Delphine-Potier
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

Your note will be visible on your profile and discoverable by anyone.
Your note is now live.
This note is visible on your profile and discoverable online.
Everyone on the web can find and read all notes of this public team.
See published notes
Unpublish note
Please check the box to agree to the Community Guidelines.
View profile
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
--- title: "MOFA2 analysis of Corces-Buenrostro AML dataset, Part 2" author: "Delphine Potier & Carl Herrmann" date: "`r date()`" output: html_document: toc: true toc_float: true toc_depth: 4 number_sections: false code_folding: show highlight: zenburn params: work_dir: "~/mydatalocal/" editor_options: chunk_output_type: console --- **Data pre-processing is crucial for MOFA analysis.** **We will go back to the different pre-processing steps (and to the various MOFA options) to investigate how they can impact the results.** The following script allow to obtain the multiview matrix we used to perform MOFA analysis. At different points, the possibility to use another option will be proposed, you can choose to modify if and investigate how it impact the results. ```{r setup, include=FALSE} knitr::opts_knit$set(root.dir=params$work_dir) knitr::opts_chunk$set(echo = TRUE) options(knitr.table.format="html") setwd(params$work_dir) ``` # Library installation/loading ```{r libraries_loading, warning=FALSE, message=FALSE, results='hide'} BiocManager::install("gage", update = FALSE) # Load libraries library(data.table) library(ggplot2) library(DESeq2) library(MOFA2) library(FactoMineR) library(factoextra) library(ComplexHeatmap) library(viridis) library(DT) library(msigdbr) library(GGally) library(dplyr) library(gage) ``` # Data loading and preprocessing ## RNA-seq **RNA-seq raw data loading** ```{r RNAseq-data_loading} ##----------------------------------------------------------------------------## ## Download counts ## ##----------------------------------------------------------------------------## # set ftp url to RNA-seq data ftp_url <- file.path("ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE74nnn/GSE74246", "suppl/GSE74246_RNAseq_All_Counts.txt.gz") read_delim_gz <- function(file_url) { con <- gzcon(url(file_url)) txt <- readLines(con) return(read.delim(textConnection(txt), row.names = 1)) } # read in data matrix corces_rna_counts <- read_delim_gz(ftp_url) ``` **Data cleaning** ```{r RNAseq-data_cleaning, fig.width = 9, fig.height = 8} ##----------------------------------------------------------------------------## ## Data selection and sample QC ## ##----------------------------------------------------------------------------## #Remove leukemic and erythroblast samples: corces_rna_counts <- corces_rna_counts[,-grep("Ery|rHSC|LSC|Blast", colnames(corces_rna_counts))] #Inspect correlation matrix: cor_dm <- cor(corces_rna_counts) Heatmap(cor_dm, col = magma(100), name = "Correlation") # need library(ComplexHeatmap) #X5852.GMP is an outlier and will be removed, has much smaller library size as other GMPS: corces_rna_counts <- corces_rna_counts[,-grep("X5852.GMP", colnames(corces_rna_counts))] #Remove rows with rowSum==0: corces_rna_counts <- corces_rna_counts[!rowSums(corces_rna_counts) == 0,] rm(cor_dm) dim(corces_rna_counts) ``` We obtain a matrix with **`r dim(corces_rna_counts)[2]`** samples and **`r dim(corces_rna_counts)[1]`** genes $~$ $~$ $~$ **Annotation formatting** ```{r RNA-seq_annotation} ####################################################### ##----------------------------------------------------------------------------## ## Annotation ## ##----------------------------------------------------------------------------## # extract celltypes from colnames col.anno <- gsub(".*\\.", "", colnames(corces_rna_counts)) #Use short names col.anno[grep("NK", col.anno)] <- "NK" col.anno[grep("CD4", col.anno)] <- "CD4" col.anno[grep("CD8", col.anno)] <- "CD8" # Define color vector type.color <- setNames(c("#771155", "#AA4488", "#CC99BB", "#114477", "#4477AA", "#77AADD", "#117777", "#44AAAA", "#77CCCC", "#777711", "#AAAA44", "#DDDD77"), c("HSC", "MPP", "LMPP", "CMP", "GMP", "MEP", "CLP", "CD4", "CD8", "NK", "Bcell", "Mono")) # type.color <- setNames(c("#356345", "#75A962", "#5CB4A1", "#F3CD99", "#F5BE44", "#D75B60", # "#B6E1E9", "#4083B3", "#2E368B", "#B18DBA", "#55286D", "#EE7C32"), # c("HSC", "MPP", "LMPP", "CMP", "GMP", "MEP", # "CLP", "CD4", "CD8", "NK", "Bcell", "Mono")) # Annotation data frame corces_rna_annot <- data.frame(sample = colnames(corces_rna_counts), Celltype = as.factor(col.anno), color = type.color[match(col.anno, names(type.color))], row.names = colnames(corces_rna_counts), stringsAsFactors = FALSE) ``` $~$ $~$ $~$ ## ATAC-seq **Raw data loading** ```{r ATACseq-data_loading} # Download and read RNAseq data. ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## ## Set paths ## ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## atac.data.path <- file.path("data/atacseq/") GSE74912.path <- file.path(atac.data.path, "GSE74912_ATACseq_All_Counts.txt.gz") dir.create(atac.data.path, recursive = TRUE, showWarnings = FALSE) ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## ## Download files ## ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## # download data if(!file.exists(GSE74912.path)){ download.file(url = "ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE74nnn/GSE74912/suppl/GSE74912_ATACseq_All_Counts.txt.gz", GSE74912.path) } ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## ## Data loading ## ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## # read in data matrix atac.counts <- read.delim(gzfile(GSE74912.path), stringsAsFactors = FALSE) #atac.counts[1:5,1:5] ``` **Data cleaning** ```{r ATACseq-data_cleaning, fig.width = 9, fig.height = 8} ##----------------------------------------------------------------------------## ## Data selection and preprocessing ## ##----------------------------------------------------------------------------## # Separate annotation column from data. atac.row.anno <- atac.counts[,1:3] atac.counts <- atac.counts[,-c(1:3)] # Remove rows with rowSums < 2000 and leukemic and erythroblast samples. rownames(atac.counts) <- do.call(paste, c(as.list(atac.row.anno), sep = "_")) # remove rows with rowSums < 2000 atac.row.anno <- atac.row.anno[rowSums(atac.counts) > 2000,] atac.counts <- atac.counts[rowSums(atac.counts) > 2000,] # remove leukemic and erythroblast samples atac.counts <- atac.counts[,-grep("Ery|LSC|pHSC|Leuk|CD34", colnames(atac.counts))] #Remove X6792.7A, due to low coverage. atac.counts <- atac.counts[,-grep("X6792.7A", colnames(atac.counts))] saveRDS(atac.counts, file = "data/atac_counts.RDS") ``` We obtain a matrix with **`r dim(atac.counts)[2]`** samples and **`r dim(atac.counts)[1]`** genes $~$ $~$ $~$ **Annotation formatting** ```{r ATACseq_annotation} ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## ## Annotation ## ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## # extract celltypes from colnames col.anno <- colnames(atac.counts) col.anno[grep("CD4", col.anno)] <- "CD4" col.anno[grep("CD8", col.anno)] <- "CD8" col.anno[grep("NK", col.anno)] <- "NK" col.anno[grep("Nkcell", col.anno)] <- "NK" col.anno[grep("Bcell", col.anno)] <- "Bcell" col.anno[grep("CLP", col.anno)] <- "CLP" col.anno[grep("1(A|B)", col.anno)] <- "HSC" col.anno[grep("2(A|B)", col.anno)] <- "MPP" col.anno[grep("3(A|B)", col.anno)] <- "LMPP" col.anno[grep("4(A|B)", col.anno)] <- "CMP" col.anno[grep("5(A|B)", col.anno)] <- "GMP" col.anno[grep("6(A|B)", col.anno)] <- "MEP" col.anno[grep("7(A|B)", col.anno)] <- "Mono" # Annotation data frame atac.annot <- data.frame(sample = colnames(atac.counts), Celltype = as.factor(col.anno), color = type.color[match(col.anno, names(type.color))], row.names = colnames(atac.counts), stringsAsFactors = FALSE) ``` $~$ $~$ $~$ ## Match RNAseq and ATACseq Clean to keep only RNA-seq and ATAC-seq matching samples *Of note, it is possible in MOFA to work with partially unmatched data : you can choose to modify the script an run MOFA with some unmatched datasets* ```{r} ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## ## ATACseq annotations ## ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## # replace numbered celltypes by character names atac.anno.cellID <- col.anno rm(col.anno) # Paste donor ID and cell type atac.anno <- paste0(sapply(strsplit(colnames(atac.counts), "\\."), "[[", 1), ".", atac.anno.cellID) ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## ## RNAseq annotations ## ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## # Keep only Donor ID rnaseqIDs <- setNames(sapply(strsplit(colnames(corces_rna_counts), "\\."), "[[", 1), colnames(corces_rna_counts)) rnaseqIDs <- sub("^X", "", rnaseqIDs) ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## ## Match RNAseq and ATACseq ## ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## rna.atac.matched.samples <- lapply(setNames(1:length(rnaseqIDs), names(rnaseqIDs)), function(i) { # Find same donor in RNAseq and ATACseq atac.matched <- grep(rnaseqIDs[i], atac.anno, value = TRUE) if (length(atac.matched) > 0) { # if same donor in both omics search if same cell type # extract cell tupe fron RNAseq colname anno <- sapply(strsplit(names(rnaseqIDs)[i], "\\."), "[[", 2) anno <- sub("Tcell", "", anno) anno <- sub("cell", "", anno) # find in ATACseq anno.matched <- grep(anno, atac.matched, value = TRUE) if (anno == "MPP") { anno.matched <- grep("LMPP", anno.matched, value = TRUE, invert = TRUE) } if (length(anno.matched) > 0) { data.frame(rnaID = names(rnaseqIDs)[i], atacID = colnames(atac.counts)[atac.anno %in% anno.matched], cellID = atac.anno.cellID[atac.anno %in% anno.matched], atac.anno = anno.matched, row.names = colnames(atac.counts)[atac.anno %in% anno.matched]) } } } ) # Keep only matched samples rna.atac.matched.samples <- rna.atac.matched.samples[!sapply(rna.atac.matched.samples, is.null)] ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## ## Format annotations ## ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## # Keep only one ATACseq replicate rna.atac.annot <- do.call(rbind, rna.atac.matched.samples) rna.atac.annot <- rna.atac.annot[!duplicated(rna.atac.annot$rnaID),] # Format annotation rna.atac.annot$original.atacID <- rna.atac.annot$atacID rna.atac.annot$atacID <- rna.atac.annot$rnaID rownames(rna.atac.annot) <- rna.atac.annot$rnaID rna.atac.annot <- rna.atac.annot[,c(2,3,1,4,5)] colnames(rna.atac.annot) <- c("sample", "Celltype", "rna.sample", "atac.sample", "original.atacID") rna.atac.annot$color <- type.color[match(rna.atac.annot$Celltype, names(type.color))] #Save annotations saveRDS(rna.atac.annot, file = "data/atac_annotations.RDS") ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## ## Removing unmatched samples ## ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## ## RNA-seq ## #Keep only samples matching with ATAC-seq corces_rna_counts <- corces_rna_counts[,rna.atac.annot$rna.sample] #Remove rows with rowSum==0: corces_rna_counts <- corces_rna_counts[!rowSums(corces_rna_counts) == 0,] ### ATAC-seq ## #Keep only samples matching with ATAC-seq atac.counts <- atac.counts[,rna.atac.annot$original.atacID] #Remove rows with rowSum==0: atac.counts <- atac.counts[!rowSums(atac.counts) == 0,] #useless the size stay the same ``` We obtain a matrix with **`r dim(corces_rna_counts)[2]`** samples and **`r dim(corces_rna_counts)[1]`** genes for RNA-seq and a matrix with **`r dim(atac.counts)[2]`** samples and **`r dim(atac.counts)[1]`** genes for ATAC-seq. ## Data normalization {.tabset} MOFA requires a proper normalization for the model to work. In our case (RNA-seq / ATAC-seq, which are count based data), it is recommended to perform size factor normalisation (to remove library size effects) + variance stabilisation (data need to be continuous and normal-ish distributed; the closer it looks to a gaussian the better, but this is not necessary). If this step is not done correctly, the model might learn a very strong Factor 1 that will capture differences in the total expression per sample, and more subtle sources of variation will be downweighted. *Note 1 : We followed MOFA recommendation but you can choose to use an other normalization method (e.g. use log2 normalization that was used with ButchR in the 1 part of the workshop or rlog). The script to perform a log2 normalization of the data is already here, you can check the histograms to see count distribution before and after normalization with vst or log2. You are free to test any other method you like or check what it gives without normalization.* *Note 2 : It could be interesting to filter out genes display a very low expression in to few samples, if you want to try the command lines are in comments.* ### RNA-seq {.tabset} ```{r RNA-seq_data_preprocessing} ##----------------------------------------------------------------------------## ## Normalize counts ## ##----------------------------------------------------------------------------# dds <- DESeqDataSetFromMatrix(countData = corces_rna_counts, colData = corces_rna_annot[rna.atac.annot$rna.sample,], design = ~ Celltype) # do size factor normalization dds <- estimateSizeFactors(dds) #sizeFactors(dds) # # It could be interesting to filter for low expression # # Code to filter out genes where there are less than 1 sample (for B cell we have only one sample) with normalized counts greater than or equal to 5. # idx <- rowSums( counts(dds, normalized=TRUE) >= 5 ) >= 1 # dds <- dds[idx,] ## Using VST ############################### # do vst (recommanded by MOFA) vsd <- vst(dds, blind = FALSE) # blind = FALSE to take in account the experimental design corces_rna_norm <- assay(vsd) ## Or logs ############################### # This is how where normalized counts in the first part of this course # do +1 log2 transformation corces_rna_norm2 <- apply(counts(dds, normalized=TRUE) + 1, 2, log2) #corces_rna_norm <- corces_rna_norm2 rm(ftp_url, dds) ``` $~$ #### Histogram of counts before normalisation ```{r RNA-seq_hist_raw} hist(sapply(corces_rna_counts, as.numeric), breaks = 100, main = "Histogram of counts before normalisation") ``` #### Histogram of vst counts Normalization recommanded by MOFA ```{r RNA-seq_hist_vst-norm} hist(corces_rna_norm, breaks = 100, main = "Histogram of VST normalized counts") hist(corces_rna_norm - rowMeans(corces_rna_norm), breaks = 100, main = "Histogram of VST normalized and centered counts") ``` #### Histogram of log2 counts Normalization used in multivariate analyis part I ```{r RNA-seq_hist_log-norm} hist(corces_rna_norm2, breaks = 100, main = "Histogram of log2 normalized counts") hist(corces_rna_norm2 - rowMeans(corces_rna_norm2), breaks = 100, main = "Histogram of VST normalized and centered counts") ``` $~$ $~$ $~$ ### ATAC-seq {.tabset} ```{r ATACseq_data_preprocessing} ##----------------------------------------------------------------------------## ## Normalize counts ## ##----------------------------------------------------------------------------## ## Using VST ############################### dds <- DESeqDataSetFromMatrix(countData = atac.counts, colData = atac.annot[rna.atac.annot$original.atacID,], design = ~ Celltype) # do size factor normalization dds <- estimateSizeFactors(dds) #sizeFactors(dds) # # It could be interesting to filter for too low accessibility # # Code to filter out genes where there are less than 1 sample (for B cell we have only one sample) with normalized counts greater than or equal to 5. # idx <- rowSums( counts(dds, normalized=TRUE) >= 5 ) >= 1 # dds <- dds[idx,] # do vst vsd <- vst(dds, blind = FALSE) # blind = FALSE to take in account the experimental design atac.norm.mat <- assay(vsd) ## Or logs ############################### # This is how where normalized counts in the first part of this course # do +1 log2 transformation atac.norm.mat2 <- apply(counts(dds, normalized=TRUE) + 1, 2, log2) #atac.norm.mat <- atac.norm.mat2 rm(vsd, GSE74912.path, dds) ``` $~$ #### Histogram of counts before normalisation ```{r ATACseq_hist_raw} hist(sapply(atac.counts, as.numeric), breaks = 100, main = "Histogram of counts before normalisation") ``` #### Histogram of vst counts Normalization recommanded by MOFA ```{r ATACseq_hist_vst-norm} hist(atac.norm.mat, breaks = 100, main = "Histogram of VST normalized counts") hist(atac.norm.mat - rowMeans(atac.norm.mat), breaks = 100, main = "Histogram of VST normalized and centered counts") ``` #### Histogram of log2 counts Normalization used in multivariate analyis part I ```{r ATACseq_hist_log-norm} hist(atac.norm.mat2, breaks = 100, main = "Histogram of log2 normalized counts") hist(atac.norm.mat2 - rowMeans(atac.norm.mat2), breaks = 100, main = "Histogram of VST normalized and centered counts") ``` $~$ $~$ $~$ # Features selection {.tabset} Features (genes/regions) displaying no or low variation should be removed as they can cause numerical issues in the model. MOFA recommends to select the top most variable features for each assay (of course other methods can be used). Moreover our datasets have different sizes; this has to be taken in account by selecting similar amount of features for both as bigger data modalities will tend to be over-represented in the MOFA model and the model might miss sources of variation unique to the small data set). *This is another crucial step of the data pre-processing you can play with.* Here we will select the top 5000 most variable features for both RNA-seq and ATAC-seq. *This number is arbitrary and can be changed, one can also compare with an imbalanced number of selected features depending on the downstream analysis to be run (e.g. higher number of ATAC-seq regions to perform motif enrichment analysis of differently accessible DNA regions).* *Moreover it is possible to use other selection methods (e.g. PCA, using the top X features participating to the first Y PCs or taking in account or with a more advanced method) * ## RNA-seq {.tabset} ### HVG selection ```{r RNAseq_HVG_selection} # Select highly variable genes ############## topVarGenes <- head(order(rowVars(corces_rna_norm), decreasing = TRUE), 5000) matTopVarGenes <-corces_rna_norm[topVarGenes,] matTopVarGenes <- matTopVarGenes - rowMeans(matTopVarGenes) ``` #### Heatmap ```{r RNAseq_HVG_heatmap, fig.width = 9} pheatmap::pheatmap(matTopVarGenes, annotation_col = corces_rna_annot[,2, drop = FALSE], annotation_colors = list(Celltype = c(HSC = "#771155", MPP = "#AA4488", LMPP = "#CC99BB", CMP = "#114477", GMP = "#4477AA", MEP = "#77AADD", Mono = "#DDDD77", CD4 = "#44AAAA", CD8 = "#77CCCC", NK = "#777711", Bcell = "#AAAA44", CLP = "#117777")), show_rownames = FALSE ) ``` #### Checking expected markers Historically, cluster differentiation genes (usually named CD[0-9]*) are genes used to separate and characterize the different hematopoietic populations by FACS. Among them classical markers are : * Bcells : CD19, CD79A, CD79B * Tcells : CD3D, CD3E, CD3G, CD4, CD8A, CD8B * Monocytes : CD14, CD300E, CD163 * NK cells : CD160 (activation) * Stage markers: CD24, CD5, CD52, CD53, CD34, CD84, CD33, (+ some markers have different gene/protein names : CD62L (=SELL), CD117 (=KIT),CD45 (=PTPRC), CD90 (=THY1), CD10 (=MME)) $~$ $~$ **Heatmap of some CD genes of interest** ```{r RNAseq_CD_genes_visualization, fig.width = 9, fig.height = 7} CDgenes <- c("CD19","CD79A","CD3D","CD3E","CD3G","CD4","CD8A","CD8B","CD24","CD5","CD52","CD53","CD34","CD14","CD300E","CD163","CD160","CD74","SELL","CD83","CD58","CD84","CD22","CD300A","KIT","PTPRC","THY1","MME","CD33") pheatmap::pheatmap(corces_rna_norm[CDgenes,], annotation_col = corces_rna_annot[,2, drop = FALSE], annotation_colors = list(Celltype = c(HSC = "#771155", MPP = "#AA4488", LMPP = "#CC99BB", CMP = "#114477", GMP = "#4477AA", MEP = "#77AADD", Mono = "#DDDD77", CD4 = "#44AAAA", CD8 = "#77CCCC", NK = "#777711", Bcell = "#AAAA44", CLP = "#117777")), show_rownames = TRUE ) ``` $~$ $~$ It can be interesting to check which ones we get among HVG if classical genes are found. ```{r RNAseq_selected_CD_genes_visualization, fig.width = 9, fig.height = 10} CDgenes <- rownames(matTopVarGenes)[grepl("^CD[0-9]+", rownames(matTopVarGenes))] pheatmap::pheatmap(corces_rna_norm[CDgenes,], annotation_col = corces_rna_annot[,2, drop = FALSE], annotation_colors = list(Celltype = c(HSC = "#771155", MPP = "#AA4488", LMPP = "#CC99BB", CMP = "#114477", GMP = "#4477AA", MEP = "#77AADD", Mono = "#DDDD77", CD4 = "#44AAAA", CD8 = "#77CCCC", NK = "#777711", Bcell = "#AAAA44", CLP = "#117777")), show_rownames = TRUE ) ``` **Many CD genes are selected among selected HVG** ### PCA informative genes selection {.tabset} Alternatively we could select informative genes using PCA ```{r RNAseq_runPCA, warning=FALSE} # Find informative genes using PCA ############## # Run PCA pca_results <- PCA(t(corces_rna_norm), scale.unit=TRUE, ncp=25, graph=F) # Check PC1 and PC2 fviz_pca_ind(pca_results, axes = c(1,2)) ``` PC1 and PC2 separate immature cell types from the more mature ones ```{r RNAseq_barplotPCA, warning=FALSE} # Check PC barplot eig.val <- pca_results$eig barplot(eig.val[, 2], names.arg = 1:nrow(eig.val), main = "Variances Explained by PCs (%)", xlab = "Principal Components", ylab = "Percentage of variances", col ="steelblue") # Add connected line segments to the plot lines(x = 1:nrow(eig.val), eig.val[, 2], type = "b", pch = 19, col = "red") ``` We can see an elbow between 6 and 13 components. We can further check the information given by each PC plotting them before choosing the number of PC/genes to select. #### PC1/2 ```{r RNAseq_PC1_PC2, fig.width = 7, fig.height = 7} fviz_pca_ind(pca_results, axes = c(1,2))+ geom_point(aes(colour = factor(corces_rna_annot[rownames(pca_results$ind$coord),]$color))) + guides(colour = guide_legend(title = "color")) + theme(legend.position = "none") ``` PC1 and 2 separate lymphoid cells from myeloid and immature cells #### PC3/4 ```{r RNAseq_PC3_PC4, fig.width = 7, fig.height = 7} fviz_pca_ind(pca_results, axes = c(3,4))+ geom_point(aes(colour = factor(corces_rna_annot[rownames(pca_results$ind$coord),]$color))) + guides(colour = guide_legend(title = "color")) + theme(legend.position = "none") ``` PC3 separate T cells from monocytes and CLP PC4 separate MEP, LMPP, GMP, and NK cells from the rest #### PC5/6 ```{r RNAseq_PC5_PC6, fig.width = 7, fig.height = 7} fviz_pca_ind(pca_results, axes = c(5,6))+ geom_point(aes(colour = factor(corces_rna_annot[rownames(pca_results$ind$coord),]$color))) + guides(colour = guide_legend(title = "color")) + theme(legend.position = "none") ``` PC5/6 distinguish NK cells from other matuer lymphoid cells (T and B cells) #### PC7/8 ```{r RNAseq_PC7_PC8, fig.width = 7, fig.height = 7} fviz_pca_ind(pca_results, axes = c(7,8))+ geom_point(aes(colour = factor(corces_rna_annot[rownames(pca_results$ind$coord),]$color))) + guides(colour = guide_legend(title = "color")) + theme(legend.position = "none") ``` PC7 separate B cells fom the rest PC8 separate seem noisy (CLP at both ends) #### PC9/10 ```{r RNAseq_PC9_PC10, fig.width = 7, fig.height = 7} fviz_pca_ind(pca_results, axes = c(9,10))+ geom_point(aes(colour = factor(corces_rna_annot[rownames(pca_results$ind$coord),]$color))) + guides(colour = guide_legend(title = "color")) + theme(legend.position = "none") ``` PC9 separate MEP from GMP/LMPP PC10 seems noisy #### PC11/12 ```{r RNAseq_PC11_PC12, fig.width = 7, fig.height = 7} fviz_pca_ind(pca_results, axes = c(11,12)) + geom_point(aes(colour = factor(corces_rna_annot[rownames(pca_results$ind$coord),]$color))) + guides(colour = guide_legend(title = "color")) + theme(legend.position = "none") ``` Noisy PCs #### Genes contribution to each PCs ```{r RNAseq_PCAtable, warning=FALSE} # Get genes participation to each PC DT::datatable(pca_results$var$contrib,filter = 'top',extensions = 'Buttons', options = list(dom = 'Blfrtip', buttons = c('excel', "csv"), fixedHeader = TRUE)) %>% formatSignif(c(1,c(1:23))) ``` ```{r RNAseq_PCA_selection, fig.width = 9, fig.height = 5} fviz_contrib(pca_results, choice = "var", axes = 1, top = 50) fviz_contrib(pca_results, choice = "var", axes = 2, top = 50) fviz_contrib(pca_results, choice = "var", axes = 3, top = 50) fviz_contrib(pca_results, choice = "var", axes = 4, top = 50) fviz_contrib(pca_results, choice = "var", axes = 5, top = 50) fviz_contrib(pca_results, choice = "var", axes = 6, top = 50) fviz_contrib(pca_results, choice = "var", axes = 7, top = 50) fviz_contrib(pca_results, choice = "var", axes = 8, top = 50) fviz_contrib(pca_results, choice = "var", axes = 9, top = 50) fviz_contrib(pca_results, choice = "var", axes = 10, top = 50) fviz_contrib(pca_results, choice = "var", axes = 11, top = 50) fviz_contrib(pca_results, choice = "var", axes = 12, top = 50) fviz_contrib(pca_results, choice = "var", axes = 13, top = 50) ``` #### Gene selection We choose to select the 9 first PC only (from PC10, we see mostly noise) and exclude a noisy PC8. Then the top 500 genes for each PC is selected. This is arbitrary and if you like you could do something morre elaborated like taking all genes that explains 50% of variance of each PCs ```{r RNAseq_PCAgenes_selection, warning=FALSE} genes_pc1 <- rownames(head(pca_results$var$contrib[order(pca_results$var$contrib[,1], decreasing = TRUE),], n = 500)) genes_pc2 <- rownames(head(pca_results$var$contrib[order(pca_results$var$contrib[,2], decreasing = TRUE),], n = 500)) genes_pc3 <- rownames(head(pca_results$var$contrib[order(pca_results$var$contrib[,3], decreasing = TRUE),], n = 500)) genes_pc4 <- rownames(head(pca_results$var$contrib[order(pca_results$var$contrib[,4], decreasing = TRUE),], n = 500)) genes_pc5 <- rownames(head(pca_results$var$contrib[order(pca_results$var$contrib[,5], decreasing = TRUE),], n = 500)) genes_pc6 <- rownames(head(pca_results$var$contrib[order(pca_results$var$contrib[,6], decreasing = TRUE),], n = 500)) genes_pc7 <- rownames(head(pca_results$var$contrib[order(pca_results$var$contrib[,7], decreasing = TRUE),], n = 500)) #genes_pc8 <- rownames(head(pca_results$var$contrib[order(pca_results$var$contrib[,8], decreasing = TRUE),], n = 500)) genes_pc9 <- rownames(head(pca_results$var$contrib[order(pca_results$var$contrib[,9], decreasing = TRUE),], n = 500)) #genes_pc10 <- rownames(head(pca_results$var$contrib[order(pca_results$var$contrib[,10], decreasing = TRUE),], n = 100)) #genes_pc11 <- rownames(head(pca_results$var$contrib[order(pca_results$var$contrib[,11], decreasing = TRUE),], n = 100)) #genes_pc12 <- rownames(head(pca_results$var$contrib[order(pca_results$var$contrib[,12], decreasing = TRUE),], n = 100)) #genes_pc13 <- rownames(head(pca_results$var$contrib[order(pca_results$var$contrib[,13], decreasing = TRUE),], n = 100)) #genes_pc14 <- rownames(head(pca_results$var$contrib[order(pca_results$var$contrib[,14], decreasing = TRUE),], n = 100)) #genes_pc15 <- rownames(head(pca_results$var$contrib[order(pca_results$var$contrib[,15], decreasing = TRUE),], n = 100)) topPCAGenes <- unique(c(genes_pc1, genes_pc2, genes_pc3, genes_pc4, genes_pc5, genes_pc6, genes_pc7, genes_pc9))#,genes_pc8, genes_pc10, genes_pc11, genes_pc12, genes_pc13, genes_pc14, genes_pc15)) matTopPCAGenes <-corces_rna_norm[topPCAGenes,] matTopPCAGenes <- matTopPCAGenes - rowMeans(matTopPCAGenes) ``` Doing so we select **`r length(topPCAGenes)`** genes ```{r RNAseq_PCAgenes_selection_heatmap1, fig.width = 9, fig.height = 6} pheatmap::pheatmap(matTopPCAGenes, annotation_col = corces_rna_annot[,2, drop = FALSE], annotation_colors = list(Celltype = c(HSC = "#771155", MPP = "#AA4488", LMPP = "#CC99BB", CMP = "#114477", GMP = "#4477AA", MEP = "#77AADD", Mono = "#DDDD77", CD4 = "#44AAAA", CD8 = "#77CCCC", NK = "#777711", Bcell = "#AAAA44", CLP = "#117777")), show_rownames = FALSE ) #Check CD genes we get CDgenes2 <- rownames(matTopPCAGenes)[grepl("^CD[0-9]+", rownames(matTopPCAGenes))] pheatmap::pheatmap(corces_rna_norm[CDgenes2,], annotation_col = corces_rna_annot[,2, drop = FALSE], annotation_colors = list(Celltype = c(HSC = "#771155", MPP = "#AA4488", LMPP = "#CC99BB", CMP = "#114477", GMP = "#4477AA", MEP = "#77AADD", Mono = "#DDDD77", CD4 = "#44AAAA", CD8 = "#77CCCC", NK = "#777711", Bcell = "#AAAA44", CLP = "#117777")), show_rownames = TRUE ) ``` ### Summary of genes selected through the different methods {.tabset} **Intersection** * **All genes** **`r length(intersect(rownames(matTopVarGenes),rownames(matTopPCAGenes)))` genes are common to all selection methods** **`r length(setdiff(rownames(matTopVarGenes),rownames(matTopPCAGenes)))`** genes are selected only in HVG. **`r length(setdiff(rownames(matTopPCAGenes),rownames(matTopVarGenes)))`** genes are selected only in PCA (method 1). $~$ $~$ * **Between CD genes** **`r length(intersect(CDgenes,CDgenes2))` genes are common to all selection methods** (`r toString(intersect(CDgenes,CDgenes2))`) **`r length(setdiff(CDgenes,CDgenes2))` genes are selected only in HVG :** `r toString(setdiff(CDgenes,CDgenes2))`**, while ** `r toString(setdiff(CDgenes2,CDgenes))` **are not found** **`r length(setdiff(CDgenes2,CDgenes))` genes are selected only in PCA (method 1) **`r toString(setdiff(CDgenes2,CDgenes))`**, while ** `r toString(setdiff(CDgenes,CDgenes2))` **are not found** #### HVG All ```{r RNAseq_selected1, fig.width = 9, fig.height = 8} pheatmap::pheatmap(matTopVarGenes, annotation_col = corces_rna_annot[,2, drop = FALSE], annotation_colors = list(Celltype = c(HSC = "#771155", MPP = "#AA4488", LMPP = "#CC99BB", CMP = "#114477", GMP = "#4477AA", MEP = "#77AADD", Mono = "#DDDD77", CD4 = "#44AAAA", CD8 = "#77CCCC", NK = "#777711", Bcell = "#AAAA44", CLP = "#117777")), show_rownames = FALSE ) ``` #### PCA All ```{r RNAseq_selected2, fig.width = 9, fig.height = 8} pheatmap::pheatmap(matTopPCAGenes, annotation_col = corces_rna_annot[,2, drop = FALSE], annotation_colors = list(Celltype = c(HSC = "#771155", MPP = "#AA4488", LMPP = "#CC99BB", CMP = "#114477", GMP = "#4477AA", MEP = "#77AADD", Mono = "#DDDD77", CD4 = "#44AAAA", CD8 = "#77CCCC", NK = "#777711", Bcell = "#AAAA44", CLP = "#117777")), show_rownames = FALSE ) ``` #### HVG CD genes ```{r RNAseq_selected1b, fig.width = 9, fig.height = 10} CDgenes <- rownames(matTopVarGenes)[grepl("^CD[0-9]+", rownames(matTopVarGenes))] pheatmap::pheatmap(corces_rna_norm[CDgenes,], annotation_col = corces_rna_annot[,2, drop = FALSE], annotation_colors = list(Celltype = c(HSC = "#771155", MPP = "#AA4488", LMPP = "#CC99BB", CMP = "#114477", GMP = "#4477AA", MEP = "#77AADD", Mono = "#DDDD77", CD4 = "#44AAAA", CD8 = "#77CCCC", NK = "#777711", Bcell = "#AAAA44", CLP = "#117777")), show_rownames = TRUE ) ``` #### PCA CD genes ```{r RNAseq_selected2b, fig.width = 9, fig.height = 6} CDgenes2 <- rownames(matTopPCAGenes)[grepl("^CD[0-9]+", rownames(matTopPCAGenes))] pheatmap::pheatmap(corces_rna_norm[CDgenes2,], annotation_col = corces_rna_annot[,2, drop = FALSE], annotation_colors = list(Celltype = c(HSC = "#771155", MPP = "#AA4488", LMPP = "#CC99BB", CMP = "#114477", GMP = "#4477AA", MEP = "#77AADD", Mono = "#DDDD77", CD4 = "#44AAAA", CD8 = "#77CCCC", NK = "#777711", Bcell = "#AAAA44", CLP = "#117777")), show_rownames = TRUE ) ``` ## ATAC-seq **Highly variable regions selection** ```{r ATACseq_HVG_selection} # Select highly variable features ############## topVarRegs <- head(order(rowVars(atac.norm.mat), decreasing = TRUE), 5000) #round(dim(atac.norm.mat)[1]/10) matTopVarRegs <-atac.norm.mat[topVarRegs,] matTopVarRegs <- matTopVarRegs - rowMeans(matTopVarRegs) ``` ```{r ATACseq_HVR_heatmap, fig.width = 9} # Heatmap of the most variable region pheatmap::pheatmap(matTopVarRegs, annotation_col = atac.annot[,2, drop = FALSE], annotation_colors = list(Celltype = c(HSC = "#771155", MPP = "#AA4488", LMPP = "#CC99BB", CMP = "#114477", GMP = "#4477AA", MEP = "#77AADD", Mono = "#DDDD77", CD4 = "#44AAAA", CD8 = "#77CCCC", NK = "#777711", Bcell = "#AAAA44", CLP = "#117777")), show_rownames = FALSE) ``` # Build a multiview matrix (MOFA input) This multiview matrix will contain RNA-seq and ATAC-seq cleaned and normalized matrix for the selected features. ```{r} ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## ## Built multi view to easy access ## ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## multiview.norm.mat <- list(rna = matTopVarGenes[, match(rna.atac.annot$rna.sample, colnames(matTopVarGenes))], atac = matTopVarRegs[, match(rna.atac.annot$original.atacID, colnames(matTopVarRegs))]) ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## ## Format multi view to easy access ## ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## # Format Colnames colnames(multiview.norm.mat$atac) <- colnames(multiview.norm.mat$rna) ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## ## Save multi view to easy access ## ##––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––## saveRDS(multiview.norm.mat, file = "data/multiview.RDS") #multiview.norm.mat <- readRDS("Path/object.RDS") ``` Now you can go back to **Multivariate2_MOFA_part1.Rmd** to rerun MOFA and see how it affects the results compared to your initial run.

Import from clipboard

Paste your markdown or webpage here...

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template has been removed or transferred.
Upgrade
All
  • All
  • Team
No template.

Create a template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

Slide Example

API Docs

Edit in VSCode

Install browser extension

Contacts

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

Note content is identical to the latest version.
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully