Hong En
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # Lab14:數據資料視覺化 ###### tags: `2023計概` `學生版` ## AMR 的移動方式 -PBL應用 AMR 大多是利用同步定位與地圖建構(Simultaneous Localization and Mapping,SLAM)技術來實現自主移動,而根據傳感器的不同,又分為以下兩種。 - 雷射導航(LiDAR SLAM) - 工作原理:雷射導航通常依賴於LiDAR(Light Detection and Ranging)技術。LiDAR是一種遠程感測技術,它通過發射雷射光束並接收反射回來的光束來測量物體的距離。通過這些距離數據,AMR可以建立周圍環境的3D地圖。 - 優點: - 高精度:LiDAR可以提供非常精確的距離測量。 - 在各種光照條件下都能正常工作,包括在黑暗的環境中。 - 缺點: - 成本較高:尤其是高解析度的LiDAR裝置。 - 有物理大小和形狀的限制,可能不適合某些狹小或特定的應用場景。 - 視覺導航(Visual SLAM) - 工作原理:視覺導航依賴於相機和電腦視覺技術。AMR會捕捉周圍環境的影像,然後使用電腦視覺算法分析這些影像,從中識別出路徑、障礙物和其他重要特徵。 - 優點: - 能夠識別和理解更為複雜的環境特徵,例如顏色、形狀和紋理。 - 相機技術不斷進步,成本相對較低。 - 可以與其他技術(如深度學習)結合,進一步提高導航的精確性和適應性。 - 缺點: - 受光照條件影響:例如,在低光或強光的環境中可能不太可靠。 - 資料處理需求較高,需要更強大的計算能力。 無論是雷射導航還是視覺導航,它们都有其獨特的優點和應用場景。在實際應用中,有些AMR可能會結合多種導航技術,以確保在各種環境和條件下都能夠有效和安全地導航。我們之後會簡介一下使用深度學習的方式,教學怎麼透過模型訓練完成這個任務。 ## 注意 這次的lab可以選在電腦或是樹梅派上完成 ## Matplotlib ### 介紹 ![image](https://hackmd.io/_uploads/S1IonxVI6.png) 在大數據應用的時代,除了將資料分析後的結果具體呈現之外,總希望可以在整個分析過程當中利用資料視覺化來看出一些有趣及重要的insight,尤其在大數據下的機器學習及人工智慧應用更是重要。 ![image](https://hackmd.io/_uploads/HkN0GFWUa.png) ![image](https://hackmd.io/_uploads/Hk9jMtWUp.png) ### install ```pip install matplotlib``` 創一個test.py打上 ```python= import matplotlib.pyplot as plt ``` 執行他,如果沒事就沒問題! * 如果遇到 * ![](https://i.imgur.com/7HyHUmR.png) ```python= pip uninstall matplotlib #如果你已經安裝過,若沒有則跳過 pip install numpy --upgrade --ignore-installed sudo apt-get install libatlas-base-dev pip install matplotlib #安裝 Matplotlib ``` <font color='red' size='20'>如果你連線到樹梅派操作plt.show()沒用</font> <font color='red' size='20'>請把每張圖片用 plt.savefig()存下來後,點開來看 </font> <!-- ### example data 梅西、C羅 2005-2021的國家隊比賽數據 (維基百科寫的) https://zh.wikipedia.org/zh-tw/%E5%88%A9%E6%98%82%E5%86%85%E5%B0%94%C2%B7%E6%A2%85%E8%A5%BF https://zh.m.wikipedia.org/zh-tw/%E5%9F%BA%E6%96%AF%E5%9D%A6%E5%A5%B4%C2%B7%E6%9C%97%E6%8B%BF%E5%BA%A6 ```python= Messi_goal = [0,2,6,2,3,2,4,12,6,8,4,8,4,4,5,1,9,14] #進球數 Messi_play = [5,7,14,8,10,10,13,9,7,14,8,11,7,5,10,4,16,11] #上場數 C_goal = [0,7,2,6,5,1,3,7,5,10,5,3,13,11,6,14,3,7] #進球數 C_play = [2,16,11,14,10,8,7,11,8,13,9,9,5,13,11,7,10,6,8] #上場數 ``` --> ## numpy ![image](https://hackmd.io/_uploads/H1amAo78p.png) NumPy,全名為 Numeric Python,是一個開源的 Python 函式庫,用於在 Python 中進行科學計算。它提供了一個強大的 N 維陣列對象,豐富的廣播功能,以及各種數學、邏輯、形狀操作、排序、選擇、I/O、離散傅立葉變換、基本線性代數、基本統計運算和隨機模擬等功能。NumPy 是許多高階科學計算包的核心,如 SciPy、Pandas、Matplotlib、scikit-learn 等,這些包在資料分析、機器學習等領域非常受歡迎。 高效能的多維陣列(ndarray):NumPy 的核心是多維陣列對象。這是一種強大的數據結構,能夠讓你進行高效的向量化計算、廣播等操作。 集成 C/C++ 和 Fortran 代碼的能力:NumPy 可以很方便地和 C/C++ 或 Fortran 代碼集成,這對於需要優化性能的重計算任務來說非常重要。 原本python的list -> 速度慢 numpy -> 速度快 ### 下載 ```pip install numpy ``` ### np.linespace() Numpy 中的 linspace 函數可以在一定範圍內來均勻地撒點 ```python= import numpy as np a = np.linspace(1, 3, 3) #在1-3之間產生3個點 print(a) # [ 1. 2. 3.] b = np.linspace(1, 5, 20) #在1-5之間產生20個點 print(b) # [1. 1.21052632 1.42105263 1.63157895 1.84210526 2.05263158 # 2.26315789 2.47368421 2.68421053 2.89473684 3.10526316 3.31578947 # 3.52631579 3.73684211 3.94736842 4.15789474 4.36842105 4.57894737 # 4.78947368 5. ] print(type(b)) #<class 'numpy.ndarray'> ``` ### 圖表的構成 ![](https://i.imgur.com/hVbPJ3D.png) * Figure: 指的是畫布,也就是當我們要畫圖時,要先創建一個畫布,才能在上面加上各種圖片(元素) * Axes: 代表的則是紙中的其中一片區域(可能有很多子圖) * Axis: 指x, y軸(or z軸 3維時) ### scatter 散點圖 ```python= x = np.linspace(0, 10, 20) y = np.sin(x) # sin函數 plt.scatter(x, y) # 繪製散點圖 plt.title('Scatter Plot') plt.xlabel('x') plt.ylabel('y') plt.show() ``` ![](https://i.imgur.com/j1RwoQ6.png) ### plot 折線圖 ```python= # 繪製直線 x = np.linspace(0, 10, 20) x2 = np.linspace(0, 10, 100) y1 = np.sin(x) y2 = np.cos(x2) plt.plot(x, y1, label='y1') plt.plot(x2, y2, label='y2') plt.title('Scatter Plot') plt.xlabel('x') plt.ylabel('y') plt.legend() plt.show() ``` ![image](https://hackmd.io/_uploads/H1RPvtb8p.png) ### plt.legend() ![image](https://hackmd.io/_uploads/rJp4ue4Ua.png) 梅西、C羅 2005-2021的國家隊比賽數據 (維基百科寫的) https://zh.wikipedia.org/zh-tw/%E5%88%A9%E6%98%82%E5%86%85%E5%B0%94%C2%B7%E6%A2%85%E8%A5%BF https://zh.m.wikipedia.org/zh-tw/%E5%9F%BA%E6%96%AF%E5%9D%A6%E5%A5%B4%C2%B7%E6%9C%97%E6%8B%BF%E5%BA%A6 ```python= Messi_goal = [0,2,6,2,3,2,4,12,6,8,4,8,4,4,5,1,9,14] #進球數 Messi_play = [5,7,14,8,10,10,13,9,7,14,8,11,7,5,10,4,16,11] #上場數 C_goal = [0,7,2,6,5,1,3,7,5,10,5,3,13,11,6,14,3,7] #進球數 C_play = [2,16,11,14,10,8,7,11,8,13,9,9,5,13,11,7,10,6,8] #上場數 years = np.array(range(2005,2023)) # years = np.arange(2005,2022) print(years) # [2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022] plt.plot(years, Messi_goal, '-o', label='Messi') plt.plot(years, C_goal, '-*', label='C.Ronaldo') plt.title('Messi v.s. C.Ronaldo') plt.xlabel('years') plt.ylabel('goals') plt.legend() plt.show() ``` ![](https://i.imgur.com/QqTrUvl.png) ### hist直方圖 ```python= plt.hist( Messi_goal, label='Messi') plt.hist(C_goal, label='C.Ronaldo') plt.title('Messi v.s. C.Ronaldo') plt.xlabel('years') plt.ylabel('goals') plt.legend() plt.show() ``` ![](https://i.imgur.com/sorUJWe.png) ### bar長條圖 #### enumerate: 同時輸出索引與元素 ```python= List = ['a', 'b', 'c', 'd', 'e'] for value in enumerate(List): print(value) # (0, 'a') # (1, 'b') # (2, 'c') # (3, 'd') # (4, 'e') ``` ```python= List = ['a', 'b', 'c', 'd', 'e'] for index, element in enumerate(List): print(f"Index: {index}, Element: {element}") # Index: 0, Element: a # Index: 1, Element: b # Index: 2, Element: c # Index: 3, Element: d # Index: 4, Element: e ``` ```python= Messi_total = sum(Messi_goal) # 計算總進球數 C_goal_total = sum(C_goal) total_list = [Messi_total, C_goal_total] ind = np.arange(len(total_list)) plt.xticks(ind, ['Messi', 'C.Ronaldo']) #指定x軸座標軸 plt.bar(ind, total_list) plt.title("Messi v.s. C.Ronaldo total goals") for index, data in enumerate(total_list): plt.text(x = index, y =data, s=data, horizontalalignment='center', fontsize=15) plt.show() # horizontalalignment: 水平位置 # verticalalignment: 垂直位置 ``` ![image](https://hackmd.io/_uploads/rJYL2-NLa.png) ### subplot 子圖 使用 subplot()的方法建立子圖表時,會按照 row ( 垂直 )、column ( 水平 ) 的矩陣方式,將子圖表放入對應的位置,下圖表示擁有 3x3 和 3x2 個子圖表的畫布,各個子圖表的 index ( 位置 ) 和排列順序。 ![](https://i.imgur.com/ksZLMyw.png) ```python= fig = plt.figure(figsize=(8,6)) fig.add_subplot(2, 2, 1)#建立2 x 2的子圖 plt.subplot(2, 2, 1) # 繪製第1個位置 x = np.linspace(0, 10, 20) y = np.sin(x) plt.scatter(x, y) plt.title('Scatter Plot') plt.xlabel('x') plt.ylabel('y') plt.subplot(2, 2, 2) # 繪製第2個位置 plt.plot(years, Messi_goal, '-o', label='Messi') plt.plot(years, C_goal, '-*', label='C.Ronaldo') plt.title('Messi v.s. C.Ronaldo') plt.xlabel('years') plt.ylabel('goals') plt.legend() plt.subplot(2, 2, 3) # 繪製第3個位置 plt.hist( Messi_goal, label='Messi') plt.hist(C_goal, label='C.Ronaldo') plt.title('Messi v.s. C.Ronaldo') plt.xlabel('years') plt.ylabel('goals') plt.legend() plt.subplot(2, 2, 4) # 繪製第4個位置 Messi_total = sum(Messi_goal) # 計算總進球數 C_goal_total = sum(C_goal) total_list = [Messi_total, C_goal_total] ind = np.arange(len(total_list)) plt.xticks(ind, ['Messi', 'C.Ronaldo']) #指定x軸座標軸 plt.bar(ind, total_list) plt.title("Messi v.s. C.Ronaldo total goals") for index, data in enumerate(total_list): plt.text(x = index, y =data, s=data, horizontalalignment='center', fontsize=15) fig.suptitle('subplot example ', fontsize=16) plt.tight_layout() #讓子圖之間適當排列不重疊 plt.show() ``` ![](https://i.imgur.com/IJnY7dM.png) ### 儲存圖片 ```python= fig = plt.figure() # 建立圖表 fig.savefig('lab12.png') #儲存圖片 ``` ### 補充資料 [matplotlib官網](https://matplotlib.org/) [plt / ax / fig是什麼?怎麼用?](https://chwang12341.medium.com/%E7%A8%8B%E5%BC%8F%E8%A7%80%E5%BF%B5-%E5%A4%A7%E5%AE%B6%E9%83%BD%E6%9C%83%E4%BD%BF%E7%94%A8plt%E7%95%AB%E5%9C%96-%E4%BD%86%E6%98%AF%E4%BD%A0%E7%9C%9F%E7%9A%84%E7%9F%A5%E9%81%93plt-ax-fig%E6%98%AF%E4%BB%80%E9%BA%BC%E5%97%8E-%E6%80%8E%E9%BA%BC%E7%94%A8-6f0bc6404f8f) [高階python繪圖工具seaborn](https://seaborn.pydata.org/) ## Lab14 [Temperature.txt](https://drive.google.com/file/d/1hhtRrYekBfjp-dNCeICUBqtMddV-Gr6q/view?usp=sharing) 檔案中包含了台南的2013-2021的每月溫度資料 下載Temperature.txt到lab12資料夾中,與lab12.py一樣路徑 <font color = 'red'>請搜尋python read txt file來讀取Temperature.txt </font> ```python= # 資料建議整以下這樣 print(temp_list) [ # [1月, 2月, 3月, 4月, 5月, 6月, 7月, 8月, 9月, 10月, 11月, 12月] [17.5, 20.4, 22.5, 23.9, 27.3, 29.5, 29.4, 28.9, 28.6, 25.7, 22.8, 18.0], #2013 ........................ [16.5, 19.7, 22.4, 24.6, 29.0, 28.3, 29.1, 28.4, 29.5, 27.3, 23.2, 19.3] #2021 ] ``` 1. 將歷年的台南氣溫資料用plt.plot()繪製成如下圖,儲存圖片命名為 lab12_01.png hint: 可以自己建立一個年份的list,利用for迴圈可以提高撰寫效率 ![](https://i.imgur.com/Nzf1Uts.png) 2. 分別計算每個月份每年的氣溫平均值,把12個月份分別的的氣溫平均值繪製成一張表 計算每個月分氣溫的總平均值(全部的平均),在圖表上繪製一條水平虛線,並且標示總平均值的數字在須線上,儲存圖片命名為 lab12_02.png ![](https://i.imgur.com/R79p5nl.png) 3. 將前面兩張圖片使用subplot(1,2,x)畫在同一張圖片上,儲存圖片命名為 lab12_03.png ```python= fig = plt.figure(figsize=(15,6)) ... fig.savefig('lab12_03.png') ``` ![](https://i.imgur.com/5i9d5ZP.png) ## Lab14加分題 [oddExperiment.txt](https://drive.google.com/file/d/173nbRv8VNZNVOI96Sk_iqLH8iEEL4wUk/view?usp=sharing) ```python= ### 資料前處理 # 讀完的資料會長這樣 [301.8267195898913, 206.48068590297993, ...........139.43161572804308, 281.7900813768265, 229.67424006279856] [-10, -9, ................. 9, 10] ``` 1. 將資料點利用plt.scatter繪製出來 2. 利用np.polyfit與np.poly1d 去找出最符合資料分布的**一階多項式** 以及 **二階多項式**,並且繪製出來 3. 計算資料點的與一階多項式 以及 二階多項式分別的**least square error (mean square error)** 以及,顯示在plt.legend()中 4. 儲存圖片命名為 lab12_plus.png ![image](https://hackmd.io/_uploads/SkoNyGNI6.png) ### 注意事項 * <font color="red">所有圖片的x,y座標,legend位置,圖標顏色、大小、形狀,都要盡量一模一樣,沒有的話會斟酌扣分</font> * deadline為 5/7 23:59 * 上傳到 GitHub lab14 * Lab14與Lab14加分題請分成兩個檔案上傳,檔名: <a>lab14.py</a>, lab12_plus.py * 所有圖片都要一起上傳到github * 資料夾名稱:「lab12」 * 程式碼名稱:「lab14.py」, 「lab14_plus.py」 * 圖片檔案:「lab14_01.png」、「lab14_02.png」、「lab14_03.png」、「lab12_plus.png」 <!-- ### Lab13參考答案 ```python= # read file with open('Temperature.txt','r') as fh: next(fh) #跳過第一行 linelist = fh.readlines() for i in range(len(linelist)): linelist[i] = linelist[i].strip() #strip()去除換行字元(\n)和空白字元 onelinelist = [] for i in range(len(linelist)): onelinelist.append(linelist[i].split(', ')) #將linelist中每一個元素存成onelinelist每一個row temp_list = [] for i in range(len(onelinelist)): onelinelist[i] = list(map(float, onelinelist[i])) #將資料轉換為float型態 temp_list.append(onelinelist[i][1:]) #去除年份,只留下每個月的溫度資料 # Lab13_1 for i in range(0,9): plt.plot(list(range(1,13)),temp_list[i],label=str(int(year[i]))) plt.legend(loc = 'lower center') ax=plt.gca() ax.xaxis.set_major_locator(MultipleLocator(1)) plt.xlabel('Month') plt.ylabel('Temperature in Degree C') plt.title('Tainan Monthly Mean Temperature From 2013 To 2021') # Lab13_2 temp = [] temp2 =[] for j in range(12): for i in range(9): temp2.append(temp_list[i][j]) temp.append(temp2) temp2 =[] degree = [] for i in range(12): degree.append(np.mean(temp[i])) plt.plot(list(range(1,13)),degree) #, marker='o', markerfacecolor='r', markersize=5 plt.scatter(list(range(1,13)),degree, c='red', alpha=1) for i in range(12): plt.text(i+1,degree[i],'{}'.format(round(degree[i], 2)), ha='left', va = 'bottom', ma='center') plt.axhline(np.mean(temp), color='red', linestyle="--", label='Mean of 9 Years') plt.text(1,degree[3],'{}'.format(round(degree[3], 2)), ha='left', va = 'bottom', ma='center') plt.legend(loc = 'upper right') ax=plt.gca() ax.xaxis.set_major_locator(MultipleLocator(1)) plt.ylim(16,32) plt.xlabel('Month') plt.ylabel('Temperature in Degree C') plt.title('Tainan Monthly Mean Temperature Of 2013 To 2021') # L13_3 fig = plt.figure(figsize=(15,6)) plt.subplot(1,2,1) # 第一張圖 for i in range(0,9): plt.plot(list(range(1,13)),temp_list[i],label=str(int(year[i]))) plt.legend(loc = 'lower center') ax=plt.gca() ax.xaxis.set_major_locator(MultipleLocator(1)) plt.xlabel('Month') plt.ylabel('Temperature in Degree C') plt.title('Tainan Monthly Mean Temperature From 2013 To 2021') plt.subplot(1,2,2) # 第二張圖 plt.plot(list(range(1,13)),degree) #, marker='o', markerfacecolor='r', markersize=5 plt.scatter(list(range(1,13)),degree, c='red', alpha=1) for i in range(12): plt.text(i+1,degree[i],'{}'.format(round(degree[i], 2)), ha='left', va = 'bottom', ma='center') plt.axhline(np.mean(temp), color='red', linestyle="--", label='Mean of 9 Years') plt.text(1,degree[3],'{}'.format(round(degree[3], 2)), ha='left', va = 'bottom', ma='center') plt.legend(loc = 'upper right') ax=plt.gca() ax.xaxis.set_major_locator(MultipleLocator(1)) plt.ylim(16,32) plt.xlabel('Month') plt.ylabel('Temperature in Degree C') plt.title('Tainan Monthly Mean Temperature Of 2013 To 2021') plt.tight_layout() plt.show() fig.savefig('lab13_3.png') ``` ### Lab13 加分題 參考答案 ```python= #read file x = [] y = [] path = 'oddExperiment.txt' with open(path) as f: next(f) for line in f.readlines(): s = line.split(' ') x.append(float(s[0])) y.append(int(s[1])) print(x) print(y) # print(score) # 定義誤差函數 def error(x, y, degree): results = {} coeffs = np.polyfit(x, y, degree) p = np.poly1d(coeffs) #calculate r-squared yhat = p(x) ybar = np.sum(y)/len(y) ssreg = np.sum((yhat-ybar)**2) sstot = np.sum((y - ybar)**2) # results['R2'] = ssreg / sstot results['R2'] = r2_score(y,yhat) #calculate MSE mse = np.mean((y - yhat)**2) # results['MSE'] = mse results['MSE'] = mean_squared_error(y, yhat) return results model1 = np.poly1d(np.polyfit(y, x, 1)) model2 = np.poly1d(np.polyfit(y, x, 2)) polyline = np.linspace(10, -10, 20) plt.scatter(y, x, label='Data') plt.plot(polyline, model1(polyline), label='Fit of degree 1, LSE = '+ str(round(error(y, x, 1)['MSE'], 5)), c='orange') plt.plot(polyline, model2(polyline), label='Fit of degree 2, LSE = '+ str(round(error(y, x, 2)['MSE'], 5)), c='g') plt.plot(polyline, model1(polyline), label='Fit of degree 1, R2 = '+ str(round(error(y, x, 1)['R2'], 5)), c='r') plt.plot(polyline, model2(polyline), label='Fit of degree 2, R2 = '+ str(round(error(y, x, 2)['R2'], 5)), c='purple') plt.title('oddExperiment Data') plt.legend(loc = 'upper center') plt.show() ``` --> - 一個沒對其 -10

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully