FANFNA
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # Chapter 1 Matrices and Systems of Equations [TOC] ## 1.1 Systems of Linear Equations ### quations ![](https://i.imgur.com/XN0wipZ.png) ![](https://i.imgur.com/DRwTOnV.png) - **Consistent**:一致的,Ax = b 有解 - **Inconsistent**: if its solution set is **empty** (no solution) - ![](https://i.imgur.com/GdDfRrt.png) - Overdetermined:等式量 > 未知數量 - Coefficient matrix:係數矩陣 ,[A] - Argument matrix:增廣矩陣,[A|b] - Homogeneous linear system:齊次線性系統,Ax = 0 - Trivial solution:顯然解,Ax = 0 中的0這個解 (因為顯然有0這個解) - Equivalent:兩系統有相同的Solution set 稱為 (在Matrix版本中稱row equivalent) ###### Rank(A) - **運算至 rref 時非零列的個數** - 幾何意義為這個線性系統的**獨立方程式**個數 - A : m x n , rank(A) <= min { m , n } - rank( A ) != rank( [ A|b ] ) ,則 Ax = b 無解 - rank( A ) = rank( [ A|b ] ) = n ,則 Ax = b 具唯一解 - rank( A ) = rank( [ A|b ] ) < n ,則 Ax = b 具無限多解,其中n - rank(A)為自由變數個數 ## 1.2 Row Echelon Form - **R**ow **e**chelon **f**orm (Gaussian elimination) pivot(首非零項)皆為1 所有非零列在所有全零列的上面 首項係數所在的column,在首項係數下的元素皆為0 - **R**educe **R**ow **E**chelon **F**orm (Gauss - Jordan reduction) 是**row echelon form** 首項係數是該行唯一非零列 - 每個矩陣A皆列等價於唯一的rref - pivot column對應的變數為首項變數,nonpivot column對應的變數為自由變數 ![](https://i.imgur.com/sgn5XCC.png) ## 1.3 Matrix Algebra 相較於傳統數系,矩陣運算性質並不好,以下列出幾個不成立的性質 - AB = BA 未必成立,即矩陣乘法不具交換性 - An = O,未必保證A = O (ex : 嚴格上/下三角矩陣) - A2 = A,未必保證A = I or O (3. 4. ex : 投影矩陣) - A != O , B != O,未必保證 AB != O! ![圖片](https://hackmd.io/_uploads/HkHBb7fi0.png) - AB = AC 且 A != O,未必保證 B = C,即矩陣乘法不具消去性![圖片](https://hackmd.io/_uploads/Sk7He7Mi0.png) - 未知矩陣X滿足方程式Xn = A (A為已知),未必保證具有n個解,不滿足代數基本定理![擷取](https://hackmd.io/_uploads/HyFTy7foR.png) ![圖片](https://hackmd.io/_uploads/BJ69-mzoR.png) - (A + B)2 = A2 + 2AB + B2未必成立,即二項式定理未必成立! ![圖片](https://hackmd.io/_uploads/BJFRlmfj0.png) ###### Algebraic Rule for Transpose - **row to colum / colum to row** ![](https://i.imgur.com/zvvJ35J.png) - (AT)T = A - (aA + bB)T = aAT + bBT (線性組合轉置次序可交換) - (AB)T = BTAT ![圖片](https://hackmd.io/_uploads/HJOxYRMoC.png) ###### 對稱相關的矩陣 - symmetric matrix:A^T = A - skew-symmetric matrix:A^T = - A - Hermitian matrix:A^H = A - skew-Hermitian matrix:AH = - A ###### Algebraic Rule for inverse - Def : BA = AB = I, 則B為A^-1 (invertible, nonsingular) ![圖片](https://hackmd.io/_uploads/Hkr-HmMi0.png) - (A-1)-1 = A - (AB)-1 = B-1A-1 ![圖片](https://hackmd.io/_uploads/BkmsS7foC.png) - (AT)-1 = (A-1)T - 跡數trace:對角線相加 tr(AB) = tr(BA) ## 1.4 Elementary Matrix - identity matrix透過以下3種"Elementary Row/Column Opirations"(基本列/行運算) -->結果為E ![圖片](https://hackmd.io/_uploads/SJt3k4ziR.png) 1. TYPE 1 : 兩列交換 ![](https://i.imgur.com/73uKaEG.png) 2. TYPE 2 : 一列乘非零倍 ![](https://i.imgur.com/YlrI81L.png) 3. TYPE 3 : 一列乘某倍加到另一列 ![](https://i.imgur.com/ciWGL1x.png) - row equivalent :B 可在有限的row operation內獲得 ![圖片](https://hackmd.io/_uploads/r10hrEfiC.png) [Lec12 線性代數(一) 第三章 Elementary Matrix Operations and Systems of Linear Equations](https://youtu.be/aQOyG366V3M?si=IR7LvraF3rthFIxH&t=750) - identity matrix的大小取決A的row/column數 - 如果是做row operation->E乘在A的左側,可得B; 反之,做coluimn operation->E乘在A的右側,可得B - 口訣:對row作用,E的操作在A的左側;對column作用,E在A的右側 - E 是 invertible,nonsingular 且 E^-1 也是同類型的單位矩陣 ## 1.5 ALU - decomposition - **LU分解:只用E3操作(一列乘某倍加到另一列)** - 非每個矩陣都可LU分解,若A不需經列交換可列運算至列梯形形式,則A可做LU分解 - LDU分解:把對角項拆給D,L和U的對角項都變為1 - PTLU分解:使LU分解可以使用列交換P - P為Permutation matrix 排列矩陣,每行每列恰一項為1其餘為0 P^-1 = P^T ![](https://i.imgur.com/vyRC69D.png)

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully