Yip Quan Wei
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee
  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    ```as= import argparse import time from pathlib import Path import cv2 import torch import torch.backends.cudnn as cudnn from numpy import random from models.experimental import attempt_load from utils.datasets import LoadStreams, LoadImages from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \ scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path from utils.plots import plot_one_box from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel # modified from threading import Thread from queue import Queue import numpy as np import os import math # show_3D # import matplotlib.pyplot as plt # import matplotlib # matplotlib.use( 'tkagg' ) # from mpl_toolkits import mplot3d rally = 1 show_point_frame = 60 show_point=show_point_frame getPoint = False ball_end = False ball_end_buffer = 600 template_ball_end_buffer = 600 twist=False #output xyz coor x=0 y=0 z=0 diffy=0 diffz=0 #StartBall startBall = False startCD = 80 startCDFrame = 80 #Smash GSmash = False HSmash = False HSmashCD = False GSmashCD = False smashbufferH = 0 smashbufferG = 0 smashFrame = 300 count = 0 confirmSmashFrame = 1 showGSmash = 120 #120fps showHSmash = 120 # show Ground show_ground_frame = 240 # show show_ground_frame/fps (sec) show_cnt = show_ground_frame # timer # detect Ground real_ground = False threshold = 0.3 check_ground_flag = True # enable to detect ground = True groundball_CD = 240 # ground ball Cooldown(CD) groundball_CD_cnt = groundball_CD # timer def detect(source, shift, queue_2d, circles_all, real_ground_list, save_img=False): weights, view_img, save_txt, imgsz, trace = opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace save_img = not opt.nosave and not source.endswith( '.txt') # save inference images webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith( ('rtsp://', 'rtmp://', 'http://', 'https://')) # Directories save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir # Initialize set_logging() device = select_device(opt.device) half = device.type != 'cpu' # half precision only supported on CUDA # Load model model = attempt_load(weights, map_location=device) # load FP32 model stride = int(model.stride.max()) # model stride imgsz = check_img_size(imgsz, s=stride) # check img_size if trace: model = TracedModel(model, device, opt.img_size) if half: model.half() # to FP16 # Second-stage classifier classify = False if classify: modelc = load_classifier(name='resnet101', n=2) # initialize modelc.load_state_dict(torch.load( 'weights/resnet101.pt', map_location=device)['model']).to(device).eval() # Set Dataloader vid_path, vid_writer = None, None if webcam: view_img = check_imshow() cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz, stride=stride) else: dataset = LoadImages(source, img_size=imgsz, stride=stride) # Get names and colors names = model.module.names if hasattr(model, 'module') else model.names colors = [[random.randint(0, 255) for _ in range(3)] for _ in names] # Run inference if device.type != 'cpu': model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as( next(model.parameters()))) # run once old_img_w = old_img_h = imgsz old_img_b = 1 t0 = time.time() # 10/13 for path, img, im0s, vid_cap in dataset: ### VIDEO_END = dataset.frame == dataset.nframes # print(VIDEO_END) if dataset.frame > shift: ### img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Warmup if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]): old_img_b = img.shape[0] old_img_h = img.shape[2] old_img_w = img.shape[3] for i in range(3): model(img, augment=opt.augment)[0] # Inference t1 = time_synchronized() with torch.no_grad(): # Calculating gradients would cause a GPU memory leak pred = model(img, augment=opt.augment)[0] t2 = time_synchronized() # Apply NMS pred = non_max_suppression( pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) t3 = time_synchronized() # Apply Classifier if classify: pred = apply_classifier(pred, modelc, img, im0s) # Process detections for i, det in enumerate(pred): # detections per image if webcam: # batch_size >= 1 p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy( ), dataset.count else: p, s, im0, frame = path, '', im0s, getattr( dataset, 'frame', 0) p = Path(p) # to Path save_path = str(save_dir / p.name) # img.jpg txt_path = str(save_dir / 'labels' / p.stem) + \ ('' if dataset.mode == 'image' else f'_{frame}') # img.txt # normalization gain whwh gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords( img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class # add to string s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " ######## # print("output", source, det) queue_2d.put((vid_cap, VIDEO_END, det)) ######## # Write results for *xyxy, conf, cls in reversed(det): if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view( 1, 4)) / gn).view(-1).tolist() # normalized xywh # label format line = ( cls, *xywh, conf) if opt.save_conf else (cls, *xywh) with open(txt_path + '.txt', 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n') if save_img or view_img: # Add bbox to image label = f'{names[int(cls)]} {conf:.2f}' plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1) cen1 = int((int(xyxy[0]) + int(xyxy[2]))/2) cen2 = int((int(xyxy[1]) + int(xyxy[3]))/2) # print("append ", cen1, cen2) circles_all.append((cen1, cen2)) else: # put None into queue 1016 queue_2d.put((vid_cap, VIDEO_END, None)) # draw trajectory for (cx, cy) in circles_all: cv2.circle(im0, (cx, cy), 5, color=(255, 133, 233), thickness=-1) # -1 = filled circle global getPoint global show_point_frame global show_point global rally cv2.putText(im0, "Rally:" + str(rally), (100, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 2, cv2.LINE_AA) global ball_end global ball_end_buffer global template_ball_end_buffer if ball_end: ball_end_buffer -=1 if(ball_end_buffer == 0): ball_end=False ball_end_buffer = template_ball_end_buffer if getPoint: getPoint = False show_point -= 1 if show_point < show_point_frame and show_point > 0 : show_point -= 1 elif show_point == 0: show_point= show_point_frame else: show_point = show_point_frame global real_ground global show_cnt global check_ground_flag global groundball_CD global groundball_CD_cnt if real_ground and check_ground_flag: print("real Ground") try: real_ground_list.append(circles_all[-1]) print("add to list", real_ground_list[-1]) except IndexError: print("list index out of range") pass # real_ground_list.append(circles_all[-1]) # print("add to list", real_ground_list[-1]) # print("append: ", circles_all.pop()) circles_all.clear() # print("clear list") real_ground = False # reset status check_ground_flag = False # wait until CD show_cnt -= 1 # start showing "Ground" (show_ground_frame/fps (sec)) groundball_CD_cnt -= 1 # start CD timer # draw ground point in video for (gx, gy) in real_ground_list: cv2.circle(im0, (gx, gy), 5, color=(255, 133, 233), thickness=-1) # -1 = filled circle # print Ground if show_cnt < show_ground_frame and show_cnt > 0: # cv2.putText(im0, "Ground!", (100, 200), # cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 2, cv2.LINE_AA) show_cnt -= 1 elif show_cnt == 0: show_cnt = show_ground_frame else: show_cnt = show_ground_frame if groundball_CD_cnt < groundball_CD and groundball_CD_cnt > 0: groundball_CD_cnt -= 1 check_ground_flag = False elif groundball_CD_cnt == 0: groundball_CD_cnt = groundball_CD check_ground_flag = True else: groundball_CD_cnt = groundball_CD check_ground_flag = True #output xyz coor global x global y global z global diffy global diffz # cv2.putText(im0, "X:" + str(x), (100, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 2, cv2.LINE_AA) # cv2.putText(im0, "Y:" + str(y) + " " + str(diffy), (100, 200), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 2, cv2.LINE_AA) # cv2.putText(im0, "Z:" + str(z) + " " + str(diffz), (100, 300), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 2, cv2.LINE_AA) #Smash global GSmash global HSmash global showGSmash global showHSmash if(GSmash or showGSmash != 120): cv2.putText(im0, "Guest Smash",(400, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 2, cv2.LINE_AA) GSmash = False showGSmash -= 1 if(showGSmash == 0): showGSmash = 120 if(HSmash or showHSmash != 120): cv2.putText(im0, "Home Smash", (400, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 2, cv2.LINE_AA) HSmash = False showHSmash -= 1 if(showHSmash == 0): showHSmash = 120 with open("ball_coordinate.txt", 'a') as f: f.write(str(diffy)+ " " + str(diffz) +'\n') global twist if(twist): cv2.putText(im0, "Twist", (100, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 2, cv2.LINE_AA) twist = False # Print time (inference + NMS) # print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS') # Stream results if view_img: cv2.imshow(str(p), im0) cv2.waitKey(1) # 1 millisecond # Save results (image with detections) if save_img: if dataset.mode == 'image': cv2.imwrite(save_path, im0) print( f" The image with the result is saved in: {save_path}") else: # 'video' or 'stream' if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release() # release previous video writer if vid_cap: # video fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] save_path += '.mp4' vid_writer = cv2.VideoWriter( save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) vid_writer.write(im0) print('{}: ({}/{})'.format(os.path.basename(source), dataset.frame, dataset.nframes)) # with open("ball_coordinate.txt", 'a') as f: # f.write('{}: ({}/{})'.format(os.path.basename(source), dataset.frame, dataset.nframes)+ '\n') if save_txt or save_img: s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' print(f"Results saved to {save_dir}{s}") print(f'Done. ({time.time() - t0:.3f}s)') def project_3d_position(queues_2d, queue_3d): from scipy.spatial import distance OPEN = True VIDEO_END = False prev_view1 = [0, 0, 0, 0] prev_view2 = [0, 0, 0, 0] while OPEN and not VIDEO_END: view1_cap, VIDEO_END1, ball_det_view1 = queues_2d[0].get() view2_cap, VIDEO_END2, ball_det_view2 = queues_2d[1].get() if (not ball_det_view1 is None) and (not ball_det_view2 is None): ball1_bbx = ball_det_view1.detach().cpu().numpy()[0][:4] ball2_bbx = ball_det_view2.detach().cpu().numpy()[0][:4] # bladebaby0326 # ball_det_view1_numpy = ball_det_view1.detach().cpu().numpy() # ball_det_view2_numpy = ball_det_view2.detach().cpu().numpy() # min_distance = 999999 # for det in ball_det_view1_numpy: # distance_to_prev_ball = distance.euclidean(det[:4], prev_view1) # if distance_to_prev_ball < min_distance: # min_distance = distance_to_prev_ball # ball1_bbx = det[:4] # min_distance = 999999 # for det in ball_det_view2_numpy: # distance_to_prev_ball = distance.euclidean(det[:4], prev_view2) # if distance_to_prev_ball < min_distance: # min_distance = distance_to_prev_ball # ball2_bbx = det[:4] # prev_view1 = ball1_bbx # prev_view2 = ball2_bbx # there may be more than one ball in the view, # we choose the ball with highest confidence ball1_bbx_xywh = np.array([(ball1_bbx[0]+ball1_bbx[2])/2, (ball1_bbx[1]+ball1_bbx[3])/2, ball1_bbx[2]-ball1_bbx[0], ball1_bbx[3]-ball1_bbx[1]]).astype(int) ball2_bbx_xywh = np.array([(ball2_bbx[0]+ball2_bbx[2])/2, (ball2_bbx[1]+ball2_bbx[3])/2, ball2_bbx[2]-ball2_bbx[0], ball2_bbx[3]-ball2_bbx[1]]).astype(int) # print(ball1_bbx, ball2_bbx) # print(ball1_bbx_xywh, ball2_bbx_xywh) court, b = draw2court(ball1_bbx_xywh, ball2_bbx_xywh, reRun=True, srcPts_1=getUVL_refPoint('srcPts_1'), srcPts_2=getUVL_refPoint('srcPts_2'), dstPts=getUVL_refPoint('dstPts')) print(b) # print ball x y z # save x y z to file ball_coordinate.txt # with open("ball_coordinate.txt", 'a') as f: # f.write(str(b)+ '\n') VIDEO_END = VIDEO_END1 or VIDEO_END2 queue_3d.put((view1_cap, view2_cap, VIDEO_END, b)) OPEN = view1_cap.isOpened() and view2_cap.isOpened() else: VIDEO_END = VIDEO_END1 or VIDEO_END2 queue_3d.put((view1_cap, view2_cap, VIDEO_END, [None, None, None])) def getUVL_refPoint(get_points): # 由發球位為起始點,順時針 # video 1 if get_points == 'srcPts_1': return [ [1677,717], [1074,1055], [584,775], [443,693], [327,629], [170,539], [694,460], [905,516], [1042,551], [1204,594] ] elif get_points == 'srcPts_2': return [ [747,1055], [122,739], [616,599], [788,553], [928, 512], [1135,455], [1643,519], [1490,611], [1383,676], [1241,760] ] elif get_points == 'dstPts': return [ [9, 0, 0], [0, 0, 0], [0, 6, 0], [0, 9, 0], [0, 12, 0], [0, 18, 0], [9, 18, 0], [9, 12, 0], [9, 9, 0], [9, 6, 0], ] # video 5 # if get_points == 'srcPts_1': # return [ # [1203, 938], [139, 838], [534, 631], [681, 553], [809, 487], # [1019, 377], [1725, 390], [1606, 514], [1532, 592], [1443, 685] # ] # elif get_points == 'srcPts_2': # return [ # [1888,711], [1242,895], [742,793], [535,750], [351,713], # [31,648], [655,538], [989,583], [1179,609], [1385,635] # ] # elif get_points == 'dstPts': # return [ # [9, 0, 0], [0, 0, 0], [0, 6, 0], [0, 9, 0], [0, 12, 0], # [0, 18, 0], [9, 18, 0], [9, 12, 0], [9, 9, 0], [9, 6, 0], # ] def draw2court(view1_ball, view2_ball, isShow=False, reRun=True, saveProjPath=None, srcPts_1=getUVL_refPoint('srcPts_1'), srcPts_2=getUVL_refPoint('srcPts_2'), dstPts=getUVL_refPoint('dstPts'), dist=np.load("./cfg/calib.npz")["dist_coefs"], mtx=np.load("./cfg/calib.npz")["camera_matrix"]): # def checkPts(img, pts): # img = copy.deepcopy(img) # for p in pts: # if p is not None: # print(p) # cv2.circle(img, (p[0],p[1]), 10, (0, 255, 255), 2) # cv2.namedWindow('img', cv2.WINDOW_NORMAL) # while(1): # cv2.imshow('img',img) # k = cv2.waitKey(0) & 0xFF # if k == 27: # break isProj = False projBall = None # view1ball = np.array([[view1_ball[0]+view1_ball[2]*0.5, view1_ball[1]+view1_ball[3]*0.5]], dtype=np.float32) # view2ball = np.array([[view2_ball[0]+view2_ball[2]*0.5, view2_ball[1]+view2_ball[3]*0.5]], dtype=np.float32) # read img view1pts = srcPts_1 view2pts = srcPts_2 view1pts = np.array([view1pts]).astype('float32') view2pts = np.array([view2pts]).astype('float32') if reRun: dstPts_mul = np.concatenate((dstPts, dstPts), axis=0) dstPts_mul = np.array([dstPts_mul]).astype('float32') # # mtx = np.array([[1526.7906793957582, 0.0, 952.4275689356942],[0.0, 1531.318818224647, 548.4049095626559],[0.0, 0.0, 1.0]]) # calibrationParameter = np.load("calib.npz") # ['rms', 'camera_matrix', 'dist_coefs', 'rvecs', 'tvecs'] # dist = calibrationParameter["dist_coefs"] # mtx = calibrationParameter["camera_matrix"] dstPts_pnp = np.array([dstPts]).astype('float32') # pdb.set_trace() retval1, rvec1, tvec1 = cv2.solvePnP(dstPts_pnp, view1pts, mtx, dist) r1, _ = cv2.Rodrigues(rvec1) retval2, rvec2, tvec2 = cv2.solvePnP(dstPts_pnp, view2pts, mtx, dist) r2, _ = cv2.Rodrigues(rvec2) projM1 = np.matmul(mtx, np.concatenate((r1, tvec1), axis=1)) projM2 = np.matmul(mtx, np.concatenate((r2, tvec2), axis=1)) projPathM1 = 'projM1' projPathM2 = 'projM2' if not saveProjPath is None: projPathM1 = saveProjPath+projPathM1 projPathM2 = saveProjPath+projPathM2 np.save(projPathM1, projM1) np.save(projPathM2, projM2) else: projM1 = np.load( '/media/jennychen/DATA/code/tools/ballTracking/projM1.npy') projM2 = np.load( '/media/jennychen/DATA/code/tools/ballTracking/projM2.npy') view1ball = np.array([[view1_ball[0]+view1_ball[2]*0.5, view1_ball[1]+view1_ball[3]*0.5]], dtype=np.float32) view2ball = np.array([[view2_ball[0]+view2_ball[2]*0.5, view2_ball[1]+view2_ball[3]*0.5]], dtype=np.float32) # read img pts1 = np.concatenate((view1pts[0], view1ball), axis=0) pts2 = np.concatenate((view2pts[0], view2ball), axis=0) pts1 = np.transpose(pts1) pts2 = np.transpose(pts2) pts4D = cv2.triangulatePoints(projM1, projM2, pts1, pts2) pts4D = pts4D[:, :] / pts4D[-1, :] x, y, z, w = pts4D # print('pts4D: ',pts4D) # if isProj: # np.savez("xyz.npz", x=x, y=y, z=z) # # c = np.load("pts4D.npy") # projBall = np.load("ballprojPlanePosition.npz") # projBall = [projBall["x"],projBall["y"],projBall["z"]] # if isShow: # show3D(x,y,z,projBall) ball = [x[-1], y[-1], z[-1]] courtX = x[:-1] courtY = y[:-1] courtZ = z[:-1] court = [courtX, courtY, courtZ] return court, ball def check_ball_in_court(ball_3d): x = ball_3d[0] y = ball_3d[1] if(x is None or y is None): return False else: return (0 < x < 9) & (0 < y < 18) def direction_judge(COUNTINOUS_NUMBER, diff, ball_count, direction, True_index, xyz): is_V = False direction_diff = diff[ball_count-(COUNTINOUS_NUMBER-1):ball_count+1, xyz] count = 0 for d in direction_diff: if d > 0: count += 1 if direction == None: ## initial state if count >= COUNTINOUS_NUMBER: direction = "+" elif count == 0: direction = "-" else: direction = None elif direction == "-": if count == COUNTINOUS_NUMBER: ## To + True_index.append(ball_count-(COUNTINOUS_NUMBER-1)) is_V = True direction = "+" elif direction == "+": if count == 0: if xyz != 2: ### z not need True_index.append(ball_count-(COUNTINOUS_NUMBER-1)) is_V = True direction = "-" return direction, True_index, is_V def new_direction_judge(result, current_idx, origin_state): global diffy global diffz # is_V = False y1 = result[current_idx - 1][1] y2 = result[current_idx][1] z1 = result[current_idx - 1][2] z2 = result[current_idx][2] if(y1 != None and y2 != None): diffy=(int((y1-y2)*100)) diffz=(int((z1-z2)*100)) #StartBall global startBall global startCD global startCDFrame if(y1 != None and y2 != None): if(y1 < 5 or y1 > 13): #startArea startBall = True startCD = startCDFrame startCD -= 1 print("start") if(startCD != startCDFrame): startCD -= 1 if(startCD == 0): startCD = startCDFrame startBall = False #Smash global GSmash global HSmash global HSmashCD global GSmashCD global smashbufferH global smashbufferG global smashFrame global count global confirmSmashFrame if(HSmashCD): print("HomeSmashCD") smashbufferH += 1 if(smashbufferH == smashFrame): smashbufferH = 0 HSmashCD = False if(GSmashCD): print("GuestSmashCD") smashbufferG += 1 if(smashbufferG == smashFrame): smashbufferG = 0 GSmashCD = False if(y1 != None and y2 != None): if(y1 > 6): #HSmash Area if(not HSmashCD and not startBall): if(diffy < -20): count += 1 if(count == confirmSmashFrame): HSmash = True count = 0 HSmashCD = True print("HomeSmash") if(y1 < 12): #GSmash Area if(not GSmashCD and not startBall): if(diffy > 20): count += 1 if(count == confirmSmashFrame): GSmash = True count = 0 GSmashCD = True print("GuestSmash") if z1 is None or z2 is None: return origin_state else: if (z2-z1) >= 0: state = '+' else: state = '-' return state def ground_threshold(ball_3d): global threshold x = ball_3d[0] y = ball_3d[1] z = ball_3d[2] if x is None or y is None or z is None: return False else: if z < threshold: return True else: return False def save_npy_file(queue_3d, npy_filename='../ball3d_result.npy', show_trajectory=False, write_trajectory_video=False): result = [] global getPoint global ball_end count = 0 count_ball_out_of_court = 0 buffer_ball_in_court = 0 buffer_ball_in_frame = 60 global rally VIDEO_END = False OPEN = True init_state = '+' while OPEN and not VIDEO_END: # print('count',count) view1_cap, view2_cap, VIDEO_END, ball_3d = queue_3d.get() ball_3d.append(count) ball_3d = ball_3d.copy() # 避免影響到前面預測的數值 new_ball_3d = ball_3d # result.append(ball_3d) ### Rally if check_ball_in_court(ball_3d): buffer_ball_in_court += 1 if buffer_ball_in_court >= buffer_ball_in_frame: count_ball_out_of_court = 0 # 重置計數器 else: count_ball_out_of_court += 1 # out of bound circles_all[0].clear() circles_all[1].clear() print('ball_3d:', ball_3d) print('out_of_court: ', count_ball_out_of_court) print('rally: ', rally) if count_ball_out_of_court == 160 and not ball_end: #120fps count_ball_out_of_court == 200 ,60fps count_ball_out_of_court == 60 rally += 1 getPoint = True ball_end = True buffer_ball_in_court = 0 circles_all[0].clear() circles_all[1].clear() ### #output xyz coor global x global y global z if(ball_3d[0] != None): x=new_ball_3d[0] y=new_ball_3d[1] z=new_ball_3d[2] print("X:"+str(x)) print("Y:"+str(y)) print("Z:"+str(z)) # detect ground(threshold) global real_ground global check_ground_flag if(ground_threshold(ball_3d)): real_ground = True else: real_ground = False # save ground status to npy file if new_ball_3d[0] is None and new_ball_3d[1] is None and new_ball_3d[2] is None: new_ball_3d.append(False) elif check_ground_flag and real_ground: new_ball_3d.append(True) else: new_ball_3d.append(False) print('new_ball_3d:', new_ball_3d) result.append(new_ball_3d) current_state = new_direction_judge(result, count, init_state) print("current_state:", current_state) if count % 50 == 0: result_np = np.array(result, dtype=object) # print('result_np', result_np) np.save(npy_filename, result_np) # save file while running if show_trajectory and len(result) > n_balls: # TAB - avoid closing the window too many times n_balls = 500 tmp = np.array(result[-1*n_balls-1:], dtype=float) diff = np.diff(tmp, axis=0) # x,y,z 位移 x_direction = None y_direction = None z_direction = None x_True_index = [] y_True_index = [] z_True_index = [] COUNTINOUS_NUMBER = 10 for ball_count in range(len(diff)): if ball_count >= COUNTINOUS_NUMBER-1: x_direction, x_True_index, x_is_V = direction_judge(COUNTINOUS_NUMBER, diff, ball_count, x_direction, x_True_index, xyz=0) y_direction, y_True_index, y_is_V = direction_judge(COUNTINOUS_NUMBER, diff, ball_count, y_direction, y_True_index, xyz=1) z_direction, z_True_index, z_is_V = direction_judge(COUNTINOUS_NUMBER, diff, ball_count, z_direction, z_True_index, xyz=2) global twist if x_is_V or y_is_V or z_is_V: print("Twist!!") print("x",x_True_index) print("y",y_True_index) print("z",z_True_index) twist = True # show overvall 2D and 3D trajectory show_3D_trajectory(result[-1*n_balls:]) # if write_trajectory_video: # write_video_3D_trajectory(view1_cap, view2_cap, result) OPEN = view1_cap.isOpened() and view2_cap.isOpened() count += 1 np.save(npy_filename, result_np) view1_cap.release() view2_cap.release() def write_video_3D_trajectory(view1_cap, view2_cap, trajectory): # not finished trajectory = np.array(trajectory) img1 = view1_cap.read()[1] img1 = cv2.resize(img1, None, fx=0.3, fy=0.3) img2 = view2_cap.read()[1] img2 = cv2.resize(img2, None, fx=0.3, fy=0.3) img_concate_Hori = np.concatenate((img1, img2), axis=1) # cv2.imshow('concatenated_Hori',img_concate_Hori) # cv2.waitKey(20) # crush if too small def show_3D_trajectory(ball_trajectory): ''' show_3D function can be used to show the final trajectory, but cannot be used to show animation frame-by-frame ''' # ball_trajectory = np.array(ball_trajectory) # set fig parameters fig = plt.figure(figsize=(12, 10)) gs = matplotlib.gridspec.GridSpec(12, 10) # 3D Court ax = plt.subplot(gs[:, :8], projection='3d') ax.view_init(elev=5, azim=195) ax.set_xlim(0, 9) ax.set_ylim(-1, 19) ax.set_zlim(-0.5, 5) ax.set_xlabel('X Axis') ax.set_ylabel('Y Axis') ax.set_zlabel('Z Axis') # 2D Court ax2D = plt.subplot(gs[3:9, 8:]) ax2D.set_xlim(-1, 10) ax2D.set_ylim(-3, 21) ax2D.set_xlabel('X Axis') ax2D.set_ylabel('Y Axis') time = [] xdata = [] ydata = [] zdata = [] for x, y, z, n in ball_trajectory: # print(x,y,z,n) if (x is not None) and (y is not None) and (z is not None): xdata.append(x) ydata.append(y) zdata.append(z) time.append(n) ax.scatter3D(xdata, ydata, zdata, c=time, cmap='gist_rainbow_r') ax2D.scatter(xdata, ydata, c=time, cmap='gist_rainbow_r') fig.subplots_adjust(right=0.95, left=0.05, top=0.95, bottom=0.05, hspace=0.05, wspace=0.05) # x/y ticks ax.set_xticks(np.arange(0, 9, 2)) ax.set_yticks(np.arange(0, 20, 3)) ax2D.set_xticks(np.arange(0, 10, 3)) ax2D.set_yticks(np.arange(0, 20, 3)) addCourt = True if addCourt: points = np.array([ [0, 0, 0], [9, 0, 0], [0, 6, 0], [9, 6, 0], [0, 9, 0], [9, 9, 0], [0, 12, 0], [9, 12, 0], [0, 18, 0], [9, 18, 0] ]) courtedge = [2, 0, 1, 3, 2, 4, 5, 3, 5, 7, 6, 4, 6, 8, 9, 7] curves = points[courtedge] netpoints = np.array([ [0, 9, 0], [0, 9, 1.24], [0, 9, 2.24], [9, 9, 0], [9, 9, 1.24], [9, 9, 2.24]]) netedge = [0, 1, 2, 5, 4, 1, 4, 3] netcurves = netpoints[netedge] court = points.T courtX, courtY, courtZ = court # plot 3D court reference points ax.scatter(courtX, courtY, courtZ, c='b', marker='o') ax.plot(curves[:, 0], curves[:, 1], c='k', linewidth=3, alpha=0.5) # plot 3D court edges ax.plot(netcurves[:, 0], netcurves[:, 1], netcurves[:, 2], c='k', linewidth=3, alpha=0.5) # plot 3D net edges # plot 2D court reference points ax2D.scatter(courtX, courtY, c='b', marker='o') ax2D.plot(curves[:, 0], curves[:, 1], c='k', linewidth=3, alpha=0.5) # plot 2D court edges plt.show() plt.close(fig) return fig if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)') # file/folder, 0 for webcam parser.add_argument('--source1', type=str, default='inference/images', help='source') parser.add_argument('--source2', type=str, default='inference/images', help='source') parser.add_argument("--view1_shift", type=int, default=0, help="") parser.add_argument("--view2_shift", type=int, default=0, help="") parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', action='store_true', help='display results') # 2 video input not to use! parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') parser.add_argument('--nosave', action='store_true', help='do not save images/videos') parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3') parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--update', action='store_true', help='update all models') parser.add_argument('--project', default='runs/detect', help='save results to project/name') parser.add_argument('--name', default='exp', help='save results to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--no-trace', action='store_true', help='don`t trace model') opt = parser.parse_args() print(opt) #check_requirements(exclude=('pycocotools', 'thop')) circles_all = [] real_ground_list = [] for i in range(2): circles_all.append([]) real_ground_list.append([]) with torch.no_grad(): if opt.update: # update all models (to fix SourceChangeWarning) for opt.weights in ['yolov7.pt']: detect() strip_optimizer(opt.weights) else: queues_2d = [Queue(maxsize=1), Queue(maxsize=1)] for i, (src, shift) in enumerate([(opt.source1, opt.view1_shift), (opt.source2, opt.view2_shift)]): Thread(target=detect, args=( src, shift, queues_2d[i], circles_all[i], real_ground_list[i])).start() queue_3d = Queue() Thread(target=project_3d_position, args=(queues_2d, queue_3d)).start() Thread(target=save_npy_file, args=(queue_3d,)).start() ```

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully