FPN: Automatic Network Architecture Adaptation for Object Detection Beyond Classification | **[ICCV' 19]** |[`[pdf]`](http://openaccess.thecvf.com/content_ICCV_2019/papers/Xu_Auto-FPN_Automatic_Network_Architecture_Adaptation_for_Object_Detection_Beyond_Classification_ICCV_2019_paper.pdf) 、引用次數104 - **[ThunderNet]** ThunderNet: Towards Real-Time Generic Object Detection on Mobile Devices | **[ICCV' 19]** |[`[pdf]`](https://arxiv.org/pdf/1903.11752.pdf)、引用次數142 - **[RDN]** Relation Distillation Networks for Video Object Detection | **[ICCV' 19]** |[`[pdf]`](https://arxiv.org/pdf/1908.09511.pdf)、引用次數99 - **[SCAN]** Stacked Cross Refinement Network for Edge-Aware Salient Object Detection | **[ICCV' 19]** |[`[official code]`](https://github.com/wuzhe71/SCAN) |[`[pdf]`](https://openaccess.thecvf.com/content_ICCV_2019/html/Wu_Stacked_Cross_Refinement_Network_for_Edge-Aware_Salient_Object_Detection_ICCV_2019_paper.html)、引用次數164 - **[ClusDet]** Clustered Object Detection in Aerial Images | **[ICCV' 19]** |[`[pdf]`](https://arxiv.org/pdf/1904.08008.pdf)、引用次數100 - Few-Shot Object Detection via Feature Reweighting | **[ICCV' 19]** |[`[pdf]`](https://arxiv.org/pdf/1812.01866.pdf) 、引用次數281 - **[Objects365]** Objects365: A Large-Scale, High-Quality Dataset for Object Detection | **[ICCV' 19]** |[`[pdf]`](http://openaccess.thecvf.com/content_ICCV_2019/papers/Shao_Objects365_A_Large-Scale_High-Quality_Dataset_for_Object_Detection_ICCV_2019_paper.pdf) 、引用次數104 - <font color="#f00">**重要**</font> **[EGNet]** EGNet: Edge Guidance Network for Salient Object Detection | **[ICCV' 19]** |[`[pdf]`](https://arxiv.org/pdf/1908.08297.pdf) 、引用次數*400* - <font color="#f00">**重要**</font>**[FCOS]** FCOS: Fully Convolutional One-Stage Object Detection | **[ICCV' 19]** |[`[pdf]`](https://arxiv.org/pdf/1904.01355.pdf) 、引用次數**1694** - **[RepPoints]** RepPoints: Point Set Representation for Object Detection | **[ICCV' 19]** |[`[pdf]`](https://arxiv.org/pdf/1904.11490.pdf) 、引用次數**318** - Meta-Learning to Detect Rare Objects | **[ICCV' 19]** |[`[pdf]`](http://openaccess.thecvf.com/content_ICCV_2019/papers/Wang_Meta-Learning_to_Detect_Rare_Objects_ICCV_2019_paper.pdf)、引用次數117 - **[Gaussian YOLOv3]** Gaussian YOLOv3: An Accurate and Fast Object Detector using Localization Uncertainty for Autonomous Driving | **[ICCV' 19]** |[`[pdf]`](https://arxiv.org/pdf/1904.04620.pdf) [`[official code - c]`](https://github.com/jwchoi384/Gaussian_YOLOv3) 、引用次數204 - **[FreeAnchor]** FreeAnchor: Learning to Match Anchors for Visual Object Detection | **[NeurIPS' 19]** |[`[pdf]`](https://arxiv.org/pdf/1909.02466v1.pdf) 、引用次數169 - **[DetNAS]** DetNAS: Backbone Search for Object Detection | **[NeurIPS' 19]** |[`[pdf]`](https://arxiv.org/pdf/1903.10979v4.pdf) 、引用次數137 - **[AA]** Learning Data Augmentation Strategies for Object Detection | **[arXiv' 19]** |[`[pdf]`](https://arxiv.org/pdf/1906.11172.pdf) 、引用次數241 - **[Spinenet]** Spinenet: Learning scale-permuted backbone for recognition and localization | **[arXiv' 19]** |[`[pdf]`](https://arxiv.org/pdf/1912.05027.pdf) 、引用次數111 - <font color="#f00">**重要**</font> Object Detection in 20 Years: A Survey | **[arXiv' 19]** |[`[pdf]`](https://arxiv.org/pdf/1905.05055.pdf) 、引用次數508 - Salient Object Detection in the Deep Learning Era: An In-Depth Survey | **[CVPR 19]** |[`[pdf]`](https://arxiv.org/abs/1904.09146) 、引用次數288 - <font color="#f00">**重要**</font> **[CSPNet]** CSPNet: A New Backbone that can Enhance Learning Capability of CNN [`[pdf]`](https://arxiv.org/abs/1911.11929) 、引用次數736 --- ## 2020 - **[CBnet]** Cbnet: A novel composite backbone network architecture for object detection | **[AAAI' 20]** |[`[pdf]`](https://arxiv.org/pdf/1909.03625.pdf) 、引用次數144 - <font color="#f00">**重要**</font> **[Distance-IoU Loss]** Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression | **[AAAI' 20]** |[`[pdf]`](https://arxiv.org/pdf/1911.08287v1.pdf) 、引用次數594 - <font color="#f00">**重要**</font> **[YOLOv4]** YOLOv4: Optimal Speed and Accuracy of Object Detection | **[arXiv' 20]** |[`[pdf]`](https://arxiv.org/pdf/2004.10934.pdf) 、引用次數3206 - <font color="#f00">**重要**</font> **[Scaled-YOLOv4]** Scaled-YOLOv4: Scaling Cross Stage Partial Network、[`[pdf]`](https://arxiv.org/pdf/2004.10934.pdf) 、引用次數212 - **[PP YOLO]** PP-YOLO: An Effective and Efficient Implementation of Object Detector |[`[pdf]`](https://arxiv.org/abs/2007.12099) 、引用次數57 - Few-Shot Object Detection With Attention-RPN and Multi-Relation Detector | **[CVPR' 20]** |[`[pdf]`](https://arxiv.org/pdf/1908.01998.pdf) 、引用次數188 - <font color="#f00">**重要**</font> Bridging the Gap Between Anchor-Based and Anchor-Free Detection via Adaptive Training Sample Selection | **[CVPR' 20]** |[`[pdf]`](https://arxiv.org/pdf/1912.02424.pdf) 、引用次數369 - Rethinking Classification and Localization for Object Detection | **[CVPR' 20]** |[`[pdf]`](https://arxiv.org/pdf/1904.06493.pdf) 、引用次數133 - <font color="#f00">**重要**</font> **[EfficientDet]** EfficientDet: Scalable and Efficient Object Detection | **[CVPR' 20]** |[`[pdf]`](https://arxiv.org/pdf/1911.09070.pdf) 、引用次數1498 - Dynamic Refinement Network for Oriented and Densely Packed Object Detection | **[CVPR' 20]** |[`[pdf]`](https://arxiv.org/pdf/2005.09973.pdf) 、引用次數76 - **[D2Det]** D2Det: Towards High Quality Object Detection and Instance Segmentation | **[CVPR' 20]** |[`[pdf]`](https://openaccess.thecvf.com/content_CVPR_2020/papers/Cao_D2Det_Towards_High_Quality_Object_Detection_and_Instance_Segmentation_CVPR_2020_paper.pdf) 、引用次數71 - Prime Sample Attention in Object Detection | **[CVPR' 20]** |[`[pdf]`](https://arxiv.org/pdf/1904.04821.pdf) 、引用次數88 - Exploring Categorical Regularization for Domain Adaptive Object Detection | **[CVPR' 20]** |[`[pdf]`](https://arxiv.org/pdf/2003.09152.pdf) 、引用次數79 - **[NAS-FCOS]** NAS-FCOS: Fast Neural Architecture Search for Object Detection | **[CVPR' 20]** |[`[pdf]`](https://arxiv.org/pdf/1906.04423.pdf) 、引用次數79 - **[AugFPN]** AugFPN: Improving Multi-Scale Feature Learning for Object Detection | **[CVPR' 20]** |[`[pdf]`](https://arxiv.org/pdf/1912.05384.pdf) 、引用次數113 - Incremental Few-Shot Object Detection | **[CVPR' 20]** |[`[pdf]`](https://arxiv.org/pdf/2003.04668.pdf) 、引用次數90 - DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution | **[arXiv' 20]** |[`[pdf]`](https://arxiv.org/pdf/2006.02334v1.pdf) 、引用次數198 - <font color="#f00">**重要**</font> **[DETR]** End-to-End Object Detection with Transformers | **[ECCV' 20]** |[`[pdf]`](https://arxiv.org/pdf/2005.12872.pdf) 、引用次數1644 - Suppress and Balance: A Simple Gated Network for Salient Object Detection | **[ECCV' 20]** |[`[code]`](https://github.com/Xiaoqi-Zhao-DLUT/GateNet-RGB-Saliency) 、引用次數111 - **[Chained-Tracker]** Chained-Tracker: Chaining Paired Attentive Regression Results for End-to-End Joint Multiple-Object Detection and Tracking | **[ECCV' 20]** |[`[pdf]`](https://arxiv.org/pdf/2007.14557.pdf) -引用次數81 - Highly Efficient Salient Object Detection with 100K Parameters | **[ECCV' 20]** |[`[pdf]`](https://arxiv.org/pdf/2003.05643.pdf) -引用次數63 - Arbitrary-Oriented Object Detection with Circular Smooth Label | **[ECCV' 20]** |[`[pdf]`](https://arxiv.org/pdf/2003.05597.pdf) -引用次數87 - Soft Anchor-Point Object Detection | **[ECCV' 20]** |[`[pdf]`](https://arxiv.org/pdf/1911.12448.pdf) -引用次數69 - **[Dynamic R-CNN]** Dynamic R-CNN: Towards High Quality Object Detection via Dynamic Training | **[ECCV' 20]** |[`[pdf]`](https://arxiv.org/pdf/2004.06002.pdf) -引用次數91 - Multi-Scale Positive Sample Refinement for Few-Shot Object Detection | **[ECCV' 20]** |[`[pdf]`](https://arxiv.org/pdf/2007.09384.pdf) 、引用次數53 - Few-Shot Object Detection and Viewpoint Estimation for Objects in the Wild | **[ECCV' 20]** |[`[pdf]`](https://arxiv.org/pdf/2007.12107.pdf) 、引用次數60 - Pillar-based Object Detection for Autonomous Driving | **[ECCV' 20]** |[`[pdf]`](https://arxiv.org/pdf/2007.10323.pdf) 、引用次數52 - Probabilistic Anchor Assignment with IoU Prediction for Object Detection | **[ECCV' 20]** |[`[pdf]`](https://arxiv.org/pdf/2007.08103.pdf) 、引用次數76 - On the Importance of Data Augmentation for Object Detection | **[ECCV' 20]** |[`[pdf]`](https://arxiv.org/abs/1906.11172) 、引用次數53 --- ### 2021 - **[Generalized Focal Loss V2]** Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection [`[pdf]`]()、引用次數35 - **[Sparse R-CNN]** Sparse R-CNN: End-to-End Object Detection with Learnable Proposals [`[pdf]`](https://arxiv.org/abs/2011.12450)、引用次數107 - **[Center-based 3D]** Center-based 3D Object Detection and Tracking [`[pdf]`](https://arxiv.org/abs/2006.11275)、引用次數141 - **[YOLOR]** You Only Learn One Representation: Unified Network for Multiple Tasks [`[pdf]`](https://arxiv.org/abs/2105.04206)、引用次數32 --- >補充 ### 行人檢測-整理 https://github.com/xingkongliang/Pedestrian-Detection ---

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully