周惶振
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # MSP-Lab SER Hackathon (Fighting!!!) > [name=David, Lucas, Seong-Gyun, Luz, Ali, Abinay, Jeri] > > [time=Sat, Jun 18, 2022 12:19 PM] # [Github](https://github.com/sgleem/SS_for_SER/tree/development) # [UTD BOX](https://utdallas.box.com/s/epmdxo2fm8qorntezrbmz9tr5sulnqzn) # [Results Table](https://docs.google.com/spreadsheets/d/1yuQ106ZgJ2dZ7TEpuq9F16O9tTOsO4m2cm1F6vKF1nY/edit?usp=sharing) # [Overleaf](https://www.overleaf.com/7187996787gtxmgpjnsmfk) # Experiments to Run * USC-IEMOCAP: - David's Rule/Multi-label/ALL_secondary/Hard-label/All_partitions - Plurality rule/All experiments * CREMA-D - Majority voting/Hard-label&Soft-label&Distribution-label/ALL_primary/Parition5 * MSP-IMPROV - Majority voting/Soft-label/four_primary/Partition4 - Plurality rule/Hard-label&Soft-label&Distribution-label/four_primary/Partition4 - Plurality rule/Soft-label/ALL_secondary/Partition6 # Computational Resources ## Taiwan Computational Cloud (80 GPUs) <!--- ### Machine Empty - [x] 1 Crema-D - [x] 6 Improv2 - [x] 8 nnime1 - [x] 9 nnime2 - [x] 3 Crema-D - [ ] 2 Crema-D - [ ] 4 Crema-D - [ ] 5 Improv1 - [ ] 7 Improv3 - [ ] 10 podcast1 - [ ] 11 podcast2 - [ ] 12 podcast3 - [ ] 13 podcast4 ---> <!--- ### On-going processes (Each one machin uses 2 GPUs) (-port) - [x] 1. run_podcast10_w2v_lg_rob_seed0_M_primary_4emo_distlbl (`nohup bash run_podcast10_w2v_lg_rob_seed0_M_primary_4emo_distlbl.sh > run_podcast10_w2v_lg_rob_seed0_M_primary_4emo_distlbl.out &`) - [x] 2. run_podcast10_w2v_lg_rob_seed0_M_primary_ALLemo_distlbl (`nohup bash run_podcast10_w2v_lg_rob_seed0_M_primary_ALLemo_distlbl.sh > run_podcast10_w2v_lg_rob_seed0_M_primary_ALLemo_distlbl.out &`) - [x] 3. run_podcast10_w2v_lg_rob_seed0_M_secondary_4emo_distlbl (`nohup bash run_podcast10_w2v_lg_rob_seed0_M_secondary_4emo_distlbl.sh > run_podcast10_w2v_lg_rob_seed0_M_secondary_4emo_distlbl.out &`) - [x] 4. run_podcast10_w2v_lg_rob_seed0_P_primary_4emo_distlbl (`nohup bash run_podcast10_w2v_lg_rob_seed0_P_primary_4emo_distlbl.sh > run_podcast10_w2v_lg_rob_seed0_P_primary_4emo_distlbl.out &`) - [x] 5. run_podcast10_w2v_lg_rob_seed0_P_primary_ALLemo_distlbl (`nohup bash run_podcast10_w2v_lg_rob_seed0_P_primary_ALLemo_distlbl.sh > run_podcast10_w2v_lg_rob_seed0_P_primary_ALLemo_distlbl.out &`) - [x] 6. run_podcast10_w2v_lg_rob_seed0_P_secondary_4emo_distlbl (`nohup bash run_podcast10_w2v_lg_rob_seed0_P_secondary_4emo_distlbl.sh > run_podcast10_w2v_lg_rob_seed0_P_secondary_4emo_distlbl.out &`) - [x] 7. run_podcast10_w2v_lg_rob_seed0_P_secondary_ALLemo_distlbl (`nohup bash run_podcast10_w2v_lg_rob_seed0_P_secondary_ALLemo_distlbl.sh > run_podcast10_w2v_lg_rob_seed0_P_secondary_ALLemo_distlbl.out &`) - [X] 1. run_cremad_1_4emo_w2v_lg_rob (`nohup bash cremad_run_1_4emo_w2v_lg_rob.sh > machine1_cremad_run_cremad_1_4emo_w2v_lg_rob.out &`) - [x] 2. run_cremad_2_4emo_w2v_lg_rob (`nohup bash cremad_run_2_4emo_w2v_lg_rob.sh > machine2_cremad_run_cremad_2_4emo_w2v_lg_rob.out &`) - [x] 3. run_cremad_3_ALLemo_w2v_lg_rob (`nohup bash cremad_run_3_ALLemo_w2v_lg_rob.sh > machine3_cremad_run_cremad_3_ALLemo_w2v_lg_rob.out &`) - [x] 4. run_cremad_4_ALLemo_w2v_lg_rob (`nohup bash cremad_run_4_ALLemo_w2v_lg_rob.sh > machine4_cremad_run_cremad_4_ALLemo_w2v_lg_rob.out &`) ------------------------------------------ - [x] 5. run_files_podcast1_4_primary_w2v_lg_rob (`nohup bash podcast_run_1_4_primary_w2v_lg_rob.sh > machine5_podcast_run_1_4_primary_w2v_lg_rob.out &`) - [x] 6. run_files_podcast2_all_primary_w2v_lg_rob (`nohup bash podcast_run_2_all_primary_w2v_lg_rob.sh > machine6_podcast_run_2_all_primary_w2v_lg_rob.out &`) - [x] 7. run_files_podcast3_4_secondary_w2v_lg_rob (`nohup bash podcast_run_3_4_secondary_w2v_lg_rob.sh > machine7_podcast_run_3_4_secondary_w2v_lg_rob.out &`) - [x] 8. run_files_podcast4_all_secondary_w2v_lg_rob (`nohup bash podcast_run_4_all_secondary_w2v_lg_rob.sh > machine8_podcast_run_4_all_secondary_w2v_lg_rob.out &`) ------------------------------------------ - [x] 9. run_improv_1_4emo_w2v_lg_rob_primary (`nohup bash improv_run_1_4emo_w2v_lg_rob_primary.sh > machine9_improv_run_1_4emo_w2v_lg_rob_primary.out &`) - [x] 10. run_improv_2_4emo_w2v_lg_rob_secondary (`nohup bash improv_run_1_4emo_w2v_lg_rob_secondary.sh > machine10_improv_run_1_4emo_w2v_lg_rob_secondary.out &`) - [x] 11. run_improv_3_ALLemo_w2v_lg_rob_secondary (`nohup bash improv_run_1_ALLemo_w2v_lg_rob_secondary.sh > machine11_improv_run_1_ALLemo_w2v_lg_rob_secondary.out &`) ------------------------------------------ - [x] 12. run_nnime_1_D_w2v_lg_rob_4emo_part1 (`nohup bash nnime_run_1_D_w2v_lg_rob_4emo_part1.sh > machine12_nnime_run_1_D_w2v_lg_rob_4emo_part1.out &`) - [x] 13. run_nnime_2_D_w2v_lg_rob_ALLemo_part1 (`nohup bash nnime_run_2_D_w2v_lg_rob_ALLemo_part1.sh > machine13_nnime_run_2_D_w2v_lg_rob_ALLemo_part1.out &`) - [x] 14. run_cremad_1_4emo_w2v_lg_rob_part2 (`nohup bash cremad_run_1_4emo_w2v_lg_rob_part2.sh > machine14_cremad_run_1_4emo_w2v_lg_rob_part2.out &`) - [x] 15. run_cremad_2_4emo_w2v_lg_rob_part2 (`nohup bash cremad_run_2_4emo_w2v_lg_rob_part2.sh > machine15_cremad_run_2_4emo_w2v_lg_rob_part2.out &`) - [x] 16. run_cremad_3_ALLemo_w2v_lg_rob_part2 (`nohup bash cremad_run_3_ALLemo_w2v_lg_rob_part2.sh > machine16_cremad_run_3_ALLemo_w2v_lg_rob_part2.out &`) - [x] 17. run_cremad_4_ALLemo_w2v_lg_rob_part2 (`nohup bash cremad_run_4_ALLemo_w2v_lg_rob_part2.sh > machine17_cremad_run_4_ALLemo_w2v_lg_rob_part2.out &`) ------------------------------------------ - [x] 18. run_iemocap_1_D_w2v_lg_rob_part2 (`nohup bash iemocap_run_1_D_w2v_lg_rob_part2.sh > machine18_iemocap_run_1_D_w2v_lg_rob_part2.out &`) - [x] 19. run_iemocap_1_M_w2v_lg_rob_part2 (`nohup bash iemocap_run_1_M_w2v_lg_rob_part2.sh > machine19_iemocap_run_1_M_w2v_lg_rob_part2.out &`) - [x] 20. run_iemocap_2_D_w2v_lg_rob_part2 (`nohup bash iemocap_run_2_D_w2v_lg_rob_part2.sh > machine20_iemocap_run_2_D_w2v_lg_rob_part2.out &`) - [x] 21. run_iemocap_2_M_w2v_lg_rob_part2 (`nohup bash iemocap_run_2_M_w2v_lg_rob_part2.sh > machine21_iemocap_run_2_M_w2v_lg_rob_part2.out &`) ------------------------------------------ - [x] 22. run_improv_1_4emo_w2v_lg_rob_primary_part2 (`nohup bash improv_run_1_4emo_w2v_lg_rob_primary_part2.sh > machine22_improv_run_1_4emo_w2v_lg_rob_primary_part2.out &`) - [x] 23. run_improv_2_4emo_w2v_lg_rob_secondary_part2 (`nohup bash improv_run_1_4emo_w2v_lg_rob_secondary_part2.sh > machine23_improv_run_1_4emo_w2v_lg_rob_secondary_part2.out &`) - [x] 24. run_improv_2_ALLemo_w2v_lg_rob_secondary_part2 (`nohup bash improv_run_1_ALLemo_w2v_lg_rob_secondary_part2.sh > machine24_improv_run_1_ALLemo_w2v_lg_rob_secondary_part2.out &`) ------------------------------------------ - [x] 25. run_nnime_1_D_w2v_lg_rob_4emo_part2 (`nohup bash nnime_run_1_D_w2v_lg_rob_4emo_part2.sh > machine25_nnime_run_1_D_w2v_lg_rob_4emo_part2.out &`) - [x] 26. run_nnime_2_D_w2v_lg_rob_ALLemo_part2 (`nohup bash nnime_run_2_D_w2v_lg_rob_ALLemo_part2.sh > machine26_nnime_run_2_D_w2v_lg_rob_ALLemo_part2.out &`) - [x] 27. run_cremad_1_4emo_w2v_lg_rob_part3 (`nohup bash cremad_run_1_4emo_w2v_lg_rob_part3.sh > machine27_cremad_run_1_4emo_w2v_lg_rob_part3.out &`) - [x] 28. run_cremad_2_4emo_w2v_lg_rob_part3 (`nohup bash cremad_run_2_4emo_w2v_lg_rob_part3.sh > machine28_cremad_run_2_4emo_w2v_lg_rob_part3.out &`) - [x] 29. run_cremad_3_ALLemo_w2v_lg_rob_part3 (`nohup bash cremad_run_3_ALLemo_w2v_lg_rob_part3.sh > machine29_cremad_run_3_ALLemo_w2v_lg_rob_part3.out &`) - [x] 30. run_cremad_4_ALLemo_w2v_lg_rob_part3 (`nohup bash cremad_run_4_ALLemo_w2v_lg_rob_part3.sh > machine30_cremad_run_4_ALLemo_w2v_lg_rob_part3.out &`) ------------------------------------------ - [x] 31. run_iemocap_1_D_w2v_lg_rob_part3 (`nohup bash iemocap_run_1_D_w2v_lg_rob_part3.sh > machine31_iemocap_run_1_D_w2v_lg_rob_part3.out &`) - [x] 32. run_iemocap_1_M_w2v_lg_rob_part3 (`nohup bash iemocap_run_1_M_w2v_lg_rob_part3.sh > machine32_iemocap_run_1_M_w2v_lg_rob_part3.out &`) - [x] 33. run_iemocap_2_D_w2v_lg_rob_part3 (`nohup bash iemocap_run_2_D_w2v_lg_rob_part3.sh > machine33_iemocap_run_2_D_w2v_lg_rob_part3.out &`) - [x] 34. run_iemocap_2_M_w2v_lg_rob_part3 (`nohup bash iemocap_run_2_M_w2v_lg_rob_part3.sh > machine34_iemocap_run_2_M_w2v_lg_rob_part3.out &`) ------------------------------------------ - [x] 35. run_improv_1_4emo_w2v_lg_rob_primary_part3 (`nohup bash improv_run_1_4emo_w2v_lg_rob_primary_part3.sh > machine35_improv_run_1_4emo_w2v_lg_rob_primary_part3.out &`) - [x] 36. run_improv_2_4emo_w2v_lg_rob_secondary_part3 (`nohup bash improv_run_1_4emo_w2v_lg_rob_secondary_part3.sh > machine36_improv_run_1_4emo_w2v_lg_rob_secondary_part3.out &`) - [x] 37. run_improv_2_ALLemo_w2v_lg_rob_secondary_part3 (`nohup bash improv_run_1_ALLemo_w2v_lg_rob_secondary_part3.sh > machine37_improv_run_1_ALLemo_w2v_lg_rob_secondary_part3.out &`) ------------------------------------------ - [x] 38. run_nnime_1_D_w2v_lg_rob_4emo_part3 (`nohup bash nnime_run_1_D_w2v_lg_rob_4emo_part3.sh > machine38_nnime_run_1_D_w2v_lg_rob_4emo_part3.out &`) - [x] 39. run_nnime_2_D_w2v_lg_rob_ALLemo_part3 (`nohup bash nnime_run_2_D_w2v_lg_rob_ALLemo_part3.sh > machine39_nnime_run_2_D_w2v_lg_rob_ALLemo_part3.out &`) - [x] 40. run_cremad_1_4emo_w2v_lg_rob_part4 (`nohup bash cremad_run_1_4emo_w2v_lg_rob_part4.sh > machine40_cremad_run_1_4emo_w2v_lg_rob_part4.out &`) - [x] 41. run_cremad_2_4emo_w2v_lg_rob_part4 (`nohup bash cremad_run_2_4emo_w2v_lg_rob_part4.sh > machine41_cremad_run_2_4emo_w2v_lg_rob_part4.out &`) - [x] 42. run_cremad_3_ALLemo_w2v_lg_rob_part4 (`nohup bash cremad_run_3_ALLemo_w2v_lg_rob_part4.sh > machine42_cremad_run_3_ALLemo_w2v_lg_rob_part4.out &`) - [x] 43. run_cremad_4_ALLemo_w2v_lg_rob_part4 (`nohup bash cremad_run_4_ALLemo_w2v_lg_rob_part4.sh > machine43_cremad_run_4_ALLemo_w2v_lg_rob_part4.out &`) ------------------------------------------ - [x] 44. run_iemocap_1_D_w2v_lg_rob_part4 (`nohup bash iemocap_run_1_D_w2v_lg_rob_part4.sh > machine44_iemocap_run_1_D_w2v_lg_rob_part4.out &`) - [x] 45. run_iemocap_1_M_w2v_lg_rob_part4 (`nohup bash iemocap_run_1_M_w2v_lg_rob_part4.sh > machine45_iemocap_run_1_M_w2v_lg_rob_part4.out &`) - [x] 46. run_iemocap_2_D_w2v_lg_rob_part4 (`nohup bash iemocap_run_2_D_w2v_lg_rob_part4.sh > machine46_iemocap_run_2_D_w2v_lg_rob_part4.out &`) - [x] 47. run_iemocap_2_M_w2v_lg_rob_part4 (`nohup bash iemocap_run_2_M_w2v_lg_rob_part4.sh > machine47_iemocap_run_2_M_w2v_lg_rob_part4.out &`) ------------------------------------------ - [x] 48. run_improv_1_4emo_w2v_lg_rob_primary_part4 (`nohup bash improv_run_1_4emo_w2v_lg_rob_primary_part4.sh > machine48_improv_run_1_4emo_w2v_lg_rob_primary_part4.out &`) - [x] 49. run_improv_2_4emo_w2v_lg_rob_secondary_part4 (`nohup bash improv_run_1_4emo_w2v_lg_rob_secondary_part4.sh > machine49_improv_run_1_4emo_w2v_lg_rob_secondary_part4.out &`) - [x] 50. run_improv_2_ALLemo_w2v_lg_rob_secondary_part4 (`nohup bash improv_run_1_ALLemo_w2v_lg_rob_secondary_part4.sh > machine50_improv_run_1_ALLemo_w2v_lg_rob_secondary_part4.out &`) ------------------------------------------ - [x] 51. run_nnime_1_D_w2v_lg_rob_4emo_part4 (`nohup bash nnime_run_1_D_w2v_lg_rob_4emo_part4.sh > machine51_nnime_run_1_D_w2v_lg_rob_4emo_part4.out &`) - [x] 52. run_nnime_2_D_w2v_lg_rob_ALLemo_part4 (`nohup bash nnime_run_2_D_w2v_lg_rob_ALLemo_part4.sh > machine52_nnime_run_2_D_w2v_lg_rob_ALLemo_part4.out &`) - [x] 53. run_cremad_1_4emo_w2v_lg_rob_part5 (`nohup bash cremad_run_1_4emo_w2v_lg_rob_part5.sh > machine53_cremad_run_1_4emo_w2v_lg_rob_part5.out &`) - [x] 54. run_cremad_2_4emo_w2v_lg_rob_part5 (`nohup bash cremad_run_2_4emo_w2v_lg_rob_part5.sh > machine54_cremad_run_2_4emo_w2v_lg_rob_part5.out &`) - [x] 55. run_cremad_3_ALLemo_w2v_lg_rob_part5 (`nohup bash cremad_run_3_ALLemo_w2v_lg_rob_part5.sh > machine55_cremad_run_3_ALLemo_w2v_lg_rob_part5.out &`) - [x] 56. run_cremad_4_ALLemo_w2v_lg_rob_part5 (`nohup bash cremad_run_4_ALLemo_w2v_lg_rob_part5.sh > machine56_cremad_run_4_ALLemo_w2v_lg_rob_part5.out &`) ------------------------------------------ - [x] 57. run_iemocap_1_D_w2v_lg_rob_part5 (`nohup bash iemocap_run_1_D_w2v_lg_rob_part5.sh > machine57_iemocap_run_1_D_w2v_lg_rob_part5.out &`) - [x] 58. run_iemocap_1_M_w2v_lg_rob_part5 (`nohup bash iemocap_run_1_M_w2v_lg_rob_part5.sh > machine58_iemocap_run_1_M_w2v_lg_rob_part5.out &`) - [x] 59. run_iemocap_2_D_w2v_lg_rob_part5 (`nohup bash iemocap_run_2_D_w2v_lg_rob_part5.sh > machine59_iemocap_run_2_D_w2v_lg_rob_part5.out &`) - [x] 60. run_iemocap_2_M_w2v_lg_rob_part5 (`nohup bash iemocap_run_2_M_w2v_lg_rob_part5.sh > machine60_iemocap_run_2_M_w2v_lg_rob_part5.out &`) ------------------------------------------ - [x] 61. run_improv_1_4emo_w2v_lg_rob_primary_part5 (`nohup bash improv_run_1_4emo_w2v_lg_rob_primary_part5.sh > machine61_improv_run_1_4emo_w2v_lg_rob_primary_part5.out &`) - [x] 62. run_improv_2_4emo_w2v_lg_rob_secondary_part5 (`nohup bash improv_run_1_4emo_w2v_lg_rob_secondary_part5.sh > machine62_improv_run_1_4emo_w2v_lg_rob_secondary_part5.out &`) - [x] 63. run_improv_2_ALLemo_w2v_lg_rob_secondary_part5 (`nohup bash improv_run_1_ALLemo_w2v_lg_rob_secondary_part5.sh > machine63_improv_run_1_ALLemo_w2v_lg_rob_secondary_part5.out &`) ------------------------------------------ - [x] 64. run_nnime_1_D_w2v_lg_rob_4emo_part5 (`nohup bash nnime_run_1_D_w2v_lg_rob_4emo_part5.sh > machine64_nnime_run_1_D_w2v_lg_rob_4emo_part5.out &`) - [x] 65. run_nnime_2_D_w2v_lg_rob_ALLemo_part5 (`nohup bash nnime_run_2_D_w2v_lg_rob_ALLemo_part5.sh > machine65_nnime_run_2_D_w2v_lg_rob_ALLemo_part5.out &`) - [x] 66. run_improv_1_4emo_w2v_lg_rob_primary_part6 (`nohup bash improv_run_1_4emo_w2v_lg_rob_primary_part6.sh > machine66_improv_run_1_4emo_w2v_lg_rob_primary_part6.out &`) - [x] 67. run_improv_2_4emo_w2v_lg_rob_secondary_part6 (`nohup bash improv_run_1_4emo_w2v_lg_rob_secondary_part6.sh > machine62_improv_run_1_4emo_w2v_lg_rob_secondary_part6.out &`) - [x] 68. run_improv_2_ALLemo_w2v_lg_rob_secondary_part6 (`nohup bash improv_run_1_ALLemo_w2v_lg_rob_secondary_part6.sh > machine63_improv_run_1_ALLemo_w2v_lg_rob_secondary_part6.out &`) - [ ] 29. run_cremad_3_ALLemo_w2v_lg_rob_part3 (`nohup bash cremad_run_3_ALLemo_w2v_lg_rob_part3.sh > machine29_cremad_run_3_ALLemo_w2v_lg_rob_part3.out &`) - [ ] 42. run_cremad_3_ALLemo_w2v_lg_rob_part4 (`nohup bash cremad_run_3_ALLemo_w2v_lg_rob_part4.sh > machine42_cremad_run_3_ALLemo_w2v_lg_rob_part4.out &`) ---> ------------------------------------------ # To-do list - [x] Code - [ ] Clean code - [x] Learn how to use gitghub (git) - [ ] Learn how to use Docker - [ ] Modify code for categorical emotion classifiation tasks - [ ] Pre-trained model - [ ] Know the differences between pre-trained models - [ ] SER Model - [ ] Replace pooling layer with Winston's chunk-level mechanism ![](https://i.imgur.com/oefpQuA.png) - [ ] How to save models - [ ] Experiments - [ ] List all accessablie computation resoures * Each pre-trained model needs different sizes of GPU memory - [ ] List all experiments * Where to save trained models weights * - [ ] Tasks - [ ] Is it possilbe to adopt the models for the continuous-level emotion recognition? - [ ] Objective function design * How to define the loss functions for models to learn distribution-labels - [ ] Penalize the predictions if the predictions have emotions which the ground truth haven't - [ ] Kullback–Leibler divergence can make models learn well when the ground truth have specific emotions, but no penality on predictions which have emotions which the ground truth haven't - [x] Dataset usage * Make sure each dataset is well-set - [x] Format - [x] Audios - [x] Labels ------------------------------------------ # Goal: [AAAI 2023](https://aaai.org/Conferences/AAAI-23/) * **August 1, 2022: Submit to Dr. Busso** * **August 8, 2022: Abstracts due at 11:59 PM UTC-12** * **August 15, 2022: Full papers due at 11:59 PM UTC-12** # [Opponent product](https://twitter.com/audeering/status/1539973140570198016?s=21&t=UIM5jm1_VBtEFr33HaWsaQ) ------------------------------------------ # Outlines > [TOC] ------------------------------------------ # Progress ## [Install HuggingFace](https://huggingface.co/docs/transformers/installation) ## [Re-implement Code of Dawn of the transformer era in SER](https://cometmail-my.sharepoint.com/:u:/g/personal/hdc210001_utdallas_edu/EdwIMZKJ3dpDgssPm24EHnYB_fhG1ymKG5S5XOJV44VqXA) ## Experiments (Audios/Labels) * MSP-PODCAST v1.7 - [x] Attributes **by Seong-Gyun** - [ ] Categories * MSP-PODCAST v1.10 - [x] Attributes **by Seong-Gyun** - [x] Categories * USC-IEMOCAP - [x] Attributes - [x] Categories - [ ] Cross-corpus (MSP-Podcast) vs. within corpus performance **by Lucas** * MSP-IMPROV - [x] Attributes **by Lucas** - [x] Categories - [ ] Cross-corpus (MSP-Podcast) vs. within corpus performance **by Lucas** * CREMA-D - [x] Categories **Only** * (Optional) NTHU-NNIME (In Chinese) * Modify model code for two different tasks - [x] Attributes **by Seong-Gyun** - [ ] Categories **by Seong-Gyun** * Provide labels of all databases - [x] Attributes **by David** - [ ] Categories **by David** ------------------------------------------ # Research Questions ## Tow tasks - [ ] Efficiency vs Performance - [ ] Does chunk based model affect performance? - [ ] Model size vs Speed - [ ] Is it better to combine with openSMILE LLDs features? - [ ] How does normalization affect performance of SER using the pre-trained models as upstream? - [ ] Normalization by each utterance - [ ] Normalization by training set - [ ] Normalization by speaker - [ ] Does curriculum learning improve performance of SER using the pre-trained models as upstream? - [ ] Training models from higher agreement utterances - [ ] Do the SOTA SER systems need calibrations on the predictions? ## Attributes (Arousal, Dominance, Valence) - [ ] Can we reproduce the results of the paper ([DAWN OF THE TRANSFORMER ERA IN SPEECH EMOTION RECOGNITION: CLOSING THE VALENCE GAP](https://arxiv.org/pdf/2203.07378.pdf))? - [ ] What are performances of using the other pre-trained models based on [the superbbenchmark leaderboard](https://superbbenchmark.org/leaderboard), such as WavLM, data2vec, or wav2vec? - [ ] What are performances of cross-corpus without fine-tuning (e.g., train on MSP-PODCAST v.10, and test on USC-IEMOCAP)? - [ ] How's robutness of the SOTA model under noise scenario (using MSP-PODCAST v1.8)? - [ ] Is emotion attributes perception is universal (cross-language emotion recognition without fine-tuning)? (migth need to use multilingual pre-trained models, sucs [XLSR-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) or XLM) ## Categories (Anger, Sadness, Happiness, Neutral, to name a few) - [ ] What are performances of the SOTA model using various pre-trained models on emotion classification tasks? - [ ] Is wav2vec still the most effective SSL features on emotion classification tasks over multiple datasets (4-class emotion classification) based on the analyses [IS2021 paper](https://www.isca-speech.org/archive/pdfs/interspeech_2021/keesing21_interspeech.pdf)? - [ ] What are performances of the SOTA models trained with different label learning methods? - [ ] Hard-label learning - [ ] Soft-label learning - [ ] Multi-label learning - [ ] Distribution learning - [ ] What are performances of cross-corpus without fine-tuning (e.g., train on MSP-PODCAST v.10, and test on USC-IEMOCAP)? - [ ] Is emotion classification perception is universal (cross-language emotion recognition without fine-tuning)? (migth need to use multilingual pre-trained models, sucs [XLSR-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) or XLM) - [ ] How to deal with long-tail (very unbalanced) emotion recognition? ------------------------------------------ # Installation Environment ## (Recommend) [Github](https://github.com/sgleem/SS_for_SER/tree/development) ## For Python v3.7.13 & CUDA v11.0 & PyTorch v1.7.1 0. Download requirement file, [``huggin-face_env.txt''](https://utdallas.box.com/s/s36yt73h6mhyzoaa806lc0bi885spsqk) 1. (base)`conda create --name HuggingFace --file huggin-face_env.txt` 2. (base)`conda activate HuggingFace` 3. (base) `pip install transformers` **(install HuggingFace)** 4. (HuggingFace) `python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('I love you'))"` ## For Python v3.9 & CUDA v11.2 & PyTorch v1.11.0 0. Download requirement file, [``hugging-face_python_3-9''](https://utdallas.box.com/s/5np8cy0gpusfu0zcg5o5kba8zb8o415a) 1. (base)`conda create --name HuggingFace --file hugging-face_python_3-9` 2. (base)`conda activate HuggingFace` 3. (base) `pip install transformers` **(install HuggingFace)** 4. (HuggingFace) `python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('I love you'))"` --PS: IF USING THIS VERSION DO THE FOLLOWING: ***Change the code in Line(34) in train.py if using code provided by Seong_Gyun*** * Replace `torch.set_deterministic(True)` with `torch.use_deterministic_algorithms(True)` * ------------------------------------------ # Code ## Usage ### Model type (`--model_type `) * wav2vec2-base, wav2vec2-large, **wav2vec2-large-robust** * hubert-base, **hubert-large** * wavlm-base, wavlm-base-plus, **wavlm-large**, * data2vec-base, **data2vec-large** ### Default model type * wav2vec2: **wav2vec2-large-robust** * hubert: **hubert-large** * wavlm: **wavlm-large** * data2vec: **data2vec-large** ### Model GPU estimated memory requirements | Model | Batchsize | GPMs | Estimated Time perEpoch (hr) | | --------------------- | --------- | ---- | ---------------------------- | | wav2vec2-base | 32 | 17GB | 1 | | wav2vec2-large | 32 | 50GB | 1 | | wav2vec2-large-robust | 32 | 40GB | .85 | | hubert-base | 32 | 30GB | .50 | | hubert-large | 32 | 50GB | 1 | | wavlm-base | 32 | 30GB | .6 | | wavlm-base-plus | 32 | 30GB | .6 | | wavlm-large | 32 | 50GB | 1.35 | | data2vec-base | 32 | 33GB | .5 | | data2vec-large | 32 | 50GB | 1.35 | ### Computational Resources * Cost: $1.5 USD per hour per GPU * Each GPU has 32 GB memories * The maxiums GPUs in one vitual environments: 8 * The maxium of GPU memories: 256 GB ### Corpus Estimated Cost * MSP-PODCAST v1.10 | Model | Number of GPUs | Number of Epochs | Epoch | Estimated Time perEpoch | Cost | | --------------------- | -------------- | ---------------- | ----- | ----------------------- | ---- | | wav2vec2-base | 1 | 12GB | | | | | wav2vec2-large | 2 | 50GB | | | | | wav2vec2-large-robust | 2 | 40GB | | | | | hubert-base | 1 | 30GB | | | | | hubert-large | 2 | 50GB | | | | | wavlm-base | 1 | 30GB | | | | | wavlm-base-plus | 1 | 30GB | | | | | wavlm-large | 2 | 50GB | | | | | data2vec-base | 2 | 33GB | | | | | data2vec-large | 2 | 50GB | | | | ## Definition * categorical 1. Primary emotions: every rater **only can choose one emotion** from options pool 2. Secondary emotions: every rater is able to choose **more than one emotion** from options pool 3. Single-label task: every datasample has only one emotion as ground truth 4. Multi-label task: every datasample should be able to have co-occuring emotions (one or more) as ground truth * label learning: * Example: (anger, sadness, neutral, happiness); there are 2 anger and 3 neutral; * Soft-label: **(0.4, 0.0, 0.6, 0.0)** * Soft-label with alpha=0.05 label smoothing: **(0.39, 0.016667, 0.576667, 0.016667)** * Single-label task * Hard-label learning (cross-entropy) * Hard-label of the exmple: **(0,0,1,0)** * The label of the example with label smoothing will look like: **(0.016667, 0.016667, 0.95, 0.016667 )** * Soft-label learning (cross-entropy) * Soft-label: **(0.4, 0.0, 0.6, 0.0)** * The label of the example with label smoothing will look like: **(0.39, 0.016667, 0.576667, 0.016667)** * Multi-label task * Multi-label learning (binary cross-entropy): no matter how many annotations are given; take the emotions into account * The example with label : **(1,0,1,0)** * Output activation layer: **Sigmoid** * The proabilities can be binarized by thresold **0.5** * Distribution-lable learning (binary cross-entropy): learn the distribution similarity between groundtruths and predictions * The example will be the same as the soft-label **(0.39, 0.016667, 0.576667, 0.016667)** * The distribution also can be binarized by threshold **1/k** (where k is the number of classes); for 4-class emotion classification, the threshold is $1/4=0.25$. Therefore, the multiple-hot vector output: **(1,0,1,0)** ## Arguments 0. Database * 1. MSP-IMPROV * Example 1. Partioned_data_secondary 1. labels_consensus_EmoS_4class_P 1. labels_consensus_1.csv * D: davids rule * P: Plurality * M: Majority * different datasets have different splits * IMPROV has 6 splits 3. MSP-Podcast * one partition 5. USC-IEMOCAP * five partitions 7. CREMA-D * five paritions 9. NNIME * five partitions 2. Model (sorted by the results on [SUPERB leaderboard](https://superbbenchmark.org/leaderboard)) 1. WavLM 2. data2vec 3. Hubert 4. wav2vec2 5. wav2vec **(Hugging Face doesn't support wav2vec, so make it lower priority)** 3. pre-processing 1. Normalization 1. Feature Normalization 1. utterrance norm (U-norm) 2. training norm (T-norm) 3. speaker norm (S-norm) 4. no norm (N-norm) 2. Label Normalization for Emotional Attribute 1. MSP-Podcast (ranged from 1 to 7) - $(label - 1) / (7 - 1)$ 2. MSP-IMPROV (ranged from 1 to 5) - Flip arousal label (from "1 to 5" to "5 to 1") (**Fixed**) - 6 - aro - $(label - 1) / (5 - 1)$ 3. USC-IEMOCAP (ranged from 1 to 5) - $(label - 1) / (5 - 1)$ 3. NTHU-NNIME (ranged from 1 to 5) - $(label - 1) / (5 - 1)$ 4. CREMA-D : (no emotional attribute) 2. Label selection * categorical 1. majoriy vote 1. Hard label 2. Soft label 2. plurarity rule 1. Hard label 2. Soft label 3. multi-label 1. Multiple-hot label 5. Davids rule 1. Distribution label 4. multi-task vs single-task learning * Single-task * categorical 1. single-label task * 4-class 2. multi-label task * 4-class * primary emotions * secondary emotions 5. loss * categorical 1. **cross-entropy** for hard/soft label 2. **binary cross-entropy** for multiple-hot label 3. **Kullback–Leibler divergence** for distribution label * dimentional (VAD) 1. (1 - CCC) *(CCC,concordance coefficient correlation)* 6. classes 1. categorical 1. 4-class for **all datasets** *(Neutral, Anger, Sadness, Happiness)* 2. 8-calss **primary** emotions for MSP-PODCAST (v1.8/v1.9/v1.10) 3. 6-calss **primary** emotions for CREAM-D 4. 16-class secondary emotions for MSP-PODCAT (v1.8/v1.9/v.10) 5. 10-class secondary emotions for MSP-IMPROV 6. 9-class secondary emotions for USE-IEMOCAP 7. 11-class secondary emotions for NTHU-NNIME 2. dimentional (VAD) 7. Hyper-parameters 1. Epochs 2. Batch size 3. sequence length? 4. dropout? 5. depth? 8. Evaluation metrics 1. categorical * Single-label task 1. UAR 2. UAP 3. ACC 4. Macro-F1 5. Micro-F1 6. Weighted-F1 * Multi-label task 1. Hamming loss 2. Ranking loss 3. ... 4. ... 5. .... * Distribution-label 1. cosine simarlity 2. KLD 3. rmse 4. 3. dimentional (VAD) * CCC ------------------------------------------ # Task ## Categories * Majority Vote (more than 50% raters aggrement on labels) * Plurality Rule (the class gets the most votes) * David's Rule (set a threshold, such 1/k, where k is number of emotion class) ### Objective Functions * Hard-label learning * Objective function: cross-entropy * Output layer activation function: softmax * Soft-label learning * Objective function: cross-entropy * Output layer activation function: softmax * Multi-label learning * Objective function: binary cross-entropy * Output layer activation function: **sigmoid** * Distribution learning * Objective function: Kullback–Leibler divergence (KLD) * Output layer activation function: softmax ## Attributes * Average all raters' answers ### Objective Functions * 1- CCC(concordance coefficient correlation) ------------------------------------------ # Resources ## Emotion Databases Summary * All datasets have 4 emotions ($angry, sad, neutral, happy$) > Choice means how many emotions annotators can provide | **Dataset** | **Choice** | **Class** | **Processed** | angry | sad | neutral | happy | other | frustrated | annoyed | disappointed | disgust | depressed | contempt | confused | concerned | fear | surprise | amused | excited | joy | relaxed | disappointed | | ------------------------------- | ------------ | --------- | ----------------- | ----- | ----- | ------- | ----- | ----- | ---------- | ------- | ------------ | ------- | --------- | -------- | -------- | --------- | ----- | -------- | ------ | ------- | ----- | ------- | ------------ | | **MSP-IMPROV** (**Primary**) | **Single** | 5 | **V** | **V** | **V** | **V** | **V** | **V** | | | | | | | | | | | | | | | | | **MSP-PODCAST** (**Primary**) | **Single** | 9 | **V** | **V** | **V** | **V** | **V** | **V** | | | | **V** | **V** | | | | **V** | **V** | | | | | | | **CREMA-D** | **Single** | 6 | **X (not split)** | **V** | **V** | **V** | **V** | | | | | **V** | | | | | **V** | | | | | | | | **MSP-IMPROV** (**Secondary**) | **Multiple** | 11 | **V** | **V** | **V** | **V** | **V** | **V** | **V** | | | **V** | | | **V** | | **V** | **V** | | | | | | | **MSP-PODCAST** (**Secondary**) | **Multiple** | 17 | **V** | **V** | **V** | **V** | **V** | **V** | **V** | **V** | **V** | **V** | **V** | **V** | **V** | **V** | **V** | **V** | **V** | **V** | | | | | **USC-IEMOCAP** | **Multiple** | 10 | **V** | **V** | **V** | **V** | **V** | **V** | **V** | | | **V** | | | | | **V** | **V** | | **V** | | | | | **NNIME** | **Multiple** | 12 | | **V** | **V** | **V** | **V** | **V** | **V** | | | | | | | | **V** | **V** | | **V** | **V** | **V** | **V** | ## MSP-PODCAST v1.10 ### Categories (**Primary Emotion**) <!--- | Session | Totall | angry | sad | disgust | contempt | fear | neutral | surprise | happy | other | | ----------- | ------- | ------ | ------ | ------- | -------- | ------ | ------- | -------- | ------- | ------ | | All | 660,351 | 50,887 | 41,928 | 39,120 | 56,962 | 29,367 | 209,670 | 58,745 | 145,294 | 28,378 | | Train | 391222 | 29183 | 21554 | 19627 | 30148 | 15067 | 112682 | 29613 | 80105 | 12114 | | Development | 72,581 | 9,917 | | | | | | | | | | Test1 | | | | | | | | | | | | Test2 | | | | | | | | | | | ---> ### Categories (**Secondary Emotion**) <!--- | Session | Totall | angry | frustrated | annoyed | disappointed | sad | disgust | depressed | contempt | confused | concerned | fear | neutral | surprise | amused | excited | happy | other | | -------- | -------- | ------ | ---------- | ------- | ------------ | ------ | ------- | --------- | -------- | -------- | --------- | ------ | ------- | -------- | ------ | ------- | ------- | ------ | | All | 1486,718 | 72,538 | 68,795 | 79,413 | 53,078 | 74,556 | 65,657 | 27,310 | 90,405 | 33,531 | 115,687 | 38,357 | 251,291 | 97,548 | 85,347 | 98,064 | 194,695 | 40,446 | | Session1 | | | | | | | | | | | | | | | | | | | | Session2 | | | | | | | | | | | | | | | | | | | | Session3 | | | | | | | | | | | | | | | | | | | | Session4 | | | | | | | | | | | | | | | | | | | | Session5 | | | | | | | | | | | | | | | | | | | | Session6 | | | | | | | | | | | | | | | | | | | ---> ### 4class Categories (**Primary Emotion**) * 4class = $angry, sad, neutral, happy$ | Method | Class | Task | Discard | Used | | -------------- | ----- | ------------ | --------------- | ----------------- | | Majority Vote | 4 | Single-label | 26.08% (27,190) | 73.92% (77,077) | | Plurality Rule | 4 | Single-label | 19.44% (20,270) | 80.56% (883,997) | | David's Rule | 4 | Multi-label | 2.48% (2,589) | 97.52% (101,678) | * Majority Vote ![](https://i.imgur.com/WRvpxxP.png) * Plurality Rule ![](https://i.imgur.com/3zNOqHl.png) * David's Rule ![](https://i.imgur.com/2Y4DB7S.png) ### 4class Categories (**Secondary Emotion**) * 4class = $angry, sad, neutral, happy$ | Method | Class | Task | Discard | Used | | -------------- | ----- | ------------ | --------------- | ---------------- | | Majority Vote | 4 | Single-label | 32.79%(34,186) | 67.21% (70,081) | | Plurality Rule | 4 | Single-label | 17.80% (18,564) | 82.20% (85,703) | | David's Rule | 4 | Multi-label | 0.40%(418) | 99.60% (103,849) | * Majority Vote ![](https://i.imgur.com/kYTpeRH.png) * Plurality Rule ![](https://i.imgur.com/jiqvFlE.png) * David's Rule ![](https://i.imgur.com/BZNnkUM.png) ### 8class Categories (**Primary Emotion**) * 8class = $angry, sad, disgust, contempt, fear, neutral, surprise, happy$ | Method | Class | Task | Discard | Used | | -------------- | ----- | ------------ | --------------- | ---------------- | | Majority Vote | 8 | Single-label | 48.65% (50,721) | 51.35% (53,546) | | Plurality Rule | 8 | Single-label | 18.91% (19,718) | 81.09% (84,549) | | David's Rule | 8 | Multi-label | 0.00% (1) | 99.99% (104,266) | ### 16class Categories (**Secondary Emotion**) * 8class = $angry, frustrated, annoyed, disappointed, sad, disgust, depressed, contempt, confused, concerned, fear, neutral, surprise, amused, excited, happy$ | Method | Class | Task | Discard | Used | | -------------- | ----- | ------------ | --------------- | --------------- | | Majority Vote | 8 | Single-label | 88.68% (92,467) | 11.32% (11,800) | | Plurality Rule | 8 | Single-label | 29.31% (30,562) | 70.69% (73,705) | | David's Rule | 8 | Multi-label | 0.00% (0) | 100% (104,267) | ## MSP-PODCAST v1.9 ### Categories (**Primary Emotion**) <!--- | Session | Totall | angry | sad | disgust | contempt | fear | neutral | surprise | happy | other | | ----------- | ------- | ------ | ------ | ------- | -------- | ------ | ------- | -------- | ------- | ------ | | All | 555,790 | 44,684 | 32,616 | 34,428 | 49,176 | 24,077 | 175,768 | 48,023 | 126,803 | 20,215 | | Train | 348,769 | 27859 | 21554 | 19627 | 30148 | 15067 | 112682 | 29613 | 80105 | 12114 | | Development | | | | | | | | | | | | Test1 | | | | | | | | | | | | Test2 | | | | | | | | | | | ---> ### Categories (**Secondary Emotion**) <!--- | Session | Totall | angry | frustrated | annoyed | disappointed | sad | disgust | depressed | contempt | confused | concerned | fear | neutral | surprise | amused | excited | happy | other | | -------- | -------- | ------ | ---------- | ------- | ------------ | ------ | ------- | --------- | -------- | -------- | --------- | ------ | ------- | -------- | ------ | ------- | ------- | ------ | | All | 1238,328 | 64,461 | 59,771 | 70,330 | 39,736 | 61,254 | 58,449 | 21,551 | 76,445 | 25,758 | 86,716 | 31,097 | 213,566 | 78,295 | 70,968 | 82,029 | 169,445 | 28,457 | | Session1 | | | | | | | | | | | | | | | | | | | | Session2 | | | | | | | | | | | | | | | | | | | | Session3 | | | | | | | | | | | | | | | | | | | | Session4 | | | | | | | | | | | | | | | | | | | | Session5 | | | | | | | | | | | | | | | | | | | | Session6 | | | | | | | | | | | | | | | | | | | ---> ### 4class Categories (**Primary Emotion**) * 4class = $angry, sad, neutral, happy$ | Method | Class | Task | Discard | Used | | -------------- | ----- | ------------ | --------------- | --------------- | | Majority Vote | 4 | Single-label | 25.23% (21,792) | 74.77% (64,597) | | Plurality Rule | 4 | Single-label | 19.13% (16,525) | 80.87% (69,864) | | David's Rule | 4 | Multi-label | 3.47% (2,997) | 96.53% (83,392) | * Majority Vote ![](https://i.imgur.com/7OIzqiR.png) * Plurality Rule ![](https://i.imgur.com/28gYzu0.png) * David's Rule ![](https://i.imgur.com/abH3jzh.png) ### 4class Catergories (**Secondary Emotion**) * 4class = $angry, sad, neutral, happy$ | Method | Class | Task | Discard | Used | | -------------- | ----- | ------------ | --------------- | -------------- | | Majority Vote | 4 | Single-label | 31.38% (27,110) | 68.62 (59,279) | | Plurality Rule | 4 | Single-label | 00000 | 000000 | | David's Rule | 4 | Multi-label | 0.52% (451) | 99.48 (85,938) | * Majority Vote ![](https://i.imgur.com/pEchJWs.png) * Plurality Rule ![](https://i.imgur.com/kBkX6Kv.png) * David's Rule ![](https://i.imgur.com/QlyLOiA.png) ### 8class Catergories (**Primary Emotion**) * 8class = $angry, sad, disgust, contempt, fear, neutral, surprise, happy$ | Method | Class | Task | Discard | Used | | -------------- | ----- | ------------ | --------------- | --------------- | | Majority Vote | 8 | Single-label | 45.90% (39,654) | 54.10% (46,735) | | Plurality Rule | 8 | Single-label | 17.60% (15,206) | 82.40% (71,183) | | David's Rule | 8 | Multi-label | 0.00% (1) | 99.99% (86,388) | ### 16class Catergories (**Secondary Emotion**) * 16class = $angry, frustrated, annoyed, disappointed, sad, disgust, depressed, contempt, confused, concerned, fear, neutral, surprise, amused, excited, happy$ | Method | Class | Task | Discard | Used | | -------------- | ----- | ------------ | --------------- | --------------- | | Majority Vote | 8 | Single-label | 86.29% (74,542) | 13.71% (11,847) | | Plurality Rule | 8 | Single-label | 27.54% (23,794) | 72.46% (62,595) | | David's Rule | 8 | Multi-label | 0.00% (0) | 100% (86,389) | ## IEMOCAP ### Catergories ![](https://i.imgur.com/Lo9us4F.png) | Session | Totall | frustrated | angry | sad | disgust | excited | fear | neutral | surprise | happy | other | | -------- | ------ | ---------- | ----- | ----- | ------- | ------- | ---- | ------- | -------- | ----- | ----- | | All | 34,367 | 7,994 | 4,734 | 4,016 | 264 | 4,598 | 415 | 7,007 | 811 | 3,461 | 1,067 | <!--- ![](https://i.imgur.com/tSVxuZa.png) | Session | Totall | frustrated | angry | sad | disgust | excited | fear | neutral | surprise | happy | other | | -------- | ------ | ---------- | ----- | ----- | ------- | ------- | ---- | ------- | -------- | ----- | ----- | | All | 34,367 | 7,994 | 4,734 | 4,016 | 264 | 4,598 | 415 | 7,007 | 811 | 3,461 | 1,067 | | Session1 | | | | | | | | | | | | | Session2 | | | | | | | | | | | | | Session3 | | | | | | | | | | | | | Session4 | | | | | | | | | | | | | Session5 | | | | | | | | | | | | ---> ### 4class Catergories * 4class = $angry, sad, neutral, happy$ | Method | Class | Task | Discard | Used | | ------------------ | ----- | ------------ | ------------- | -------------- | | Majority Vote (\*) | 4 | Single-label | 44.90%(4,508) | 55.10% (5,531) | | Majority Vote | 4 | Single-label | 25.17%(2,527) | 74.82% (7,512) | | Plurality Vote | 4 | Single-label | 24.94%(2,504) | 75.06% (7,535) | | David's Rule | 4 | Multi-label | 10.41%(1,045) | 89.59% (8,994) | > \*: Previous works only take one annotation from each annotator, but autually annotators might provide more than one emotion labels. ### 9class Catergories (All emotions) * 9class = $frustrated, angry, sad, disgust, excited, fear, neutral, surprise, happy$ | Method | Class | Task | Discard | Used | | -------------- | ----- | ------------ | ------------- | -------------- | | Majority Vote | 9 | Single-label | 31.37%(3,149) | 68.63% (6,890) | | Plurality Vote | 9 | Single-label | 25.32%(2,542) | 74.68% (7,497) | | David's Rule | 9 | Multi-label | 0%(0) | 100% (1,0039) | ## MSP-IMPROV ### Catergories (**Primary Emotion**) <!--- ![](https://i.imgur.com/cTFAcZU.png) ---> | Session | Totall | angry | sad | neutral | happy | other | | -------- | ------ | ----- | ----- | ------- | ------ | ----- | | All | 34,367 | 7,960 | 8,632 | 2,4393 | 17,558 | 3,159 | <!--- | Session1 | | | | | | | | Session2 | | | | | | | | Session3 | | | | | | | | Session4 | | | | | | | | Session5 | | | | | | | | Session6 | | | | | | | ---> ### Catergories (**Secondary Emotion**) <!--- ![](https://i.imgur.com/1qA7C5N.png) ---> | Session | Totall | depressed | frustrated | angry | sad | disgust | excited | fear | neutral | surprise | happy | other | | -------- | ------- | --------- | ---------- | ----- | ------ | ------- | ------- | ----- | ------- | -------- | ------ | ----- | | All | 105,587 | 4,174 | 10,552 | 8,955 | 10,017 | 4,214 | 9,418 | 1,775 | 26,758 | 6,199 | 19,057 | 4,468 | <!--- | Session1 | | | | | | | | | | | | | | Session2 | | | | | | | | | | | | | | Session3 | | | | | | | | | | | | | | Session4 | | | | | | | | | | | | | | Session5 | | | | | | | | | | | | | | Session6 | | | | | | | | | | | | | ---> ### 4class Catergories (**Primary Emotion**) * 4class = $angry, sad, neutral, happy$ | Method | Class | Task | Discard | Used | | -------------- | ----- | ------------ | ----------- | -------------- | | Majority Vote | 4 | Single-label | 9.20% (776) | 90.8% (7,662) | | Plurality Rule | 4 | Single-label | 5.63% (475) | 94.37% (7,963) | | David's Rule | 4 | Multi-label | 0.01% (1) | 99.99% (8,437) | * Majority Vote ![](https://i.imgur.com/QTRLFrq.png) * Plurality Rule ![](https://i.imgur.com/i3qXI96.png) * David's Rule ![](https://i.imgur.com/lnxxFnu.png) ### 4class Catergories (**Secondary Emotion**) * 4class = $angry, sad, neutral, happy$ | Method | Class | Task | Discard | Used | | -------------- | ----- | ------------ | -------------- | -------------- | | Majority Vote | 4 | Single-label | 14.42% (1,048) | 87.58% (7,390) | | Plurality Rule | 4 | Single-label | 6.28% (530) | 93.72% (7,908) | | David's Rule | 4 | Multi-label | 0.01% (1) | 99.99% (8,437) | * Majority Vote ![](https://i.imgur.com/drHhrGT.png) * Plurality Rule ![](https://i.imgur.com/yBn9jzX.png) * David's Rule ![](https://i.imgur.com/I9OvLqR.png) ### 10class Catergories (**Secondary Emotion**) * 4class = $depressed, frustrated, angry, sad, disgust, excited, fear, neutral, surprise, happy$ | Method | Class | Task | Discard | Used | | -------------- | ----- | ------------ | -------------- | -------------- | | Majority Vote | 4 | Single-label | 54.17% (4,571) | 45.82% (3,867) | | Plurality Rule | 4 | Single-label | 12.34% (1,041) | 87.66% (7,397) | | David's Rule | 4 | Multi-label | 0.01% (1) | 99.99% (8,437) | ### Attributes | Method | Task | Discard | Used | | ------- | ---- | --------------- | -------------------- | | Average | Dom. | 0.62%(52/8,438) | 99.38% (8,386/8,438) | ## [CREMA-D](https://github.com/CheyneyComputerScience/CREMA-D) ### Focus on the audio alone ![](https://i.imgur.com/JWPEgXA.png) | Session | Totall | angry | sad | disgust | fear | neutral | happy | | ------- | ------ | ------ | ----- | ------- | ----- | ------- | ----- | | All | 73,254 | 10,376 | 7,404 | 9,588 | 8,831 | 32,145 | 4,910 | ### 6 class Catergories * 6class = $angry, sad, disgust, fear, neutral, happy$ | Method | Class | Task | Discard | Used | | -------------- | ----- | ------------ | -------------- | --------------- | | Majority Vote | 4 | Single-label | 35.80% (2,664) | 64.20% (4,778) | | Plurality Rule | 4 | Single-label | 8.55% (636) | 91.45% (6,806) | | David's Rule | 4 | Multi-label | 0.00% (0) | 100.00% (7,442) | ### 4class Catergories * 4class = $angry, sad, neutral, happy$ | Method | Class | Task | Discard | Used | | -------------- | ----- | ------------ | -------------- | -------------- | | Majority Vote | 4 | Single-label | 13.76% (1,024) | 86.24% (6,418) | | Plurality Rule | 4 | Single-label | 7.65% (569) | 93.72% (6,873) | | David's Rule | 4 | Multi-label | 5.03% (374) | 94.97% (7,068) | * Majority Vote ![](https://i.imgur.com/UIVa2cB.png) * Plurality Rule ![](https://i.imgur.com/oTwnpNw.png) * David's Rule ![](https://i.imgur.com/KECxoxe.png) ## NTHU-NNIME ![](https://i.imgur.com/2Sx1OIi.png) | Session | Totall | angry | frustrated | disappointed | sad | fear | neutral | surprise | excited | happy | relax | joy | otehr | | ------- | ------ | ----- | ---------- | ------------ | ----- | ---- | ------- | -------- | ------- | ----- | ----- | --- | ----- | | All | 18,631 | 2,161 | 797 | 415 | 1,041 | 580 | 8,776 | 1,294 | 1,519 | 304 | 674 | 767 | 303 | ### 4class Catergories * 4class = $angry, sad, neutral, happy$ * **happy includes joy and happy** | Method | Class | Task | Discard | Used | | -------------- | ----- | ------------ | -------------- | -------------- | | Majority Vote | 4 | Single-label | 27.61% (1,545) | 72.39% (4,051) | | Plurality Rule | 4 | Single-label | 27.50% (1,539) | 72.50% (4,057) | | David's Rule | 4 | Multi-label | 21.46% (1,201) | 78.54% (4,395) | * Majority Vote ![](https://i.imgur.com/FGwNKVj.png) * Plurality Rule ![](https://i.imgur.com/7hoxIea.png) * David's Rule ![](https://i.imgur.com/w5yfB90.png) ### 11class Catergories * 11class = $angry, frustrated, disappointed, sad, fear, neutral, surprise, excited, happy, relax, joy$ | Method | Class | Task | Discard | Used | | -------------- | ----- | ------------ | -------------- | -------------- | | Majority Vote | 4 | Single-label | 32.34% (1,810) | 67.66% (3,786) | | Plurality Rule | 4 | Single-label | 25.04% (1,401) | 74.96% (4,195) | | David's Rule | 4 | Multi-label | 9.29% (520) | 90.71% (5,076) | <!--- ## MSP-PODCAST v1.8 ### Catergories (**Primary Emotion**) ### Catergories (**Secondary Emotion**) ### 4class Catergories (**Primary Emotion**) * 4class = $angry, sad, neutral, happy$ | Method | Class | Task | Discard | Used | | -------------- | ----- | ------------ | --------------- | --------------- | | Majority Vote | 4 | Single-label | 25.23% (21,792) | 74.77% (64,597) | | Plurality Rule | 4 | Single-label | 19.13% (16,525) | 80.87% (69,864) | | David's Rule | 4 | Multi-label | 3.47% (2,997) | 96.53% (83,392) | * Majority Vote * Plurality Rule * David's Rule ### 4class Catergories (**Secondary Emotion**) * 4class = $angry, sad, neutral, happy$ | Method | Class | Task | Discard | Used | | -------------- | ----- | ------------ | --------------- | -------------- | | Majority Vote | 4 | Single-label | 31.38% (27,110) | 68.62 (59,279) | | Plurality Rule | 4 | Single-label | 00000 | 000000 | | David's Rule | 4 | Multi-label | 0.52% (451) | 99.48 (85,938) | * Majority Vote * Plurality Rule * David's Rule ## MSP-PODCAST v1.7 ### Catergories (**Primary Emotion**) ### Catergories (**Secondary Emotion**) ### 4class Catergories (**Primary Emotion**) * 4class = $angry, sad, neutral, happy$ | Method | Class | Task | Discard | Used | | -------------- | ----- | ------------ | --------------- | --------------- | | Majority Vote | 4 | Single-label | 25.23% (21,792) | 74.77% (64,597) | | Plurality Rule | 4 | Single-label | 19.13% (16,525) | 80.87% (69,864) | | David's Rule | 4 | Multi-label | 3.47% (2,997) | 96.53% (83,392) | * Majority Vote * Plurality Rule * David's Rule ### 4class Catergories (**Secondary Emotion**) * 4class = $angry, sad, neutral, happy$ | Method | Class | Task | Discard | Used | | -------------- | ----- | ------------ | --------------- | -------------- | | Majority Vote | 4 | Single-label | 31.38% (27,110) | 68.62 (59,279) | | Plurality Rule | 4 | Single-label | 00000 | 000000 | | David's Rule | 4 | Multi-label | 0.52% (451) | 99.48 (85,938) | * Majority Vote * Plurality Rule * David's Rule ---> ------------------------------------------ # Experimental Setup ## Features: SOTA SSL Speech SSL Representation ([SUPERB Benchmark Leaderboard](https://superbbenchmark.org/leaderboard)) * [WavLM Large](https://arxiv.org/pdf/2110.13900) * [Github](https://github.com/microsoft/unilm/tree/master/wavlm) * [HuggingFace](https://huggingface.co/models?other=wavlm) * [Speaker Verification Demo on HuggingFace](https://huggingface.co/spaces/microsoft/wavlm-speaker-verification) * [HuBERT Large](https://arxiv.org/abs/2106.07447) * [Github based on fairseq (Meta platform)](https://github.com/facebookresearch/fairseq/blob/main/examples/hubert/README.md) * [HuggingFace](https://huggingface.co/docs/transformers/model_doc/hubert) * [data2vec Large](https://arxiv.org/pdf/2202.03555.pdf) * [Github](https://github.com/facebookresearch/fairseq/tree/main/examples/data2vec) * [HuggingFace](https://huggingface.co/docs/transformers/model_doc/data2vec) * [wav2vec 2.0 Large](https://arxiv.org/abs/2006.11477) * [Github](https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec/README.md) * [HuggingFace](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) ## Hyperparameter | Hyperparameter | Number | | -------------- | ------ | | Batchsize | 16 | | Epoch | 10 | ## Validation ## Scripts ### Here is the description of the argument that you can change for train.py: * *model_type*: wav2vec2, hubert, data2vec, or wavlm <= to change the model type that you want to run * *seed*: just to change the initial model weight and minibatch order during training * *batch_size, epochs, lr*: batch size, total number, and learning rate of epochs for training > It will save the model that shows the best performances in the development set within the maximum epochs * *hidden_dim, num_layers*: # of nodes and hidden layer for the classification head * *model_path*: the directory that you want to save the model ------------------------------------------ # Results ## Attributes ### MSP-PODCAST v1.7 | Upstream | Normalization | Arousal | Dominance | Valence | | -------- | ------------- | ------- | --------- | ------- | | wav2vec2 | | 0.7051 | 0.6345 | 0.574 | | WavLM | | 0.7108 | 0.6160 | 0.455 | | HuBERT | | 0.7140 | 0.6550 | 0.452 | | Upstream | Chunking | Normalization | Arousal | Dominance | Valence | | -------- |----------- | ------------- | ------- | --------- | ------- | | Wav2vec2-large-robust |Average Pooling | T-norm | 0.7051 | 0.6345 | 0.574 | | Wav2vec2-large-robust | LSTM-RNNAttenVec | T-norm | 0.6288 | 0.5384 | 0.029 | ### MSP-PODCAST v1.8 * **Clean** | Upstream | Arousal | Dominance | Valence | | -------- | ------- | --------- | ------- | | wav2vec2 | | | | | HuBERT | | | | | Text | Text | Text | | * **Noise (SNR: xxx)** | Upstream | Arousal | Dominance | Valence | | -------- | ------- | --------- | ------- | | wav2vec2 | | | | | HuBERT | | | | | Text | Text | Text | | * **Noise (SNR: xxx)** | Upstream | Arousal | Dominance | Valence | | -------- | ------- | --------- | ------- | | wav2vec2 | | | | | HuBERT | | | | | Text | Text | Text | | * **Noise (SNR: xxx)** | Upstream | Arousal | Dominance | Valence | | -------- | ------- | --------- | ------- | | wav2vec2 | | | | | HuBERT | | | | | Text | Text | Text | | ### MSP-PODCAST v1.10 | Upstream | Normalization | Arousal | Dominance | Valence | | -------- | ------------- | ------- | --------- | ------- | | wav2vec2 | | 0.5846 | 0.4548 | 0.4586 | | HuBERT | | 0.5448 | 0.4179 | 0.3306 | | Text | | Text | Text | | ### USC-IEMOCAP * Used pretrained model:**wav2vec** * Normalization: **T-norm** | Partition | Train | Development | Test | Arousal | Dominance | Valence | | --------- | ----------------- | ----------- | ----- | ------- | --------- | ------- | | 01 | Ses01,Ses02,Ses03 | Ses04 | Ses05 | 0.7164 | 0.5435 | 0.5671 | | 02 | Ses02,Ses03,Ses04 | Ses05 | Ses01 | 0.6829 | 0.5839 | 0.5755 | | 03 | Ses03,Ses04,Ses05 | Ses01 | Ses02 | 0.6706 | 0.4357 | 0.6484 | | 04 | Ses04,Ses05,Ses01 | Ses02 | Ses03 | 0.7130 | 0.4270 | 0.5726 | | 05 | Ses05,Ses01,Ses02 | Ses04 | Ses04 | 0.7232 | 0.4396 | 0.6067 | | Average | - | - | - | 0.70122 | 0.48594 | 0.59406 | ### MSP-IMPROV * Used pretrained model:**wav2vec** * Normalization: T-norm | Partition | Train | Development | Test | Arousal | Dominance | Valence | | --------- | ----------------------- | ----------- | ----- | ------- | --------- | ------- | | 01 | Ses01,Ses02,Ses03,Ses04 | Ses05 | Ses06 | 0.6386 | 0.4837 | 0.6414 | | 02 | Ses06,Ses01,Ses02,Ses03 | Ses04 | Ses05 | 0.6642 | 0.4577 | 0.6571 | | 03 | Ses05,Ses06,Ses01,Ses02 | Ses03 | Ses04 | 0.5734 | 0.3834 | 0.5632 | | 04 | Ses04,Ses05,Ses06,Ses01 | Ses02 | Ses03 | 0.7122 | 0.5499 | 0.4837 | | 05 | Ses03,Ses04,Ses05,Ses06 | Ses01 | Ses02 | 0.6594 | 0.4404 | 0.4640 | | 06 | Ses02,Ses03,Ses04,Ses05 | Ses06 | Ses01 | 0.5448 | 0.4179 | 0.3306 | | Average | - | - | - | 0.6321 | 0.4555 | 0.5233 | ### NTHU-NNIME ## Categories ### MSP-PODCAST v1.7 ### MSP-PODCAST v1.8 ### MSP-PODCAST v1.9 ### MSP-PODCAST v1.10 ### USC-IEMOCAP * **Majority Vote (Hard label; Single-label task)** | Partition | Train | Development | Test | macroF1 | microF1 | weightedF1 | | --------- | ----------------- | ----------- | ----- | ------- | ------- | ---------- | | 01 | Ses01,Ses02,Ses03 | Ses04 | Ses05 | | | | | 02 | Ses02,Ses03,Ses04 | Ses05 | Ses01 | | | | | 03 | Ses03,Ses04,Ses05 | Ses01 | Ses02 | | | | | 04 | Ses04,Ses05,Ses01 | Ses02 | Ses03 | | | | | 05 | Ses05,Ses01,Ses02 | Ses04 | Ses04 | | | | | Average | - | - | - | | | | * **Majority Vote (Soft label; Single-label task)** | Partition | Train | Development | Test | macroF1 | microF1 | weightedF1 | | --------- | ----------------- | ----------- | ----- | ------- | ------- | ---------- | | 01 | Ses01,Ses02,Ses03 | Ses04 | Ses05 | | | | | 02 | Ses02,Ses03,Ses04 | Ses05 | Ses01 | | | | | 03 | Ses03,Ses04,Ses05 | Ses01 | Ses02 | | | | | 04 | Ses04,Ses05,Ses01 | Ses02 | Ses03 | | | | | 05 | Ses05,Ses01,Ses02 | Ses04 | Ses04 | | | | | Average | - | - | - | | | | * **David's Vote (Soft label; Multi-label task)** | Partition | Train | Development | Test | macroF1 | microF1 | weightedF1 | | --------- | ----------------- | ----------- | ----- | ------- | ------- | ---------- | | 01 | Ses01,Ses02,Ses03 | Ses04 | Ses05 | | | | | 02 | Ses02,Ses03,Ses04 | Ses05 | Ses01 | | | | | 03 | Ses03,Ses04,Ses05 | Ses01 | Ses02 | | | | | 04 | Ses04,Ses05,Ses01 | Ses02 | Ses03 | | | | | 05 | Ses05,Ses01,Ses02 | Ses04 | Ses04 | | | | | Average | - | - | - | | | | ### MSP-IMPROV * **Majority Vote (Hard label; Single-label task)** | Partition | Train | Development | Test | macroF1 | microF1 | weightedF1 | | --------- | ----------------------- | ----------- | ----- | ------- | ------- | ---------- | | 01 | Ses01,Ses02,Ses03,Ses04 | Ses05 | Ses06 | | | | | 02 | Ses06,Ses01,Ses02,Ses03 | Ses04 | Ses05 | | | | | 03 | Ses05,Ses06,Ses01,Ses02 | Ses03 | Ses04 | | | | | 04 | Ses04,Ses05,Ses06,Ses01 | Ses02 | Ses03 | | | | | 05 | Ses03,Ses04,Ses05,Ses06 | Ses01 | Ses02 | | | | | 06 | Ses02,Ses03,Ses04,Ses05 | Ses06 | Ses01 | | | | | Average | - | - | - | | | | * **Majority Vote (Soft label; Single-label task)** | Partition | Train | Development | Test | macroF1 | microF1 | weightedF1 | | --------- | ----------------------- | ----------- | ----- | ------- | ------- | ---------- | | 01 | Ses01,Ses02,Ses03,Ses04 | Ses05 | Ses06 | | | | | 02 | Ses06,Ses01,Ses02,Ses03 | Ses04 | Ses05 | | | | | 03 | Ses05,Ses06,Ses01,Ses02 | Ses03 | Ses04 | | | | | 04 | Ses04,Ses05,Ses06,Ses01 | Ses02 | Ses03 | | | | | 05 | Ses03,Ses04,Ses05,Ses06 | Ses01 | Ses02 | | | | | 06 | Ses02,Ses03,Ses04,Ses05 | Ses06 | Ses01 | | | | | Average | - | - | - | | | | * **Plurality Rule (Hard label; Single-label task)** | Partition | Train | Development | Test | macroF1 | microF1 | weightedF1 | | --------- | ----------------------- | ----------- | ----- | ------- | ------- | ---------- | | 01 | Ses01,Ses02,Ses03,Ses04 | Ses05 | Ses06 | | | | | 02 | Ses06,Ses01,Ses02,Ses03 | Ses04 | Ses05 | | | | | 03 | Ses05,Ses06,Ses01,Ses02 | Ses03 | Ses04 | | | | | 04 | Ses04,Ses05,Ses06,Ses01 | Ses02 | Ses03 | | | | | 05 | Ses03,Ses04,Ses05,Ses06 | Ses01 | Ses02 | | | | | 06 | Ses02,Ses03,Ses04,Ses05 | Ses06 | Ses01 | | | | | Average | - | - | - | | | | * **Plurality Rule (Soft label; Single-label task)** | Partition | Train | Development | Test | macroF1 | microF1 | weightedF1 | | --------- | ----------------------- | ----------- | ----- | ------- | ------- | ---------- | | 01 | Ses01,Ses02,Ses03,Ses04 | Ses05 | Ses06 | | | | | 02 | Ses06,Ses01,Ses02,Ses03 | Ses04 | Ses05 | | | | | 03 | Ses05,Ses06,Ses01,Ses02 | Ses03 | Ses04 | | | | | 04 | Ses04,Ses05,Ses06,Ses01 | Ses02 | Ses03 | | | | | 05 | Ses03,Ses04,Ses05,Ses06 | Ses01 | Ses02 | | | | | 06 | Ses02,Ses03,Ses04,Ses05 | Ses06 | Ses01 | | | | | Average | - | - | - | | | | * **David's Vote (Soft label; Multi-label task)** | Partition | Train | Development | Test | macroF1 | microF1 | weightedF1 | | --------- | ----------------------- | ----------- | ----- | ------- | ------- | ---------- | | 01 | Ses01,Ses02,Ses03,Ses04 | Ses05 | Ses06 | | | | | 02 | Ses06,Ses01,Ses02,Ses03 | Ses04 | Ses05 | | | | | 03 | Ses05,Ses06,Ses01,Ses02 | Ses03 | Ses04 | | | | | 04 | Ses04,Ses05,Ses06,Ses01 | Ses02 | Ses03 | | | | | 05 | Ses03,Ses04,Ses05,Ses06 | Ses01 | Ses02 | | | | | 06 | Ses02,Ses03,Ses04,Ses05 | Ses06 | Ses01 | | | | | Average | - | - | - | | | | ### [CREMA-D](https://github.com/CheyneyComputerScience/CREMA-D) ### NTHU-NNIME # Reference ## Pytorch Extention Tools * [pytorchlightning (Trainers)](https://www.pytorchlightning.ai/) * [NeptuneLogger in pytorchlightning](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.loggers.neptune.html) * [HuggingFace Installation Doc.](https://huggingface.co/docs/transformers/installation) * [Mertics](https://github.com/Lightning-AI/metrics) * [Macro-F1](https://torchmetrics.readthedocs.io/en/stable/classification/f1_score.html) ## Develop Envirment * [Docker Desktop for Linux user manual](https://docs.docker.com/desktop/linux/) ## Other Papers Worth Reading * [M-SENA: An Integrated Platform for Multimodal Sentiment Analysis (ACL2020 Demo Track)](https://aclanthology.org/2022.acl-demo.20.pdf ) ## Paper ### Emotion Recognition * [Multi-modal Emotion Estimation for in-the-wild Videos](https://arxiv.org/pdf/2203.13032) * Findings * **Combination of wav2vec and ComParE got the best!** * [Dawn of the transformer era in speech emotion recognition: closing the valence gap](https://arxiv.org/pdf/2203.07378.pdf) * Same authers' paper * [Probing Speech Emotion Recognition Transformers for Linguistic Knowledge (INTERSPEECH 2022)](https://arxiv.org/pdf/2204.00400.pdf) * Findings: * **Fine-tuning the transformer layers is necessary.** * **Starting from a pre-trained model reduces the number of epochs needed to converge and improves performance stability across training runs with different seeds.** * **A reduction of training samples without loss in performance is only possible for arousal and dominance. With respect to valence, there is no sweet point in our data.** * Code: * [HuggingFace](https://github.com/audeering/w2v2-how-to) * [Seong-Gyun Code](https://cometmail-my.sharepoint.com/:u:/g/personal/hdc210001_utdallas_edu/EdwIMZKJ3dpDgssPm24EHnYB_fhG1ymKG5S5XOJV44VqXA) * Results: * Within-corpus result (Fine-tuned and tested with same corpus) U-Norm | | Arousal |Dominance| Valence | |-----------------|---------|---------|---------| |Original model |**0.744**|**0.655**|**0.638**| |MSP-Podcast v1.7 | 0.671 | 0.502 | 0.587 | |MSP-Podcast v1.10| 0.577 | 0.432 | 0.445 | |MSP-IMPROV (pt-1)| 0.655 | 0.467 | 0.613 | |MSP-IMPROV (pt-2)| 0.670 | 0.508 | 0.634 | * Cross-corpus result (finetuned with MSP-Podcast v1.10, tested with different corpus) | | Arousal |Dominance| Valence | |-----------------|----------|---------|---------| |MSP-Podcast v1.10| 0.577 | 0.432 | 0.445 | |MSP-IMPROV | 0.536 | 0.423 | 0.339 |

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully