GTcoding
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    --- tags: code --- # Segment Tree (線段樹) [TOC] ## Usage - 主要用在區間序列的問題,區間答案要有 `結合性` ,並依 `結合性` 建樹並將區間答案合併 - 可以用陣列實現 (記憶體較小、較快) - 可以用指標實現 (方便實作動態開點、持久化) - 主要用於 `RMQ (Range Minimum/Maximim Query)` 區間最值查詢、序列 (帶修改) 區間操作 ## Introduction | - | - | - | - | - | - | - | - | | - | - | - | - | - | - | - | - | | index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | value | 5 | 2 | 3 | 4 | 7 | 6 | 1 | 以一個序列 (1-based) 為例, 以其節點為對應的區間, 可以建構出以下的樹。 ```graphviz graph main { "[1, 7]" -- {"[1, 4]" "[5, 7]"} "[1, 4]" -- {"[1, 2]" "[3, 4]"} "[5, 7]" -- {"[5, 6]" "[7, 7]"} "[1, 2]" -- {"[1, 1]" "[2, 2]"} "[3, 4]" -- {"[3, 3]" "[4, 4]"} "[5, 6]" -- {"[5, 5]" "[6, 6]"} "[7, 7]" -- {"n1"[label=""] "n2"[label=""]} } ``` 而區間對應的編號如下: ```graphviz graph main { "1" -- {"2" "3"} "2" -- {"4" "5"} "3" -- {"6" "7"} "4" -- {"8" "9"} "5" -- {"10" "11"} "6" -- {"12" "13"} "7" -- {"n1"[label=""] "n2"[label=""]} } ``` 前面的為節點編號, 後面的為對應區間。 可以藉由觀察, 可發現對於一個編號為 `id` 的節點有以下特質: - 左子樹節點編號為 $id\times 2$ - 右子樹節點編號為 $id\times 2+1$ - 左子樹與右子樹的區間答案可結合成該節點對應區間的答案 根據以上特質: 可以用陣列實做, 並完成查詢、更新的操作。 而 $n$ 非 $2$ 的冪次時, 最多可能會用到 $4\times n$ 個空間, $\implies$ 空間複雜度 $O(n)$ ## Build 通常以遞迴來實做建樹, 從 $id=1,l=1,r=N$ 開始, $m=\frac{l+r}{2}$ 分割兩個區間 $[l,m]$、$[m+1,r]$, 先遞迴左子樹再遞迴右子樹, 最後更新答案。 時間複雜度 $O(n)$ ```cpp= #define lc(x) (x << 1) #define rc(x) (x << 1 | 1) constexpr int N = 2e5 + 1; int seg[N << 2]; void build(int id, int l, int r) { if (l == r) { // 葉節點 cin >> seg[id]; // seg[id] = arr[l]; return; } int m = (l + r) >> 1; build(lc(id), l, m); // 遞迴建構左子樹 build(rc(id), m + 1, r); // 遞迴建構右子樹 seg[id] = max(seg[lc(id)], seg[rc(id)]); // 更新答案 } ``` ## Query 不必把每個區間存在每一個節點上, 只需要在需要的時候模擬區間即可。 從 $id=1,l=1,r=N,ql=查詢左界,qr=查詢右界$ 開始遞迴, 時間複雜度 $O(\log n)$。 有兩種方式, 喜歡哪種因人而異。 ### Method 1. 欲查詢 $[l,r]$ 的資料, 從根節點開始遞迴, 令 $m=\frac{l+r}{2}$, 可分為以下三種狀況: 1. $qr\le m$ (只在左半邊),只要往左半邊遞迴找答案即可。 3. $ql>m$ (只在右半邊),只要往右半邊遞迴找答案即可。 5. $ql\le m$ 且 $qr>m$ (跨越左右兩邊),分別遞迴左右兩邊,更新答案並回傳。 ```cpp= #define lc(x) (x << 1) #define rc(x) (x << 1 | 1) constexpr int N = 2e5 + 1; int seg[N << 2]; int qry(int id, int l, int r, int ql, int qr) { if (ql == l && qr == r) // 找到對應區間 return seg[id]; int m = (l + r) >> 1; if (qr <= m) // 只在左半邊 return qry(lc(id), l, m, ql, qr); if (ql > m) // 只在右半邊 return qry(rc(id), m + 1, r, ql, qr); return max(qry(lc(id), l, m, ql, m), qry(rc(id), m + 1, r, m + 1, qr)); } ``` ### Method 2. 一樣從根節點開始遞迴, 令 $m=\frac{l+r}{2}$, 可分為兩種狀況: 1. $ql <= m$ (跨越左半邊,也可能只在左半邊),查詢左邊答案。 3. $qr > m$ (跨越右半邊,也可能只右半邊),查詢右邊答案。 最後再把兩邊答案結合在一起並回傳。 ```cpp= #define lc(x) (x << 1) #define rc(x) (x << 1 | 1) constexpr int N = 2e5 + 1, inf = 1e9; int seg[N << 2]; int qry(int id, int l, int r, int ql, int qr) { if (ql <= l && r <= qr) // 區間完全包含在查詢區間 return seg[id]; int m = (l + r) >> 1, ret = -inf; if (ql <= m) // 跨越左半邊 ret = max(ret, qry(lc(id)), l, m, ql, qr); if (qr > m) // 跨越右半邊 ret = max(ret, qry(rc(id)), m + 1, r, ql, qr); return ret; ``` ## Update 單點更新, 從 $id=1,l=1,r=N,x=更新目標,v=更新值$ 分左右區間遞迴處理。 更新完之後要記得對經過的每個節點, 檢查其值是否需要更新。 時間複雜度 $O(\log n)$。 ```cpp= #define lc(x) (x << 1) #define rc(x) (x << 1 | 1) constexpr int N = 2e5 + 1; int seg[N << 2]; void upd(int id, int l, int r, int x, int v) { if (l == r) { // 找到對應節點 seg[id] = v; return; } int m = (l + r) >> 1; if (x <= m) upd(lc(id), l, m, x, v); // 遞迴左子樹 else upd(rc(id), m + 1, r, x, v); // 遞迴右子樹 seg[id] = max(seg[lc(id)], seg[rc(id)]); // 更新 } ``` ## Pointer Version 另一種實現方式, 僅供參考。 ### Code ```cpp= constexpr int N = 2e5 + 1, inf = 1e9; struct node { node *l, *r; int v; void pull() {v = max(l ? l->v : -inf, r ? r->v : -inf);} node(int vv = 0): v(vv), l(nullptr), r(nullptr) {} } *root = nullptr; void build(node* o, int l, int r) { if (l == r) {cin >> o->v; return;} int m = (l + r) >> 1; build(o->l = new node, l, m); build(o->r = new node, m + 1, r); o->pull(); } void upd(node* o, int l, int r, int x, int v) { if (l == r) {o->v = v; return;} int m = (l + r) >> 1; if (x <= m) upd(o->l, l, m, x, v); else upd(o->r, m + 1, r, x, v); o->pull(); } int qry(node* o, int l, int r, int ql, int qr) { if (l == ql && r == qr) return o->v; int m = (l + r) >> 1; if (qr <= m) return qry(o->l, l, m, ql, qr); if (ql > m) return qry(o->r, m + 1, r, ql, qr); return max(qry(o->l, l, m, ql, m), qry(o->r, m + 1, r, m + 1, qr)); } // build(root = new node, 1, N); // upd(root, 1, N, x, v); // qry(root, 1, N, ql, qr); ``` ## Lazy Propagation - 延遲標記,也有人說 `Lazy Tag` (懶惰標記) - 主要用於 `區間更新` 或著 `降低時間或空間複雜度`,更新時不把答案推到葉節點,只更新到對應區間,而是於再次經過該節點時才將標記下放 - 下放標記有優先順序,要考慮好先做哪個 ### Code ```cpp= // 區間更新 using ll = long long; constexpr int N = 2e5 + 1; ll seg[N << 2], tag[N << 2]; #define lc(x) (x << 1) #define rc(x) (x << 1 | 1) void pull(int id) { // pull up seg[id] = seg[lc(id)] + seg[rc(id)]; } void push(int id, int l, int r) { // push down if (tag[id]) { int m = (l + r) >> 1; tag[lc(id)] += tag[id], tag[rc(id)] += tag[id]; // 下放標記 seg[lc(id)] += tag[id] * (m - l + 1); // 更新左子樹區間和 seg[rc(id)] += tag[id] * (r - m); // 更新右子樹區間和 tag[id] = 0; // 歸 0 } } void upd(int id, int l, int r, int ql, int qr, ll v) { if (ql == l && qr == r) { // 找到對應區間 tag[id] += v; // 打上標記 seg[id] += v * (r - l + 1); // 更新該節點區間和 return; } push(id, l, r); // 下放標記 int m = (l + r) >> 1; if (qr <= m) upd(lc(id), l, m, ql, qr, v); else if (ql > m) upd(rc(id), m + 1, r, ql, qr, v); else upd(lc(id), l, m, ql, m, v), upd(rc(id), m + 1, r, m + 1, qr, v); pull(id); } ll qry(int id, int l, int r, int ql, int qr) { if (ql == l && qr == r) return seg[id]; push(id, l, r); // 經過時下放標記 int m = (l + r) >> 1; if (qr <= m) return qry(lc(id), l, m, ql, qr); if (ql > m) return qry(rc(id), m + 1, r, ql, qr); return qry(lc(id), l, m, ql, m) + qry(rc(id), m + 1, r, m + 1, qr); } ``` ## Dynamic Allocation - 「動態開點」用於值域範圍大,直接建構會 `RE` 或 `MLE` 的情況,實際上根本不需要這麼多節點,用於降低空間複雜度 - 每次更新,動態開點 $\log n$ 個點,`可以搭配延遲標記降低空間複雜度` - 查詢時,如果該點沒有設值,則返回 `不影響答案的值` (e.g. 區間和則回傳 $0$) - 可以用陣列實現,但指標比較好實作 ### Code ```cpp= // 區間和 & 動態開點 struct node { node *l, *r; int v; void pull() { // 更新 v = (l ? l->v : 0) + (r ? r->v : 0); } node(int vv = 0): v(vv), l(nullptr), r(nullptr) {} } *root = nullptr; void upd(node*& o, int l, int r, int x, int v) { // 因為是動態開點,傳入的指標要加參照 if (!o) o = new node; // 動態開點 if (l == r) {o->v += v; return;} int m = (l + r) >> 1; if (x <= m) upd(o->l, l, m, x, v); else upd(o->r, m + 1, r, x, v); o->pull(); } int qry(node* o, int l, int r, int ql, int qr) { if (!o) return 0; // 沒有這個點,返回不影響答案的值 if (ql <= l && r <= qr) return o->v; // 區間完全包含在查詢區間 int m = (l + r) >> 1, ret = 0; if (ql <= m) ret += qry(o->l, l, m, ql, qr); if (qr > m) ret += qry(o->r, m + 1, r, ql, qr); return ret; } ``` ## 2-Dimensional Segment Tree - 線段樹套線段樹,二維的每個節點存 `一維線段樹` ### Code ```cpp= constexpr int inf = 1e9; #define lc(x) (x << 1) #define rc(x) (x << 1 | 1) int N, M; // N : 直的 max, M : 橫的 max struct seg { vector<int> st; void pull(int); void merge(const seg&, const seg&, int, int, int); void build(int, int, int); void upd(int, int, int, int, int); int qry(int, int, int, int, int); seg(int size): st(size << 2 | 1) {} }; void seg::pull(int id) { st[id] = max(st[lc(id)], st[rc(id)]); } void seg::merge(const seg& a, const seg& b, int id = 1, int l = 1, int r = M) { st[id] = max(a.st[id], b.st[id]); if (l == r) return; int m = (l + r) >> 1; merge(a, b, lc(id), l, m), merge(a, b, rc(id), m + 1, r); } void seg::build(int id = 1, int l = 1, int r = M) { if (l == r) {cin >> st[id]; return;} int m = (l + r) >> 1; build(lc(id), l, m), build(rc(id), m + 1, r); pull(id); } void seg::upd(int x, int v, int id = 1, int l = 1, int r = M) { if (l == r) {st[id] = v; return;} int m = (l + r) >> 1; if (x <= m) upd(x, v, lc(id), l, m); else upd(x, v, rc(id), m + 1, r); pull(id); } int seg::qry(int ql, int qr, int id = 1, int l = 1, int r = M) { if (ql <= l && r <= qr) return st[id]; int m = (l + r) >> 1, ret = -inf; if (ql <= m) ret = max(ret, qry(ql, qr, lc(id), l, m)); if (qr > m) ret = max(ret, qry(ql, qr, rc(id), m + 1, r)); return ret; } struct segseg { vector<seg> st; void pull(int, int); void build(int, int, int); void upd(int, int, int, int, int, int); int qry(int, int, int, int, int, int, int); segseg(int n, int m): st(n << 2 | 1, seg(m)) {} }; void segseg::pull(int id, int x) { st[id].upd(x, max(st[lc(id)].qry(x, x), st[rc(id)].qry(x, x))); } void segseg::build(int id = 1, int l = 1, int r = N) { if (l == r) {st[id].build(); return;} int m = (l + r) >> 1; build(lc(id), l, m), build(rc(id), m + 1, r); st[id].merge(st[lc(id)], st[rc(id)]); } void segseg::upd(int y, int x, int v, int id = 1, int l = 1, int r = N) { if (l == r) {st[id].upd(x, v); return;} int m = (l + r) >> 1; if (y <= m) upd(y, x, v, lc(id), l, m); else upd(y, x, v, rc(id), m + 1, r); pull(id, x); } int segseg::qry(int y1, int y2, int x1, int x2, int id = 1, int l = 1, int r = N) { if (y1 <= l && r <= y2) return st[id].qry(x1, x2); int m = (l + r) >> 1, ret = -inf; if (y1 <= m) ret = max(ret, qry(y1, y2, x1, x2, lc(id), l, m)); if (y2 > m) ret = max(ret, qry(y1, y2, x1, x2, rc(id), m + 1, r)); return ret; } ``` 通常這記憶體使用很大, 有以下幾個解決方法 : 1. 對其中一維打懶標,如果區間只有一個數就不必遞迴下去,懶標存位置 2. 四分樹,複雜度相對較好,空間、時間都少一個 $\log$ ## Persistent - 持久化線段樹,又稱主席樹 - 以左閉右開的圖舉例 : ![](https://i.imgur.com/4D3aZ3p.png =90%x) ![](https://i.imgur.com/bFUKkld.png =90%x) ![](https://i.imgur.com/nctcDmE.png =90%x) ![](https://i.imgur.com/2xht7R8.png =90%x) 可以發現每次只有少部分的點更新,因此對於沒有更新的點就共用前一個版本的點,有更新的則新開點。 - 更新多開 $\log n$ 的節點更新資訊 - 沒有更新到的節點共用前一個版本的節點 - 根節點一定會更新到,只要保存好根節點,就可以做版本之間的查詢 ### Code #### Update ```cpp= void upd(node* prv, node* cur, int l, int r, int x, int v) { if (l == r) {cur->v = v; return;} int m = (l + r) >> 1; if (x <= m) cur->r = prv->r, upd(prv->l, cur->l = new node, l, m, x, v); else cur->l = prv->l, upd(prv->r, cur->r = new node, m + 1, r, x, v); cur->pull(); // 更新節點資訊 } ``` - `prv` 是前一個版本,`cur` 是現在的版本 - 有更新的就 `new node` 開點,沒更新的就共用前一個版本的節點 - 不論是 `prv` 又或者是 `cur` 都是完整的線段樹 (根節點) #### Query ```cpp= // 以版本間區間合的變化舉例 int qry(node* a, node* b, int l, int r, int ql, int qr) { if (ql <= l && r <= qr) return a->v - b->v; int m = (l + r) >> 1, ret = 0; if (ql <= m) ret += qry(a->l, b->l, l, m, ql, qr); if (qr > m) ret += qry(a->r, b->r, m + 1, r, ql, qr); return ret; } ``` - 查詢的話跟一般線段樹一樣,不過可以兩個版本一起查詢,少一個常數時間 ## Problems :::spoiler `ZJ f315: 4. 低地距離` ```cpp= #include <bits/stdc++.h> #define lc(x) (x << 1) #define rc(x) (x << 1 | 1) #define ll long long #define _ ios::sync_with_stdio(false), cin.tie(nullptr); using namespace std; const int MAXN = 100000; int l[MAXN + 1], r[MAXN + 1]; int seg[MAXN << 3 | 1]; void upd(int id, int l, int r, int x, int v) { if (l == r) { seg[id] += v; return; } int m = (l + r) >> 1; if (x <= m) upd(lc(id), l, m, x, v); else upd(rc(id), m + 1, r, x, v); seg[id] = seg[lc(id)] + seg[rc(id)]; } int qry(int id, int l, int r, int ql, int qr) { if (l == ql && r == qr) return seg[id]; int m = (l + r) >> 1; if (qr <= m) return qry(lc(id), l, m, ql, qr); if (ql > m) return qry(rc(id), m + 1, r, ql, qr); return qry(lc(id), l, m, ql, m) + qry(rc(id), m + 1, r, m + 1, qr); } int main() { _ int n; cin >> n; for (int i = 1, x, lim = n << 1; i <= lim; i++) { cin >> x; if (!l[x]) l[x] = i; else r[x] = i; } ll ans = 0; for (int i = 1, n2 = n << 1; i <= n; i++) { ans += qry(1, 1, n2, l[i], r[i]); upd(1, 1, n2, l[i], 1), upd(1, 1, n2, r[i], 1); } cout << ans << '\n'; } ``` ::: :::spoiler `TIOJ 1836. [IOI 2013] 遊戲 Game` > 線段樹套樹 + 動態開點 + 懶人標記 ```cpp= #pragma GCC optimize("O2") #include <bits/stdc++.h> #define gcd __gcd // if before C++ 17 using namespace std; #define debug(x) cerr << (#x) << " : " << x << '\n' using ll = long long; int N, M; struct node { node *l, *r; ll v; int tag; void pull() {v = gcd(l ? l->v : 0LL, r ? r->v : 0LL);} void push(int l, int r) { int m = (l + r) >> 1; if (tag <= m) this->l = new node(v, tag); else this->r = new node(v, tag); tag = -2; } node(ll _v = 0, int _tag = -1): v(_v), tag(_tag) {l = r = nullptr;} }; void upd(node*& o, int x, ll v, int l = 0, int r = M - 1) { if (!o) o = new node; if (o->tag == x || l == r) { o->v = v; return; } if (o->tag == -1) { o->tag = x, o->v = v; return; } if (o->tag >= 0) o->push(l, r); int m = (l + r) >> 1; if (x <= m) upd(o->l, x, v, l, m); else upd(o->r, x, v, m + 1, r); o->pull(); } ll qry(node* o, int ql, int qr, int l = 0, int r = M - 1) { if (!o) return 0; if (ql <= l && r <= qr) return o->v; if (o->tag >= 0) return ql <= o->tag && o->tag <= qr ? o->v : 0; int m = (l + r) >> 1; ll ret = 0; if (ql <= m) ret = gcd(ret, qry(o->l, ql, qr, l, m)); if (qr > m) ret = gcd(ret, qry(o->r, ql, qr, m + 1, r)); return ret; } struct seg { seg *l, *r; node* v; void pull(int x) { upd(v, x, gcd(l ? qry(l->v, x, x) : 0LL, r ? qry(r->v, x, x) : 0LL)); } seg(): v(nullptr) {l = r = nullptr;} }; void upd(seg*& o, int y, int x, ll v, int l = 0, int r = N - 1) { if (!o) o = new seg; if (!o->v) o->v = new node; if (l == r) { upd(o->v, x, v); return; } int m = (l + r) >> 1; if (y <= m) upd(o->l, y, x, v, l, m); else upd(o->r, y, x, v, m + 1, r); // update node for 1D segment tree o->pull(x); } ll qry(seg* o, int y1, int y2, int x1, int x2, int l = 0, int r = N - 1) { if (!o) return 0; if (y1 <= l && r <= y2) return qry(o->v, x1, x2); int m = (l + r) >> 1; ll ret = 0; if (y1 <= m) ret = gcd(ret, qry(o->l, y1, y2, x1, x2, l, m)); if (y2 > m) ret = gcd(ret, qry(o->r, y1, y2, x1, x2, m + 1, r)); return ret; } #define _ ios::sync_with_stdio(false), cin.tie(nullptr); int main() { _ int Q; seg *root = new seg; cin >> M >> N >> Q; // N 直的, M 橫的 while (Q--) { int op; cin >> op; if (op == 1) { int x, y; ll v; cin >> x >> y >> v; upd(root, y, x, v); } else { int x1, y1, x2, y2; cin >> x1 >> y1 >> x2 >> y2; if (x1 > x2) swap(x1, x2); if (y1 > y2) swap(y1, y2); cout << qry(root, y1, y2, x1, x2) << '\n'; } } } ``` ::: :::spoiler `ZJ a331: K-th Number` ```cpp= #pragma GCC optimize("O2") #include <bits/stdc++.h> #define ALL(x) (x).begin(), (x).end() using namespace std; struct node { node *l, *r; int v; void pull() {v = (l ? l->v : 0) + (r ? r->v : 0);} node(int _v = 0): v(_v) {l = r = nullptr;} }; void build(node* o, int l, int r) { if (l == r) return; int m = (l + r) >> 1; build(o->l = new node, l, m); build(o->r = new node, m + 1, r); } void upd(node* prv, node* cur, int l, int r, int x) { if (l == r) {cur->v += 1; return;} int m = (l + r) >> 1; if (x <= m) cur->r = prv->r, upd(prv->l, cur->l = new node, l, m, x); else cur->l = prv->l, upd(prv->r, cur->r = new node, m + 1, r, x); cur->pull(); } int find(node* a, node* b, int l, int r, int k) { if (l == r) return l; int m = (l + r) >> 1, add = b->l->v - a->l->v; if (add >= k) return find(a->l, b->l, l, m, k); return find(a->r, b->r, m + 1, r, k - add); } vector<int> a, tmp; vector<node*> ver; #define _ ios::sync_with_stdio(false), cin.tie(nullptr); int main() { _ for (int n, q; cin >> n >> q;) { a.resize(n + 1), tmp.resize(n + 1), ver.resize(n + 1); for (int i = 1, x; i <= n; i++) cin >> x, a[i] = tmp[i] = x; /* descretize */ sort(ALL(tmp)), tmp.resize(unique(ALL(tmp)) - tmp.begin()); int size = tmp.size(); build(ver[0] = new node, 1, size); for (int i = 1; i <= n; i++) { int x = lower_bound(ALL(tmp), a[i]) - tmp.begin() + 1; upd(ver[i - 1], ver[i] = new node, 1, size, x); } while (q--) { int l, r, k; cin >> l >> r >> k; int ans = tmp[find(ver[l - 1], ver[r], 1, size, k) - 1]; cout << ans << '\n'; } } } ``` :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully