Kevin880723
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

Your note will be visible on your profile and discoverable by anyone.
Your note is now live.
This note is visible on your profile and discoverable online.
Everyone on the web can find and read all notes of this public team.
See published notes
Unpublish note
Please check the box to agree to the Community Guidelines.
View profile
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
3
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
# 機器學習筆記目錄 ###### tags: `目錄` ## 李弘毅 - 機器學習 ### Machine Learning, 2016 - [ML Lecture 0-1 機器學習簡介](https://hackmd.io/@Kevin880723/HJ-JFpMCI) - [ML Lecture 1: Regression](https://hackmd.io/@Kevin880723/rJg3K0MCL) - [ML Lecture 2: Where does the error come from?](https://hackmd.io/@Kevin880723/Bk5GQU7RL) - [ML Lecture 3: Gradient Descent](https://hackmd.io/@Kevin880723/SJYt8UdRL) - [ML Lecture 4: Classification](https://hackmd.io/@Kevin880723/HJPbs9Yyw) - [ML Lecture 5: Logistic Regression](https://hackmd.io/@Kevin880723/B1OO_n37D) - [ML Lecture 6: Brief Introduction of Deep Learning](https://hackmd.io/@Kevin880723/S1DNrKeNv) - [ML Lecture 7: Backpropagation](https://hackmd.io/@Kevin880723/B1mZS6xEw) - [ML Lecture 8: Hello World of Deep Learning & Keras](https://hackmd.io/@Kevin880723/BJbkijBNv) - [ML Lecture 9: Tips for Training DNN](https://hackmd.io/@Kevin880723/r1Khv6SVD) - [ML Lecture 23-1: Deep Reinforcement Learning (Policy Gradient)](https://hackmd.io/@Kevin880723/ReinforcementLearning1) - [ML Lecture 23-3: Reinforcement Learning (Critic、Q-learning)](https://hackmd.io/@Kevin880723/rk7zV-Vh_) ### Deep Reinforcement Learning, 2018 > 這個播放清單的筆記延續自Machine Learning, 2016的Lecture 23。 - [DRL Lecture 4, 5: Q-learning (Advanced Tips, Continuous Action)](https://hackmd.io/@Kevin880723/HJdYMgu3O) - [DRL Lecture 6: Actor-Critic](https://hackmd.io/@Kevin880723/B1Qg0_dhO) ### Generative Adversarial Network (GAN), 2018 - [GAN Lecture 1 (2018): Introduction](https://hackmd.io/@Kevin880723/H1mxbSphO) - [GAN Lecture 2 (2018): Conditional Generation](https://hackmd.io/@Kevin880723/HkP-CLr6u) - [GAN Lecture 3 (2018): Unsupervised Conditional Generation](https://hackmd.io/@Kevin880723/ByaoawLTd) - [GAN Lecture 4 (2018): Basic Theory](https://hackmd.io/@Kevin880723/H1EAQQDp_) ### 機器學習2021 - [Transformer](https://hackmd.io/@Kevin880723/BJ0nZv51q) ## Stanford Machine Learning - [Lecture 6: Training Neural Network 1](https://hackmd.io/@Kevin880723/SkUBP8tiF) - [Lecture 9: CNN Architecture](https://hackmd.io/@Kevin880723/ry77dZdjF) - [Lecture 10: Recurrent Neural Network](https://hackmd.io/@Kevin880723/r1nfloSiK) - [Lecture 11: Detection and Segmentation](https://hackmd.io/@Kevin880723/S1okXYdsF) ## 林軒田 - 機器學習基石 - [Lecture 01: The Learning Problem](https://hackmd.io/@Kevin880723/rJrCc5bHP) - [Lecture 02: Learning to Answer Yes/No](https://hackmd.io/@Kevin880723/SJPDINIHw) - [Lecture 03: Types of Learning](https://hackmd.io/@Kevin880723/HyhXdYtBv) - [Lecture 04: Feasibility of Learning](https://hackmd.io/@Kevin880723/HyxUuPkIw) - [Lecture 05: Training versus Testing](https://hackmd.io/@Kevin880723/SyvnjX38P) - [Lecture 06: Theory of Generation](https://hackmd.io/@Kevin880723/rJFCNDbPv) - [Lecture 07: The VC Dimension](https://hackmd.io/@Kevin880723/BJPRr5M_v) - [Lecture 08: Noise and Error](https://hackmd.io/@Kevin880723/HJMGo-BOv) - [Lecture 09: Linear Regression](https://hackmd.io/@Kevin880723/Byy7ZsPuw) - [Lecture 10: Logistic Regression](https://hackmd.io/@Kevin880723/BJiSJ5Kuw) - [Lecture 11: Linear Models for Classification](https://hackmd.io/@Kevin880723/HJ_Vrf_Fw) - [Lecture 12: Nonlinear Transformation](https://hackmd.io/@Kevin880723/H10AT5oFP) - [Lecture 13: Hazard of Overfitting](https://hackmd.io/@Kevin880723/BkpG1RhKD) - [Lecture 14: Regularization](https://hackmd.io/@Kevin880723/ryMdDf6tD) - [Lecture 15: Validation](https://hackmd.io/@Kevin880723/H1PPphy9v) - [Lecture 16: Three Learning Principles](https://hackmd.io/@Kevin880723/BkM3BO9cv) ## 林軒田 - 機器學習技法 - [Lecture 01: Linear Support Vector Machine (SVM)](https://hackmd.io/@Kevin880723/rkFtQT2qD) - [Lecture 02: Dual Support Vector Machine](https://hackmd.io/@Kevin880723/S1PJMH1iv) - [Lecture 03: Kernel Support Vector Machine](https://hackmd.io/@Kevin880723/SJuoy75sv) - [Lecture 04: Soft-Margin Support Vector Machine](https://hackmd.io/@Kevin880723/HkvO3TbnP) - [Lecture 07: Blending and Bagging](https://hackmd.io/@Kevin880723/r1XQ3EgTP) - [Lecture 08: Adative Boosting](https://hackmd.io/@Kevin880723/rJAv0NEpP) - [Lecture 09: Decision Tree](https://hackmd.io/@Kevin880723/S192t9VTP) - [Lecture 10: Random Forest](https://hackmd.io/@Kevin880723/r12FELv6v) - [Lecture 11: Gradient Boosted Decision Tree](https://hackmd.io/@Kevin880723/BkC5g2Tav) - [Lecture 12: Neural Network](https://hackmd.io/@Kevin880723/rkXIzNihw) - [Lecture 15: Matrix Factorization](https://hackmd.io/@Kevin880723/rJOodeAhD) ## 深度學習論文 ### 1. 風格轉換 - [Learning Linear Transformations for Fast Image and Video Style Transfer](https://hackmd.io/@Kevin880723/Syz_kP2sv) ### 2. 物件偵測 - [You Only Look Once: Unified, Real-Time Object Detection (YOLOv1)](https://hackmd.io/@Kevin880723/rJHkavReO) - [YOLO9000: Better, Faster, Stronger (YOLOv2)](https://hackmd.io/@Kevin880723/YOLO9000) - [YOLOv3: An Incremental Improvement](https://hackmd.io/@Kevin880723/H1-EHcrXd) ### 3. 影像深度預測 - [Digging Into Self-Supervised Monocular Depth Estimation (monodepth2)](https://hackmd.io/@Kevin880723/MonoDepth2) ### 4. Domain Apaptation - [Stagewise Unsupervised Domain Adaptation With Adversarial Self-Training for Road Segmentation of Remote-Sensing Images](https://hackmd.io/@Kevin880723/SyHETgo7F) - [ProCST: Boosting Semantic Segmentation using Progressive Cyclic Style-Transfer](https://hackmd.io/@Kevin880723/SkvXINBL9) - [Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation (ProDA)](https://hackmd.io/9LNQXLWCQjOsb5gNXXgcHw?view#Prototypical-pseudo-label-denoising-and-target-structure-learning-for-domain-adaptive-semantic-segmentation-ProDA) - [Metacorrection: Domain-aware meta loss correction for unsupervised domain adaptation in semantic segmentation](https://hackmd.io/9LNQXLWCQjOsb5gNXXgcHw?view#Metacorrection-Domain-aware-meta-loss-correction-for-unsupervised-domain-adaptation-in-semantic-segmentation) - [Attention Guided Multiple Source and Target Domain Adaptation](https://hackmd.io/yhLizBeoRnmgV-es1uKKUg?view) - [Unsupervised Intra-domain Adaptation for Semantic Segmentation through Self-Supervision](https://hackmd.io/9LNQXLWCQjOsb5gNXXgcHw?view#Unsupervised-Intra-domain-Adaptation-for-Semantic-Segmentation-through-Self-Supervision) - [Classes matter: A fine-grained adversarial approach to cross-domain semantic segmentation](https://hackmd.io/9LNQXLWCQjOsb5gNXXgcHw?view#Classes-matter-A-fine-grained-adversarial-approach-to-cross-domain-semantic-segmentation) - [Spherical Space Domain Adaptation with Robust Pseudo-label Loss](https://hackmd.io/9LNQXLWCQjOsb5gNXXgcHw?view#Spherical-Space-Domain-Adaptation-with-Robust-Pseudo-label-Loss) - [Generative Pseudo-label Refinement for Unsupervised Domain Adaptation](https://hackmd.io/9LNQXLWCQjOsb5gNXXgcHw?view#Generative-Pseudo-label-Refinement-for-Unsupervised-Domain-Adaptation) - [Progressive Feature Alignment for Unsupervised Domain Adaptation](https://hackmd.io/9LNQXLWCQjOsb5gNXXgcHw?view#Progressive-Feature-Alignment-for-Unsupervised-Domain-Adaptation) - [Category anchor-guided unsupervised domain adaptation for semantic segmentation](https://hackmd.io/9LNQXLWCQjOsb5gNXXgcHw?view#Category-anchor-guided-unsupervised-domain-adaptation-for-semantic-segmentation) - [Image to Image Translation for Domain Adaptation](https://hackmd.io/9LNQXLWCQjOsb5gNXXgcHw?view#Image-to-Image-Translation-for-Domain-Adaptation) ### 5. 語意式分割 - [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (ICCV 2021)](https://hackmd.io/@Kevin880723/SwinTransformer) - [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://hackmd.io/@Kevin880723/SegFormer) ### 6. 模型剪枝 - [Distilling the Knowledge in a Neural Network](https://hackmd.io/@Kevin880723/Sk85QarFt) ### 7. 實驗室論文 - [Semantic Segmentation for Free Space and Lane Based on Grid-based Interest Point Detection](https://hackmd.io/@Kevin880723/ryHYDtXkK) - [一種應用於自動駕駛系統之針對一階物件偵測架構之持續學習策略](https://hackmd.io/@Kevin880723/r1f6cJqZY) <!-- [No-Reference Quality Metric for Depth Maps(還沒讀完)](https://hackmd.io/@Kevin880723/rkb-h3cnO) --> ## 深度學習實作 - [PyTorch筆記](https://hackmd.io/@Kevin880723/PyTorch) [深度學習相關環境紀錄(有些地方可能有問題,參考看看就好)](https://hackmd.io/@Kevin880723/ByG_rDuQd) ## 關鍵字 - Lecture 07: The VC Dimension:實際需使用的資料量為$d_{VC}$的10倍。 - GAN Lecture 4 (2018): Basic Theory:Discriminator一次更新3~5次,Generator一次更新一次。

Import from clipboard

Paste your markdown or webpage here...

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template has been removed or transferred.
Upgrade
All
  • All
  • Team
No template.

Create a template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

Slide Example

API Docs

Edit in VSCode

Install browser extension

Contacts

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

Note content is identical to the latest version.
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully