Try   HackMD

[熱力學]第五、六週筆記

Image Not Showing Possible Reasons
  • The image file may be corrupted
  • The server hosting the image is unavailable
  • The image path is incorrect
  • The image format is not supported
Learn More →

Ch 4 Energy Analysis of Closed System

For a closed system, first law of thermodynamics

ΔE=Qw; Δe=qw
dE=δQδW; de=δqδw
dEdt=δQ˙δW˙; dedt=δq˙δw˙
E=U+KE+PE; e=u+ke+pe

  • Special cases
    1. Stationary System:
      ΔKE=ΔPEΔE=ΔU
    2. Steady ~: 穩態
      ΔE=0
    3. Undergoing a cycle:
      ΔE=0
    4. Adiabatic system:
      Q=0
    5. Rigid boundary:
      W=0

4.1 Moving Boundary work/ Boundary work

δWb=Fdx=FAAdx=PdV
per unit mass:δwb=Pdv
wb=12δwb=12Pdv
wb=area under pv diagram)

Polytropic process

P=cVn or PVn=c    n, c: constant

  • Special case
    1. n=o > P=c > constant pressure
      Wb=12PdV=P(V2V1)
    2. n=1 > isothermal process for an ideal gas
      Wb=12PdV=12cVdV=cln(V2V1)
      PV=c=mRTideal gas{Wb=mRTln(V2V1)wb=RTln(V2V1)  
    3. n1
      >
      P=cVn 
      adiabatic process for an calorically perfect gas
      Wb=12PdV=c12VndV=c1nV1n|V1V2=11n[cV2ncV1n]
      Wb=P2V2P1V11n
      ideal gas{Wb=mR1n(T2T1)wb=R1n(T2T1)

4.2 Specific heat - A way to evaluate
δq

  • Specific heat: energy required to raise the temperature of a unit mass of a substance by one degree. unit (
    kJkg oC
    )

Consider a stationary system with boundary work

{du=δqPdvh=u+Pv
{du=δqPdvdh=du+d(Pv)=δq+vdP
{δq|v(fixed specific volume)=du|vδq|P=dh|P

From the postulate: u=u(T,v), h=h(T,P)
by calculus
{du=(uT)vdT+(uv)Tdvdh=(hT)PdT+(hP)TdP

{du|v=(uT)vdTdh|P=(hT)PdT

  • Define specific heat at constant volume
    Cv=δq|vdT=du|vdT=(uT)v
  • Define specific heat at constant pressure
    CP=δq|PdT=dh|PdT=(hT)P

1

{CP>Cv  for a compressible substanceCP=Cv  for an incompressible substance

多一個壓縮能

會在Chapter 12證明

2

For a real gas

Cv=Cv(T,v);
 CP=CP(T,P) 
in general

  • If Cv=Cv(T), CP=CP(T) for a gasgas is thermally perfect
  • If Cv, CP=constant for a gasgas is calorically perfect

3

For a liquid and solid, since the substance nearly incompressible

CvCP=C

4.3 Internal energy, enthalpy, and specific heats of ideal gases

we can prove mathematically in Ch12 that for an ideal gas

 (uv)T=0u=u(T) only

Moreover, since

h=u+Pv
enthalpy for an ideal gas, h=u(T)+RT=h(T) only

Therefore,
Cv=(uT)v=dudT
CP=(hT)P=dhdT
Both are function of Temperature
 Cv=Cv(T), CP=CP(T)

Thus, an ideal gas is thermally perfect
{du=CvdTdh=CPdT
{Δu=T1T2CvdTΔh=T1T2CPdT

  • 實際上我們會用線性近似來求值
    For ideal gas
    ΔuCv(Tavg)(T2T1)
    ΔhCP(Tavg)(T2T1)
    Tavg=T2+T12
  • 另一種方式估計
    CP, Cv
    • 查表!Table A-2©:用多項式函數表示
      CP, Cv
      ,查可得知每種氣體對應的係數為何,再將溫度帶入即可得。

  • Specific heat ratio
    k(or γ)=defCPCv
    記法:大的(等壓比熱)在上面
    • monatomic air, k=5/3
    • Air, k=1.4記起來

大部分氣體都假設為理想氣體來計算


h=u+RT, for ideal gas
Δh=Δu+RΔT
limΔT0ΔhΔT=limΔT0ΔuΔT+R
CP=Cv+R
×MCP=Cv+Ru(universal gas constant)
CP:molar specificCv:molar specific

4.4 Internal energy, enthalpy, and specific heats of liquids and solids

similar to ideal gas,

we can prove mathematically in Ch12

 (uv)T=0u=u(T) only
Cv=dudT=CP=(hT)P=defC

  • enthalpy for an incompressible substance
    h=defu+Pv
    dh=du+d(pv)
    dh=du+vdp (incompressible)
    Δh=Δu+vΔP
    For an incompressible substance
    Δu=T1T2CdTCv(Tavg)(T2T1)
    Δh=T1T2C(T)dT+vΔP

1. constant pressure, isobaric

Δh=T1T2C(T)dT=ΔuC(TavgΔT)

2. constant temperature, isothermal

以液體為例

  • Δh=vΔP
  • Δu=0
  • Δv=0 (incompressible)v=vf

    hhf(T)=vf(T)(PPsat(T))
    h=hf(T)+vf(T)(PPsat(T))