baiyanchen8
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    {%hackmd @baiyanchen8/code %} # 緒論 :::success **Define by wiki** 1. 每個節點都只有有限個子節點或無子節點; 2. 沒有父節點的節點稱為根節點; 2. 每一個非根節點有且只有一個父節點; 2. 除了根節點外,每個子節點可以分為多個不相交的子樹; 2. 樹裡面沒有環路(cycle) **define by book** 1. 每個 tree 只有一個root 2. 除了 root 以外,可以分為 n(>0) 的沒有交集(disjoint)的子集合(也可以稱做子樹 subtree) ::: ## tree 的表示法 ### 串列(link list)表示法 使用簡單的 link list 方式去完成 tree 的建立。 example : A(B(S,D),C(W,E),X(O,P) ```mermaid graph TD; A-->B-->S; B-->D; A-->C-->W; C-->E; A-->X-->O; X-->P; ``` #### *BUT* 使用這種表示法,分支度是很嚴重的問題,若是在不清楚目前節點的分支數量時,程式碼難以設計 ### 使用 left-brother & right-kid tree 如同其名,該節點設計方式,將node 的分支簡化為兩個,使node 的設計難度大幅下降 example 同上 ```mermaid graph LR; A--broo-->1[NULL]; A--kid-->B--broo-->C--broo-->X--broo-->2[NULL]; B--kid--->S--broo--->D; C--kid--->W--broo-->E; X--kid-->O--broo-->P; ``` ## 一顆樹的空鏈接(link)數 :::danger 定理: 設有一個 tree 分支度為(k,即每個 node 最多可有 k 個子節點),並且共有 n 個節點(包含 root),那麼在所有 node 中必有 $n(k-1)+1$ 個空欄位(即所有 node 中的指向 NULL 的欄位數量) ::: ### 證明(非常不嚴謹) code [模擬程式碼](https://github.com/baiyanchen8/code/blob/main/data_structure/chap5/tree_NULL.py) 1. 一顆樹最多 n-1 個 節點包含 k-1 個 子節點 2. $(n-1)(k-1)+(1)k=n(k-1)+1$ ### 應用 可以用這個定理證明使用二元樹(left-brother & right-kid )一定是最佳解 #### **for normal tree** 空 link : n(k-1)+1 #### **for 二元樹** 空 link: 2k-1 **$\Rightarrow$** 2k-1 $\le$ n(k-1)+1 故若只有用空間複雜度這個單一指標,使用**二元**必定較佳 # 二元樹 *由以上的內容可以得知,無論什麼內容的樹皆可使用 binary tree 表示* ## DEFINE S : 為由一顆二元樹所有節點組成的集合 而 S 必是**一個 root 與兩個互斥的 binary subtree 組成**或**空集合** *tips :* 兩個subtree也可以由空集合組成 ## Data Structure ### array [code](https://github.com/baiyanchen8/code/blob/main/data_structure/chap5/array_tree.c) 以固定的規則給所有 node 作編號,並使用 array 紀錄 ```mermaid graph TD; 1-->2; 1-->3; 2-->4; 2-.->5; 3-->6; 3-->7; ``` | 1 | 2 | 3 | 4 | 5(不存在)| 6 | 7 | | --- | --- | --- | --- | --- | --- | --- | *tips :* 就算在圖中是不存在的 node 在 array 中還是必須要紀錄,以免順序混亂 ### link list ```c= struct node{ int data; struct node * left; struct node * right; } ``` ## 二元樹的特性 ```mermaid graph TD; A((A(0))) B((B(1))) C((C(1))) D((D(2))) E((E(2))) F((F(2))) G((G(2))) H((H(3))) I((I(3))) J((J(3))) K((K(3))) L((L(3))) M((M(3))) N((N(3))) O((O(3))) A-->B; A-->C; B-->D; B-->E; C-->F; C-->G; D-->H; D-->I; E-->J; E-->K; F-->L; F-->M; G-->N; G-->O; ``` ### 每層數量 {$2^k$\|$0 \le k\le H$} ### 最大節點數 :::success *在給定特定的深度(高度)的情況下計算出能有的最大節點數* ::: ### 推導 **SET** 1. 可以觀察到每一層都是上一層兩倍的 node 數 2. 可用 Sum= $\Sigma^H_02^{k}=2^{H+1}-1$ # 二元樹的走訪 ## 走訪順序 二元樹可以有很多種不同的走訪方式,取決於你的需要,基本有前、中、後序,接下來,也有許多不同的版本介紹並以code 實作。 ### pre order (前序) ```c= void pre_order(struct node* A){ if(A){ printf("%d",A->data); pre_order(A->left); pre_order(A->right); } } ``` ### in-order 1. 遞迴 ```c= void in_order(struct node* A){ if(A){ in_order(A->left); printf("%d",A->data); in_order(A->right); } } ``` 1. 迭代 ```c= // 中序遍歷(迭代) void in_order_iterative(struct node *A){ struct node *stack[100]; int top = -1; struct node *current = A; while (current != NULL || top != -1) { while (current != NULL) { stack[++top] = current; current = current->left; } current = stack[top--]; printf("%d ", current->data); current = current->right; } } ``` ### post order ```c= void post_order(struct node* A){ if(A){ post_order(A->left); printf("%d",A->data); post_order(A->right); } } ``` ### level order ```c= void levelorder(struct node * A){ struct node *Queue[100]; int front=0,rear=0; if (A) addq(Queue,A); for(;;){ A=deq(Queue); if (!A) break; printf("%d",A->data); if (A->left){ addq(Queue,A->left); } if (A->right){ addq(Queue,A->right); } } } ``` # 更多二元樹運算 ## copy tree ```c= struct node * copy_tree(struct node *original){ if (!original) return NULL; struct node * head=(struct node * )malloc(sizeof(struct node *)); head->data= original->data; head -> left = copy_tree(original->left); head -> right = copy_tree(original->right); return head; } ``` ## equal tree(確認兩顆樹是否相等) ```c= int equal_tree(struct node *A,struct node * B){ return (!A&&!B)||(A->data==B->data &&equal_tree(A->left,B->left) &&equal_tree(A->right,B->right)); } ``` ## 滿足性問題(Boolean satisfiability problem) ### explain 將一個包含變數、邏輯運算子(AND、OR、NOT)的boolean運算式求解便是滿足性問題。 ### struct node ```c=1 typedef enum{and,or,not,true,false}logic; struct logic_tree{ struct logic_tree *left; struct logic_tree *right; logic data; }; ``` ### create_tree :::success 實現輸入boolean 運算式然後建立該運算式的二元樹 ::: **pass too hard** [code](https://github.com/baiyanchen8/code/blob/main/data_structure/chap5/boolean_tree.c) ### 滿足性演算法 ```c= void postorderEval(struct node* head){ if (!head) return ; postorderEval(head ->left); postorderEval(head ->right); switch (head -> type){ case NOT: head->value = !head-> right->value; break; case OR: head->value =head->left->value || head -> right ->value; break; case AND: head->value =head->left->value && head -> right ->value; break; case VAR: break; default: break; } } ``` # 引線二元樹 ![](https://th.bing.com/th/id/OIP.jlkl-J30Ja0lNkwZBNbIdQHaCB?rs=1&pid=ImgDetMain) ## def 引線二元樹 的定義如下: >「一個二元樹通過如下的方法「穿起來」:所有原本為空的右子節點指針改為指向該節點在中序序列中的後繼,所有原本為空的左子節點指針改為指向該節點的中序序列的前驅。」 >from [wiki](https://zh.wikipedia.org/zh-tw/%E7%BA%BF%E7%B4%A2%E4%BA%8C%E5%8F%89%E6%A0%91) 通俗來說,就是將每個 node 原本空著的指標指向鄰近的 node,並以此加速中序遍歷速度。 ## struct ```c= typedef enum {True, False}bool; struct node { char data; struct node * pointer_left; bool bool_left; struct node * pointer_right; bool bool_right; }; ``` ## inorder ```c= // 找出中序遍歷的下一個節點 struct node *inorder_next(struct node *A){ struct node * tmp = A->pointer_right; if(A->bool_right ==False){ while (tmp->bool_left == False){ tmp = tmp->pointer_left; } } return tmp; } // 中序遍歷並印出結果 void inorder_thread(struct node *A){ struct node *tmp = A; while (tmp->bool_left=False) tmp=tmp->pointer_left; printf("%c ", tmp->data); do{ tmp = inorder_next(tmp); printf("%c ", tmp->data); } while(A != tmp); } ``` ## root init ```c= void root_init(struct node * root){ struct node * tmp = c_node(' '); tmp->pointer_right=tmp; tmp ->pointer_right =root; root->bool_left=True; root->bool_right=True; root->pointer_left=tmp; root->pointer_right=tmp; } ``` ## insert left and right ```c= void insetleft(struct node * root,char data){ // 可能有問題 struct node * left =c_node(data); struct node * original_left=root->pointer_left; // 左指 left->bool_left=root->bool_left; left->pointer_left=root->pointer_left; root->pointer_left=left; // 右指 left->bool_right=True; left->pointer_right=root; if (root->bool_left==False){ // orginal left 的處理 while (original_left->bool_right==True) original_left=original_left->pointer_right; original_left->pointer_right=left; } root->bool_left=False; } void insetright(struct node * root , char data){ struct node * right = c_node(data); right->pointer_right=root->pointer_right; right->bool_right=root -> bool_right; right->pointer_left=root; right->bool_left=True; root->bool_right=False; root->pointer_right=right; if(right->bool_right==False){ struct node * tmp= inorder_next(right); tmp->pointer_left=tmp; } } ``` # 堆積(heap) ## def 堆積(Heap)是電腦科學中的一種特別的完全二元樹。若是滿足以下特性,即可稱為堆積:「*給定堆積中任意節點P和C,若P是C的母節點,那麼P的值會小於等於(或大於等於)C的值*」。若母節點的值恆小於等於子節點的值,此堆積稱為最小堆積(min heap);反之,**若母節點的值恆大於等於子節點的值,此堆積稱為最大堆積(max heap)**。在堆積中最頂端的那一個節點,稱作根節點(root node),根節點本身沒有母節點(parent node)。 ## struct 這裡使用arr tree 的方式建立 ```c= typedef struct { int heap[MAX_HEAP_SIZE]; int size; } MaxHeap; ``` ## insert ```clike= // 上移操作(向上調整堆) void heapifyUp(MaxHeap *maxHeap, int i) { int temp = maxHeap->heap[i]; while (i > 0 && temp > maxHeap->heap[parent(i)]) { maxHeap->heap[i] = maxHeap->heap[parent(i)]; i = parent(i); } maxHeap->heap[i] = temp; } // 插入操作 void insert(MaxHeap *maxHeap, int value) { if (maxHeap->size >= MAX_HEAP_SIZE) { printf("Heap is full, insertion failed.\n"); return; } maxHeap->heap[maxHeap->size++] = value; heapifyUp(maxHeap, maxHeap->size - 1); } ``` ## get Max ```c= // 下移操作(向下調整堆) void heapifyDown(MaxHeap *maxHeap, int i) { int maxIndex = i; int left = leftChild(i); int right = rightChild(i); if (left < maxHeap->size && maxHeap->heap[left] > maxHeap->heap[maxIndex]) { maxIndex = left; } if (right < maxHeap->size && maxHeap->heap[right] > maxHeap->heap[maxIndex]) { maxIndex = right; } if (i != maxIndex) { int temp = maxHeap->heap[i]; maxHeap->heap[i] = maxHeap->heap[maxIndex]; maxHeap->heap[maxIndex] = temp; heapifyDown(maxHeap, maxIndex); } } // 提取最大值操作 int extractMax(MaxHeap *maxHeap) { if (maxHeap->size <= 0) { printf("Heap is empty, extraction failed.\n"); return -1; } int max = maxHeap->heap[0]; maxHeap->heap[0] = maxHeap->heap[maxHeap->size - 1]; maxHeap->size--; heapifyDown(maxHeap, 0); return max; } ``` ## bigO insert 1 point : $O(logn)$ pop i point : $O(logn)$ heap sort: $O(2nlogn)$ # 二元搜尋樹 ## DEFINE 1. 每個元素都有一個 key,且 key 不重複 (假設並沒有重複的 element) 2. left key < root key < right key (假設存在) 3. left subtree & right sub tree 也是 binary search tree ## search ### 遞迴 ```c= struct node * search (struct node *head,int key){ // time : O(h) h=logn // space : O(h) 因為遞迴的記憶體結構(os的東西) if (!head) return NULL; if (head->key==key) return head; if (head->key<key) return search(head->right,key); else return search(head->left,key); } ``` ### 迴圈 ```c= struct node * inter_search (struct node *head,int key){ // O(h) h=logn // space : O(1) struct node * tmp=head; while(tmp){ if (tmp->key==key) return tmp; if (tmp->key<key) tmp=tmp->right; else tmp=tmp->left; } return NULL; } ``` ## insert ```c= struct node * modify_search (struct node *head,int key){ struct node * tmp=head; struct node * past=NULL; while(tmp){ if (tmp->key==key) return NULL; if (tmp->key>key){ past=tmp; tmp=tmp->left; }else { past=tmp; tmp=tmp->right; } } return past; } void insert (struct node **head,int key){ // O(N)+O(1) struct node * target=modify_search(*head,key); struct node * tmp=(struct node *)malloc(sizeof(struct node *)); tmp->key=key; tmp->left=NULL; tmp->right=NULL; if (target||!*head){ if(*head){ if(key<target->key) target->left=tmp; else target->right=tmp; }else{ *head =tmp; } } } ``` ## delete ```cpp= void delete(struct node **head, int key) { struct node *past = NULL; struct node *target = *head; // 找到要刪除的節點 while (target) { if (target->key == key) { struct node *s = target->left; struct node *b = target->right; if (!past) { // 如果目標節點是樹的根節點 *head = twoWayJoin(s, b); } else { // 更新目標節點的父節點的指向 if (past->left == target) { past->left = twoWayJoin(s, b); } else { past->right = twoWayJoin(s, b); } } free(target); break; } // 移動 past 和 target 指針以繼續搜索目標節點 past = target; if (target->key > key) { target = target->left; } else { target = target->right; } } } ``` ## Join ```cpp= void threeWayJoin(struct node *s,struct node *m,struct node *b){ if (!s&&!b&&!m) return; m->left=s; m->right=b; } struct node * twoWayJoin(struct node *s,struct node *b){ if (!s && !b) return NULL; struct node * m=s; struct node * p=s; while(m->right){ p=m; m=m->right; } if (s!=m){ p->right=NULL; threeWayJoin(s,m,b); return m; }else{ struct node * m=b; while(m->left){ m=m->left; } m->left=s; return b; } } ``` ###### [code](https://github.com/baiyanchen8/code/blob/main/data_structure/chap5/binsearch_tree.c) # 選擇樹(selection tree)[refer](https://dreamisadream97.pixnet.net/blog/post/178829577-winner-tree-%26%26-loser) ## winner & loser tree > 這是一種常用於 external sort 的方法,由一個 tree 及多個 queue 組成 ![image](https://hackmd.io/_uploads/BypUUymha.png) ## 方法 winner tree ### bulit 先選取資料建立多個 queue ,從 queue 中提取1個節點作為 **leaf**,然後相鄰的 node 比較,比**較小**(假設獲勝條件為較小)的節點*copy* 到 parent ,重複直到頂點 ### 提取 從頂點向下清空與頂點**相連的相同內容的**節點,直到 queue,然後將 queue 取出一個作為leaf ,並向旁比較並向上複製。 ## 方法 loser tree 就是贏的放winner 輸的放 loser ..... 可以看這個 $\rightarrow$[viedo](https://youtu.be/8d-rn6ZQy6U?si=S98V-BRcuJCbf9Zv&t=301) # 樹林 ## DEFINE 由 $\ge$ 0個沒有交集的 tree 所組成的集合。 # 互斥集合表示法(union) ![image](https://hackmd.io/_uploads/HyU3_v3h6.png) ## sample version Union ```c= int simplefind(int i){ for (; parent[i] >= 0; i = parent[i]) {} // 這裡使用 -1 作為 root 的終點 return i; } void simpleUnion(int i, int j){ parent[i] = j; } ``` :::success 因為使用這種方法可能會產生大量的 overhead (根據樹高) ::: ## Weight Union ```c= void weightUnion(int i, int j){ i = simplefind(i); j = simplefind(j); int tmp = parent[i] + parent[j]; if (parent[i] > parent[j]){ // 使用絕對值比較集合大小 parent[i] = j; parent[j] = tmp; // 更新集合大小 }else{ parent[j] = i; parent[i] = tmp; // 更新集合大小 } } ``` ## collpasefind ```c= int collpasefind(int i){ // 透過將經過的所有點都指向 root 來減小樹高 int root,lead,tail; for (root=i;parent[root]>=0;root=parent[root]); for (tail=i;tail!=root;tail=lead){ lead=parent[tail]; parent[tail]=root; } return root; } ```

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully