Damiano Oldoni
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # INBO CODING CLUB 24 April 2025 Welcome! ## Share your code snippet If you want to share your code snippet, copy paste your snippet within a section of three backticks (```): As an **example**: ``` library(tidyverse) ``` (*you can copy paste this example and add your code further down*) ## Yellow sticky notes No yellow sticky notes online. Put your name + " | " and add a "*" each time you solve a challenge (see below). ## Participants Name | Challenges --- | --- Damiano Oldoni | *** Nele Mullens | *** Jorre | Sanne Govaert | * Pieter Huybrechts | *** Robin Daelemans | *** Falk Mielke | .* Amber Mertens | ** Lawrence Whatley | * ## Challenge 1 ### Sanne's solution ```r heracleum_df <- readr::read_tsv( "data/20250424/20250424_heracleum_BE.tsv" ) # 1. import shapefile muncipialities <- sf::st_read( "data/20250424/20250424_communesgemeente-belgium/georef-belgium-municipality-millesime.shp", options = "ENCODING=UTF-8" ) # 2. Create a geospatial data.frame called heracleum starting from heracleuam_df. heracleum <- heracleum_df %>% sf::st_as_sf( coords = c("decimalLongitude", "decimalLatitude"), crs = 4326 ) # 3. Which layers does the geospatial file 20250424_protected_areas_BE.gpkg contain? What differences can you see between the first and the other layers? # find layers in geospatial file 20250424_protected_areas_BE.gpkg sf::st_layers( "data/20250424/20250424_protected_areas_BE.gpkg" ) # 4. Read the layer NaturaSite_polygon: call it pa. pa <- sf::st_read( "data/20250424/20250424_protected_areas_BE.gpkg", layer = "NaturaSite_polygon" ) # 5. Read the other layers as well. Call them pa_bioregion and pa_habitats. Are these spatial data.frames? pa_bioregion <- sf::st_read( "data/20250424/20250424_protected_areas_BE.gpkg", layer = "BIOREGION" ) pa_habitats <- sf::st_read( "data/20250424/20250424_protected_areas_BE.gpkg", layer = "HABITATS" ) # 6. How to retrieve information about the CRS of pa, heracleum and municipalities? sf::st_crs(pa) sf::st_crs(heracleum) sf::st_crs(muncipialities) # 7. Do pa and heracleum have the same CRS? Do heracleum and municipalities have the same CRS? sf::st_crs(pa) == sf::st_crs(heracleum) sf::st_crs(heracleum) == sf::st_crs(muncipialities) # 8. Extract the protected areas of type (SITETYPE) A as pa_a. Hint: do it as you would do with a standard data.frame. The motto of the sf package is "Spatial data, simplified" for a reason! pa_a <- pa %>% dplyr::filter(SITETYPE == "A") ``` ### Nele's solution ```r # 1.1: Import shapefile and name it municipalities municipalities <- read_sf("./data/20250424/20250424_communesgemeente-belgium", layer = "georef-belgium-municipality-millesime") # 1.2: Create a geospatial data.frame called heracleum starting from heracleuam_df. #Use the columns decimalLongitude and decimalLatitude to specify the coordinates. #Note that GBIF data are stored using WGS 84 (CRS = 4326). heracleum_df <- read_tsv("data/20250424/20250424_heracleum_BE.tsv") heracleum <- st_as_sf(heracleuam_df, coords = c("decimalLongitude", "decimalLatitude"), crs = 4326) # 1.3 Which layers does the geospatial file 20250424_protected_areas_BE.gpkg contain? #What differences can you see between the first and the other layers? # "data/20250424/20250424_protected_areas_BE.gpkg" st_layers("data/20250424/20250424_protected_areas_BE.gpkg") # the first layer is a multi polygon # 1.4 Read the layer NaturaSite_polygon: call it pa. pa <- st_read("data/20250424/20250424_protected_areas_BE.gpkg", layer = "NaturaSite_polygon") # 1.5 Read the other layers as well. Call them pa_bioregion and pa_habitats. Are these spatial data.frames? pa_bioregion <- st_read("data/20250424/20250424_protected_areas_BE.gpkg", https://hackmd.io/s-Obj5yOTxult4YYO3XCxw?both#layer = "BIOREGION") class(pa_bioregion) pa_habitats <- st_read("data/20250424/20250424_protected_areas_BE.gpkg", layer = "HABITATS") class(pa_habitats) # 1.6 How to retrieve information about the CRS of pa, heracleum and municipalities? st_crs(pa) st_crs(heracleum) st_crs(municipalities) # 1.7 Do pa and heracleum have the same CRS? Do heracleum and municipalities have the same CRS? st_crs(pa) == st_crs(heracleum) #no st_crs(municipalities) == st_crs(heracleum) #yes # 1.8 Extract the protected areas of type (SITETYPE) A as pa_a. Hint: do it as you would do # with a standard data.frame. The motto of the sf package is "Spatial data, simplified" for a reason! glimpse(pa) pa_a <- filter(pa, SITETYPE == "A") ``` ### Pieter's solution ```r # Challenge 1 ------------------------------------------------------------- # Import the shapefile with the municipalities of Belgium: call it # municipalities. municipalities <- st_read(file.path( "data", "20250424", "georef-belgium-municipality-millesime.shp" )) # Create a geospatial data.frame called heracleum starting from heracleuam_df. # Use the columns decimalLongitude and decimalLatitude to specify the # coordinates. Note that GBIF data are stored using WGS 84 (CRS = 4326). heracleum <- heracleum_df |> st_as_sf( coords = c("decimalLongitude", "decimalLatitude"), crs = 4326 ) # Which layers does the geospatial file 20250424_protected_areas_BE.gpkg # contain? What differences can you see between the first and the other layers? st_layers(file.path("data","20250424","20250424_protected_areas_BE.gpkg")) # Read the layer NaturaSite_polygon: call it pa. pa <- st_read(file.path("data", "20250424", "20250424_protected_areas_BE.gpkg"), layer = "NaturaSite_polygon" ) # Read the other layers as well. Call them pa_bioregion and pa_habitats. Are # these spatial data.frames? pa_bioregion <- st_read(file.path("data", "20250424", "20250424_protected_areas_BE.gpkg"), layer = "BIOREGION" ) pa_habitats <- st_read(file.path("data", "20250424", "20250424_protected_areas_BE.gpkg"), layer = "HABITATS" ) # How to retrieve information about the CRS of pa, heracleum and municipalities? lapply(list(pa, heracleum, municipalities), st_crs) # Do pa and heracleum have the same CRS? Do heracleum and municipalities have # the same CRS? st_crs(heracleum) == st_crs(pa) waldo::compare(st_crs(heracleum), st_crs(pa)) # not exactly the same object, different WKT waldo::compare(st_crs(heracleum), st_crs(municipalities)) ## Same identifier, same CRS: we can check in different ways: st_crs(heracleum) == st_crs(municipalities) st_crs(heracleum)$epsg == st_crs(municipalities)$epsg st_crs(municipalities)$epsg == 4326 # from loading heracleum st_crs(heracleum)$proj4string == st_crs(municipalities)$proj4string #' Get the EPSG (ID) code of a sf object #' #' @param sf An sf object. #' #' @return The EPSG (ID) code of the sf object. get_epsg <- function(sf) { assertthat::assert_that("sf" %in% class(sf)) st_as_text(st_crs(sf), projjson = TRUE) |> jsonlite::fromJSON() |> purrr::chuck("id", "code") } get_epsg(heracleum) == get_epsg(municipalities) # Extract the protected areas of type (SITETYPE) A as pa_a. Hint: do it as you # would do with a standard data.frame. The motto of the sf package is "Spatial # data, simplified" for a reason! pa_a <- dplyr::filter(pa, SITETYPE == "A") ``` ### Jorre ```r # Import the shapefile with the municipalities of Belgium: call it # municipalities. municipalities <- st_read( 'data/20250424/20250424_communesgemeente-belgium/georef-belgium-municipality-millesime.shp' ) # Create a geospatial data.frame called heracleum starting from heracleuam_df. # Use the columns decimalLongitude and decimalLatitude to specify the # coordinates. Note that GBIF data are stored using WGS 84 (CRS = 4326). heracleum <- st_as_sf( heracleum_df, coords = c("decimalLongitude", "decimalLatitude"), crs = 4326 ) # Which layers does the geospatial file 20250424_protected_areas_BE.gpkg # contain? What differences can you see between the first and the other layers? st_layers('data/20250424/20250424_protected_areas_BE.gpkg') # Available layers: # layer_name geometry_type features fields crs_name # 1 NaturaSite_polygon Multi Polygon 310 5 ETRS89-extended / LAEA Europe # 2 BIOREGION NA 317 3 <NA> # 3 HABITATS NA 3345 16 <NA # Read the layer NaturaSite_polygon: call it pa. read_layer <- function(layer) { st_read('data/20250424/20250424_protected_areas_BE.gpkg',layer) } pa <- read_layer('NaturaSite_polygon') # Read the other layers as well. Call them pa_bioregion and pa_habitats. Are # these spatial data.frames? pa_bioregion <- read_layer('BIOREGION') pa_habitats <- read_layer('HABITATS') # How to retrieve information about the CRS of pa, heracleum and municipalities? st_crs(pa) st_crs(heracleum) st_crs(municipalities) # Do pa and heracleum have the same CRS? Do heracleum and municipalities have # the same CRS? st_crs(pa) == st_crs(heracleum) st_crs(heracleum) == st_crs(municipalities) # Extract the protected areas of type (SITETYPE) A as pa_a. Hint: do it as you # would do with a standard data.frame. The motto of the sf package is "Spatial # data, simplified" for a reason! pa_a <- pa |> filter(SITETYPE=='A') ``` ``` ``` ### Sebastiaan ```r library(sf) library(tidyverse) library(mapview) # Optional heracleum_df <- readr::read_tsv( "data/20250424/20250424_heracleum_BE.tsv" ) # Import the shapefile with the municipalities of Belgium: call it municipalities. municipalities <- st_read(dsn = "data/20250424/20250424_communesgemeente-belgium/georef-belgium-municipality-millesime.shp") #View(municipalities) # Create a geospatial data.frame called heracleum starting from heracleuam_df. Use the columns decimalLongitude and decimalLatitude to specify the coordinates. Note that GBIF data are stored using WGS 84 (CRS = 4326). #plot(heracleum_df) class(heracleum_df) heracleum <- st_as_sf(heracleum_df,coords = c("decimalLongitude","decimalLatitude")) st_crs(heracleum) <- st_crs("EPSG:4326") # Better: heracleum <- heracleum_df %>% sf::st_as_sf(coords= c("decimalLongitude","decimalLatitude"), crs = 4326) class(heracleum) # Which layers does the geospatial file 20250424_protected_areas_BE.gpkg contain? What differences can you see between the first and the other layers? st_layers("data/20250424/20250424_protected_areas_BE.gpkg") # Read the layer NaturaSite_polygon: call it pa. # Read the other layers as well. Call them pa_bioregion and pa_habitats. Are these spatial data.frames? pa <- st_read(dsn="data/20250424/20250424_protected_areas_BE.gpkg",layer="NaturaSite_polygon") pa_habitats <- st_read(dsn="data/20250424/20250424_protected_areas_BE.gpkg",layer="HABITATS") pa_bioregion <- st_read(dsn="data/20250424/20250424_protected_areas_BE.gpkg",layer="BIOREGION") # How to retrieve information about the CRS of pa, heracleum and municipalities? st_crs(pa) st_crs(heracleum) st_crs(municipalities) # Do pa and heracleum have the same CRS? Do heracleum and municipalities have the same CRS? if (st_crs(pa) == st_crs(heracleum)){ print("True") } else { print("False") } if (st_crs(pa) == st_crs(municipalities)){ print("True") } else { print("False") } # Extract the protected areas of type (SITETYPE) A as pa_a. Hint: do it as you would do with a standard data.frame. The motto of the sf package is "Spatial data, simplified" for a reason! pa_a <- pa |> filter(SITETYPE=='A') ``` ## Challenge 2 ### Jorre ```r # Create pa_a_wgs84 by transforming pa_a to WGS 84 (EPSG code: 4326). pa_a_wgs84 <- st_transform(pa_a, crs = 4326) # Write a geopackage called pa_a_heracleum_4326.gpkg with two layers: # NaturaSite_A, containing the protected areas of type A (pa_a_wgs84) and # heracleum_occs, containing heracleum. Hint: check # https://r-spatial.github.io/sf/articles/sf2.html#using-st_write. file <- 'data/20250424/pa_a_heracleum_4326.gpkg' st_write(pa_a_wgs84,file,layer="NaturaSite_A" ) st_write(heracleum ,file,layer="heracleum_occs",append=TRUE) # Due to spatial uncertainty (gridded data, GPS uncertainty, etc.) observations # should not be idealized as points in space, but as circles. Create such # circles using the values stored in column coordinateUncertaintyInMeters of # heracleum. Call this sf object heracleum_circles. heracleum_circles <- st_buffer(heracleum,dist=heracleum$coordinateUncertaintyInMeters) # Find the centroids of the municipalities. Call it municipalities_centroids. municipalities_centroids <- st_centroid(municipalities) ``` ### Nele's solution ```r # 2.1 Create pa_a_wgs84 by transforming pa_a to WGS 84 (EPSG code: 4326). pa_a_wgs84 <- st_transform(pa_a, crs = 4326) st_crs(pa_a_wgs84)$epsg # 2.2 Write a geopackage called pa_a_heracleum_4326.gpkg with two layers: NaturaSite_A, # containing the protected areas of type A (pa_a_wgs84) and heracleum_occs, containing # heracleum. Hint: check https://r-spatial.github.io/sf/articles/sf2.html#using-st_write. st_write(pa_a_wgs84, "data/20250424/pa_a_heracleum_4326.gpkg", layer = "NaturaSite_A") st_write(heracleum, "data/20250424/pa_a_heracleum_4326.gpkg", layer = "heracleum_occs") # 2.3 Due to spatial uncertainty (gridded data, GPS uncertainty, etc.) observations # should not be idealized as points in space, but as circles. Create such circles # using the values stored in column coordinateUncertaintyInMeters of heracleum. Call # this sf object heracleum_circles. heracleum_circles <- st_buffer(heracleum, dist = heracleum$coordinateUncertaintyInMeters) mapview(heracleum_circles) # 2.4 Find the centroids of the municipalities. Call it municipalities_centroids. municipalities_centroids <- st_centroid(municipalities) mapview(municipalities_centroids) ``` ### Lawrence ```r # 1 pa_a_wgs84 <- st_transform(pa_a, crs = "epsg:4326") st_crs(pa_a_wgs84) #"EPSG",4326 # 2 st_write(pa_a_wgs84, dsn = "pa_a_heracleum_4326.gpkg", layer = "NaturaSite_A.gpkg", driver = "GPKG") st_write(heracleum, dsn = "pa_a_heracleum_4326.gpkg", layer = "heracleum_occs.gpkg", driver = "GPKG") # 3 heracleum_circles <- st_buffer(heracleum, dist = heracleum$coordinateUncertaintyInMeters) mapview(heracleum_circles) # 4 municipalities_centroids <- st_centroid(municipalities) mapview(municipalities_centroids) ``` ### Pieter ```r # Create pa_a_wgs84 by transforming pa_a to WGS 84 (EPSG code: 4326). pa_a_wgs84 <- st_transform(pa_a, crs = st_crs(4326)) # Write a geopackage called pa_a_heracleum_4326.gpkg with two layers: # NaturaSite_A, containing the protected areas of type A (pa_a_wgs84) and # heracleum_occs, containing heracleum. Hint: check # https://r-spatial.github.io/sf/articles/sf2.html#using-st_write. st_write(pa_a_wgs84, dsn = "pa_a_heracleum_4326.gpkg", layer = "NaturaSite_A") st_write(heracleum, dsn = "pa_a_heracleum_4326.gpkg", layer = "heracleum_occs") # Due to spatial uncertainty (gridded data, GPS uncertainty, etc.) observations # should not be idealized as points in space, but as circles. Create such # circles using the values stored in column coordinateUncertaintyInMeters of # heracleum. Call this sf object heracleum_circles. heracleum_circles <- st_buffer(heracleum, dist = heracleum$coordinateUncertaintyInMeters) mapview(heracleum_circles) # Find the centroids of the municipalities. Call it municipalities_centroids. municipalities_centroids <- st_centroid(municipalities) mapview(municipalities_centroids) ``` ### Falk's attempt ```r # read the crs ID get_crs_id <- function (data) stringr::str_extract( gsub(" ", "\t", sf::st_crs(data)$wkt), "\n\tID\\[\"?(EPSG|[a-zA-Z]+)\",([0-9]+)\\]", group = 2) print(get_crs_id(pa)) # Create pa_a_wgs84 by transforming pa_a to WGS 84 (EPSG code: 4326) pa_a_wgs84 <- sf::st_transform(pa_a, 4326) # Write a geopackage called pa_a_heracleum_4326.gpkg with two layers: NaturaSite_A, containing the protected areas of type A (pa_a_wgs84) and heracleum_occs, containing heracleum. Hint: check https://r-spatial.github.io/sf/articles/sf2.html#using-st_write. gpkg_datafile <- "./codingclub/data/20250424_pa_a_heracleum_4326.gpkg" # NaturaSite_A sf::st_write(pa_a_wgs84, dsn = gpkg_datafile, layer = "NaturaSite_A", append = FALSE, quiet = TRUE ) # heracleum_occs sf::st_write(heracleum, dsn = gpkg_datafile, layer = "heracleum_occs", append = FALSE, quiet = TRUE ) # Due to spatial uncertainty (gridded data, GPS uncertainty, etc.) observations should not be idealized as points in space, but as circles. Create such circles using the values stored in column coordinateUncertaintyInMeters of heracleum. Call this sf object heracleum_circles heracleum_proj <- sf::st_transform(heracleum, 31370) # Projecting first will noticably increase computation speed! heracleum_circles <- sf::st_buffer( heracleum_proj, heracleum_proj$coordinateUncertaintyInMeters, nQuadSegs = 1 # not necessary ) mapview(heracleum_circles) # Find the centroids of the municipalities. Call it municipalities_centroids. mapview(sf::st_centroid(municipalities)) ``` ## Challenge 3 ### Pieter ```r # Challenge 3 ------------------------------------------------------------- # For each occurrence, find the nearest municipality as centroid. nearest_centroids <- st_nearest_feature(heracleum, municipalities_centroids) # For each occurrence, find the nearest municipality as polygon. Do you find # some differences with the previous results? nearest_polygons <- st_nearest_feature(heracleum, municipalities) all(nearest_centroids == nearest_polygons) waldo::compare(nearest_centroids, nearest_polygons) ## Make a little table tibble::tibble( nearest_centr = nearest_centroids, nearest_poly = nearest_polygons, occurrenceID = heracleum$occurrenceID ) # Protected areas extend often over several municipalities. For each protected # area of type A, find (the index of) the municipalities it belongs to. pa_a_municipalities <- st_intersects(pa_a, st_transform(municipalities, crs = st_crs(pa_a))) pa_a_municipalities # Create a new sf object called pa_durme_kruibeke with the part of the protected # area "Durme en Middenloop van de Schelde" (SITECODE: "BE2301235") falling # within the municipality of Kruibeke (mun_name_up: "KRUIBEKE"). municipalities_3035 <- st_transform(municipalities, crs = st_crs(3035)) pa_durme_kruibeke <- st_intersection( dplyr::filter(pa_a, SITECODE == "BE2301235"), dplyr::filter(municipalities_3035, mun_name_up == "KRUIBEKE") ) mapview(pa_durme_kruibeke) # We would expect that the distance between pa_durme_kruibeke and the # municipality of Kruibeke is 0. How to check it? Can you calculate the distance # between the municipalities and the protected areas of type A? Calculate the # distance using Lambert72 (EPSG: 31370) projection: do you get the same # distances? kruibeke <- dplyr::filter(municipalities_3035, mun_name_up == "KRUIBEKE") st_distance(pa_durme_kruibeke, kruibeke) dists_3035 <- st_distance(pa_a, municipalities_3035) #' Transform sf object to Belge Lambert 72 (EPSG: 31370) #' #' @param sf An sf object. #' @param target_epsg The target EPSG code to transform the sf object to. By #' default 31370 (Belge Lambert 72). #' #' @return The transformed sf object. to_bl72 <- function(sf, target_epsg = 31370){ assertthat::assert_that("sf" %in% class(sf)) st_transform(sf, crs = target_epsg) } dists_bl72 <- st_distance(to_bl72(pa_a), to_bl72(municipalities_3035)) ## There are small differences waldo::compare(dists_3035, dists_bl72) ## But not if we allow 1cm tolerance waldo::compare(dists_3035, dists_bl72, tolerance = 0.01) # For each protected area of type A, get (the index of) the occurrences as # circles that intersect within the protected area. How to get only the # occurrences that are totally contained in the protected area? st_intersects( st_transform(pa_a, crs = st_crs(heracleum_circles)), heracleum_circles ) st_covered_by( heracleum_circles, st_transform(pa_a, crs = st_crs(heracleum_circles)) ) # Sometimes you need to grid your polygons. Examples: you need to do a transect # survey with a standardized research effort. Create a grid with 5kmx5km cells. # 🐝🐝🐝 # st_make_grid( to_bl72(kruibeke), cellsize = units::set_units(5, "km"), what = "polygons", square = FALSE, flat_topped = TRUE) %>% st_sf() %>% mapview() ``` ### Jorre ```r # For each occurrence, find the nearest municipality as centroid. tmp_nearest <- st_nearest_feature(heracleum,municipalities_centroids) tmp_muni <- municipalities |> st_drop_geometry(municipalities) |> magrittr::extract(tmp_nearest,) |> select(mun_name_nl_centroid=mun_name_nl) heracleum_nearest_muni <- cbind(heracleum,tmp_muni) rm(list=ls(pattern="^tmp")) # For each occurrence, find the nearest municipality as polygon. Do you find # some differences with the previous results? tmp_nearest <- st_nearest_feature(heracleum,municipalities) tmp_muni <- municipalities |> st_drop_geometry(municipalities) |> magrittr::extract(tmp_nearest,) |> select(mun_name_nl_polygon=mun_name_nl) heracleum_nearest_muni <- cbind(heracleum_nearest_muni,tmp_muni) rm(list=ls(pattern="^tmp")) heracleum_nearest_muni |> filter(mun_name_nl_centroid!=mun_name_nl_polygon) |> View() # Protected areas extend often over several municipalities. For each protected # area of type A, find (the index of) the municipalities it belongs to. tmp_muni <- municipalities |> st_drop_geometry() |> mutate(muninumber=row_number(),mun_name_nl,.keep='none') pa_a_intersections <- pa_a_wgs84 %>% mutate(muninumber=st_intersects(., municipalities)) |> unnest(muninumber) |> left_join(tmp_muni,join_by(muninumber)) |> select(-muninumber) rm(list=ls(pattern="^tmp")) # Create a new sf object called pa_durme_kruibeke with the part of the protected # area "Durme en Middenloop van de Schelde" (SITECODE: "BE2301235") falling # within the municipality of Kruibeke (mun_name_up: "KRUIBEKE"). kruibeke <- filter(municipalities,mun_name_up == "KRUIBEKE") pa_durme_kruibeke <- st_intersection( filter(pa_a_wgs84,SITECODE == "BE2301235"), kruibeke ) # We would expect that the distance between pa_durme_kruibeke and the # municipality of Kruibeke is 0. How to check it? Can you calculate the distance # between the municipalities and the protected areas of type A? Calculate the # distance using Lambert72 (EPSG: 31370) projection: do you get the same # distances? st_distance(pa_durme_kruibeke,kruibeke) st_distance( st_transform(pa_durme_kruibeke,crs=31370), st_transform(kruibeke,crs=31370) ) # For each protected area of type A, get (the index of) the occurrences as # circles that intersect within the protected area. How to get only the # occurrences that are totally contained in the protected area? heracleum_intersect <- heracleum_circles |> st_within(pa_a_wgs84) |> enframe(value='pa_number') |> mutate(gbifID=heracleum_circles$gbifID) |> unnest(pa_number) |> mutate(sitecode=st_drop_geometry(pa_a)[pa_number,'SITENAME']) # Sometimes you need to grid your polygons. Examples: you need to do a transect # survey with a standardized research effort. Create a grid with 5kmx5km cells. ```

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully