Héctor Masip
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    2
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # Fflonk Link to the paper: https://eprint.iacr.org/2021/1167.pdf Link to the slides: https://hecmas.github.io/talk/fflonk-for-the-polygon-zkevm/ Link to some comments and **optimizations**: https://hackmd.io/-2oVDtk4TJGVWFAYvUoY1g?view ## Comparison to Other Protocols | Protocol | CRS/SRS Size | Prover Comp. | Proof Length | Verifier Comp. | |:--------:|:--------------------------------:|:----------------------------------------:|:-------------------------------:|:--------------------------------:| | Groth16 | $3m+w~\mathbb{G}_1$ | $3m+w-\ell~\mathbb{G}_1, m~\mathbb{G}_2$ | $2~\mathbb{G}_1,1~\mathbb{G}_2$ | $\ell~\mathbb{G}_1,3~\mathbf{P}$ | | Plonk | $3n~\mathbb{G}_1,2~\mathbb{G}_2$ | $11n~\mathbb{G}_1$ | $7~\mathbb{G}_1, 7~\mathbb{F}$ | $16~\mathbb{G}_1, 2~\mathbf{P}$ | | Fflonk | $9n~\mathbb{G}_1,2~\mathbb{G}_2$ | $35n~\mathbb{G}_1$ | $4~\mathbb{G}_1, 15~\mathbb{F}$ | $5~\mathbb{G}_1, 2~\mathbf{P}$ | | PolyMath | | | $3~\mathbb{G}_1,1~\mathbb{F}$ | $2~\mathbb{G}_1,1~\mathbb{G}_2,2~\mathbf{P},O(\ell\log \ell)~\mathbf{F}$ | - $m$ denotes the number of multiplication gates. - $w$ denotes the number of wires. - $n$ denotes the number of gates. - $\ell$ denotes number of public inputs. - $\mathbb{G}_i$ denotes scalar multiplications in $\mathbb{G}_i$. - $\mathbf{P}$ denotes pairings. ## Full Description of the Protocol Fix positive integer $A$ dividing $p-1$ (for the case of a sufficiently smooth prime field, setting $A=24$ is enough). Let $T$ be the set of divisors of $A$, i.e., $T = \{t \in \mathbb{N} \mid 0 < t \leq A, t \mid A\}$. Let also $\boldsymbol{S}$ be the set of $A$'th powers in $\mathbb{F}$; i.e., $\boldsymbol{S} = \{x \in \mathbb{F} \mid \exists z \in \mathbb{F} ~s.t.~z^A = x\}$. Assume that $n$ is a power of two such that $24n$ divides $p-1$, and $H \subset \mathbb{F}$ is a multiplicative subgroup of $\mathbb{F}$ of order $n$ with generator $\omega$. One can show[^first] that the previous divisibility assumption implies that $\omega$ is a $24$-th power in $\mathbb{F}$, which is necessary to ensure that $\omega$ has some particular roots. [^first]: **Hint**: Take an element of order $24n$ and check the relationship between this element and $\omega$. We denote by $\omega_3$ to a generator of order $3$, by $\omega_4$ to a generator of order $4$ and by $\omega_8$ to a generator of order $8$. Finally, we denote by $L_i^{(S)}$ the Lagrange polynomials for any set $S \neq H$ and by $L_i$ the Lagrange polynomials for $H$. ### Common preprocessed input: $$ n, (x \cdot [1]_1,...,x^{9n+17} \cdot [1]_1), (q_{L_i}, q_{R_i},q_{O_i},q_{M_i},q_{C_i})_{i=1}^n, \sigma^*, \\ \begin{array}{c} q_L(X) = {\sum}_{i=1}^{n} q_{L_i}L_i(X), \quad q_R(X) = {\sum}_{i=1}^{n} q_{R_i}L_i(X), \quad q_O(X) = {\sum}_{i=1}^{n} q_{O_i}L_i(X), \\ q_M(X) = {\sum}_{i=1}^{n} q_{M_i}L_i(X), \quad q_C(X) = {\sum}_{i=1}^{n} q_{C_i}L_i(X), \\ S_{\sigma_1}(X) = {\sum}_{i=1}^{n} \sigma^*(i)L_i(X), \quad S_{\sigma_2}(X) = {\sum}_{i=1}^{n} \sigma^*(n+i)L_i(X), \quad S_{\sigma_3}(X) = {\sum}_{i=1}^{n} \sigma^*(2n+i)L_i(X), \\ \begin{align} C_0(X) = ~&q_L(X^8) + X \cdot q_R(X^8) + X^2 \cdot q_O(X^8) + X^3 \cdot q_M(X^8) + X^4 \cdot q_C(X^8) \\ &+~X^5 \cdot S_{\sigma_1}(X^8) + X^6 \cdot S_{\sigma_2}(X^8) + X^7 \cdot S_{\sigma_3}(X^8). \end{align} \end{array} $$ **Degrees**: $q_L,q_R,q_O,q_M,q_C,S_{\sigma_1},S_{\sigma_2},S_{\sigma_3} \in \mathbb{F}_{<n}[X]$ and $C_0 \in \mathbb{F}_{<8n}[X]$. #### Public input: $\ell, (w_i)_{i \in [\ell]}$ ### <ins>Prover algorithm:</ins> #### Prover input: $(w_i)_{i \in [3(n-2)]}$. We think the circuit as having at most $n-2$ "useful" gates, since the last two will be used to introduce random values to the wiring polynomials to achieve a zero-knowledge protocol. #### Round 1: Generate random blinding scalars $b_1,\dots, b_9 \in \mathbb{F}$. Compute wire polynomials $a,b,c \in \mathbb{F}_{<n}[X]$: \begin{align} a(X) &:= {\sum}_{i=1}^{n-2} w_iL_i(X) + b_1L_{n-1}(X) + b_2L_{n}(X), \\ b(X) &:= {\sum}_{i=1}^{n-2} w_{(n-2)+i}L_i(X) + b_3L_{n-1}(X) + b_4L_{n}(X) , \\ c(X) &:= {\sum}_{i=1}^{n-2} w_{2(n-2)+i}L_i(X) + b_5L_{n-1}(X) + b_6L_{n}(X). \end{align} Compute public input polynomial $PI \in \mathbb{F}_{<\ell}[X]$: $$ \begin{align} PI(X) := {\sum}_{i=1}^{\ell} -w_iL_i(X). \end{align} $$ Compute quotient polynomial $T_0 \in \mathbb{F}_{<2n-2}[X]$: $$ \begin{align} T_0(X) := \left(q_L(X)a(X) + q_R(X)b(X) + q_O(X)c(X) + q_M(X)a(X)b(X) + q_C(X) + PI(X)\right) \frac{1}{Z_H(X)}. \end{align} $$ Compute the FFT-style combination polynomial $C_1 \in \mathbb{F}_{<8n-8}[X]$: $$ \begin{align} C_1(X) := a(X^4) + X \cdot b(X^4) + X^2 \cdot c(X^4) + X^3 \cdot T_0(X^4). \end{align} $$ $P$ computes and sends $[C_1]_1 := [C_1(x)]_1$. #### Round 2: Compute permutation challenges $\beta, \gamma \in \mathbb{F}$ : $$\beta = H(transcript, 0), \gamma = H(transcript, 1)$$ Compute permutation polynomial $z \in \mathbb{F}_{<n+3}[X]$ : $$ z(X) := (b_7X^2 + b_8X + b_9)Z_H(X) \\ +L_1(X) +{\sum}_{i=1}^{n−1} \left(L_{i+1}(X) {\prod}_{j=1}^i \frac{(w_j + \beta \omega^j + \gamma)(w_{n+j} + \beta k_1 \omega^j + \gamma)(w_{2n+j} + \beta k_2 \omega^j + \gamma)}{(w_j + \beta \sigma^*(j) + \gamma)(w_{n+j} + \beta \sigma^*(n+j) + \gamma)(w_{2n+j} + \beta \sigma^*(2n+j) + \gamma)} \right) $$ Compute quotient polynomials $T_1 \in \mathbb{F}_{<n+2}[X]$ and $T_2 \in \mathbb{F}_{<3n}[X]$: $$ \begin{align} T_1(X) := ~&\left[L_1(X)(z(X)-1)\right] \frac{1}{Z_H(X)}, \\ T_2(X) := ~&\left[ (a(X) + \beta X + \gamma) (b(X) + \beta k_1 X + \gamma) (c(X) + \beta k_2 X + \gamma) z(X) \right. \\ &\left. -(a(X) + \beta S_{\sigma_1}(X) + \gamma) (b(X) + \beta S_{\sigma_2}(X) + \gamma) (c(X) + \beta S_{\sigma_3}(X) + \gamma) z(X\omega)\right] \frac{1}{Z_H(X)}. \end{align} $$ Compute the FFT-style combination polynomial $C_2 \in \mathbb{F}_{<9n}[X]$: $$ \begin{align} C_2(X) := z(X^3) + X \cdot T_1(X^3) + X^2 \cdot T_2(X^3). \end{align} $$ $P$ computes and send $[C_2]_1 := [C_2(x)]_1$. :::success Now, $P$ must prove to $V$ the following identities: \begin{align} T_0(X)Z_H(X) = &~q_L(X)a(X) + q_R(X)b(X) + q_O(X)c(X) + q_M(X)a(X)b(X) + q_C(X) + PI(X), \\ T_1(X)Z_H(X) = &~L_1(X)(z(X)-1), \\ T_2(X)Z_H(X) = &~(a(X) + \beta X + \gamma) (b(X) + \beta k_1 X + \gamma) (c(X) + \beta k_2 X + \gamma) z(X) \\ & -(a(X) + \beta S_{\sigma_1}(X) + \gamma) (b(X) + \beta S_{\sigma_2}(X) + \gamma) (c(X) + \beta S_{\sigma_3}(X) + \gamma) z(X\omega). \end{align} ::: #### Round 3: Compute the random $r \in \mathbb{F}$ : $$ r = H(transcript) $$ Compute evaluation challenge $\mathfrak{z} = r^{24}$. **Notice** that $\mathfrak{z} \in \boldsymbol{S}$. Compute opening evaluations: $$ \bar{q_L} = q_L(\mathfrak{z}), \bar{q_R} = q_R(\mathfrak{z}), \bar{q_O} = q_O(\mathfrak{z}), \bar{q_M} = q_M(\mathfrak{z}), \bar{q_C} = q_C(\mathfrak{z}) \\ \bar{S}_{\sigma_1} = S_{\sigma_1}(\mathfrak{z}), \bar{S}_{\sigma_2} = S_{\sigma_2}(\mathfrak{z}), \bar{S}_{\sigma_3} = S_{\sigma_3}(\mathfrak{z}), \\ \bar{a} = a(\mathfrak{z}), \bar{b} = b(\mathfrak{z}), \bar{c} = c(\mathfrak{z}), \bar{z} = z(\mathfrak{z}), \\ \bar{z}_{\omega} = z(\mathfrak{z}\omega), \bar{T_1}_{\omega} = T_1(\mathfrak{z}\omega), \bar{T_2}_{\omega} = T_2(\mathfrak{z}\omega). $$ Notice that these points are enough for opening $a,b,c,T_0$ at $\mathfrak{z}$ and $z,T_1,T_2$ at $\mathfrak{z}$ and $\mathfrak{z}\omega$. $P$ sends $(\bar{q_L}, \bar{q_R}, \bar{q_O}, \bar{q_M}, \bar{q_C}, \bar{S}_{\sigma_1}, \bar{S}_{\sigma_2}, \bar{S}_{\sigma_3}, \bar{a}, \bar{b}, \bar{c}, \bar{z}, \bar{z}_{\omega}, \bar{T_1}_{\omega}, \bar{T_2}_{\omega})$ to $V$. :::info Due to Lemma 5.1, P will equivalently: 1. Open $C_0$ at $S_0 = roots_8(\mathfrak{z}) = \{h_0,h_0\omega_8,h_0\omega_8^2,h_0\omega_8^3,h_0\omega_8^4,h_0\omega_8^5,h_0\omega_8^6,h_0\omega_8^7\}$. 1. Open $C_1$ at $S_1 = roots_4(\mathfrak{z}) = \{h_1,h_1\omega_4,h_1\omega_4^2,h_1\omega_4^3\}$. 1. Open $C_2$ at $S_2 = roots_3(\mathfrak{z})\cup roots_3(\mathfrak{z}\omega) = \{[h_2,h_2\omega_3,h_2\omega_3^2],[h_3,h_3\omega_3,h_3\omega_3^2]\}$. Here, $h_0^8 = \mathfrak{z}$, $h_1^4 = \mathfrak{z}$, $h_2^3 = \mathfrak{z}$ and $h_3^3 = \mathfrak{z}\omega$, which are computed from $r$ as follows: - $h_0 = r^3$, since $h_0^8 = r^{24} = \mathfrak{z}$. - $h_1 = r^6$, since $h_1^4 = r^{24} = \mathfrak{z}$. - $h_2 = r^8$, since $h_2^3 = r^{24} = \mathfrak{z}$. - $h_3 = r^8\omega^{1/3}$, since $h_3^3 = r^{24}\omega = \mathfrak{z}\omega$. To this end, P computes the sets $S_0,S_1,S_2$. He also computes the sets $Z_0,Z_1,Z_2$ using $Z_0',Z_1',Z_2'$ defined as follows: \begin{array}{c} Z_0' = \{q_L(\mathfrak{z}), q_R(\mathfrak{z}), q_O(\mathfrak{z}), q_M(\mathfrak{z}),q_C(\mathfrak{z}), S_{\sigma_1}(\mathfrak{z}), S_{\sigma_2}(\mathfrak{z}), S_{\sigma_3}(\mathfrak{z})\}, \\ Z_1' = \{a(\mathfrak{z}), b(\mathfrak{z}), c(\mathfrak{z}), T_0(\mathfrak{z})\}, \\ Z_2' = \{[z(\mathfrak{z}), T_1(\mathfrak{z}), T_2(\mathfrak{z})],[z(\mathfrak{z}\omega), T_1(\mathfrak{z}\omega), T_2(\mathfrak{z}\omega)]\}, \\ Z_0 = \{C_0(h_0),C_0(h_0\omega_8),C_0(h_0\omega_8^2),C_0(h_0\omega_8^3),C_0(h_0\omega_8^4),C_0(h_0\omega_8^5),C_0(h_0\omega_8^6),C_0(h_0\omega_8^7)\}, \\ Z_1 = \{C_1(h_1),C_1(h_1\omega_4),C_1(h_1\omega_4^2),C_1(h_1\omega_4^3)\}, \\ Z_2 = \{[C_2(h_2),C_2(h_2\omega_3),C_2(h_2\omega_3^2)],[C_2(h_3),C_2(h_3\omega_3),C_2(h_3\omega_3^2)]\}. \end{array} **Note** that $S_i$ and $Z_i$ can be also computed by $V$, for $i \in \{0,1,2\}$. From now on, define $T = S_0 \cup S_1 \cup S_2$. We have $|T| = 18$. <!-- Notice that $T\backslash S_1 = S_2$ and $T \backslash S_2 = S_1$. --> ::: #### Round 4: Compute a challenge $\alpha \in \mathbb{F}$ : $$ \alpha = H(transcript) $$ $P$ computes the polynomial $f \in \mathbb{F}_{<9n+12}[X]$: \begin{align} f(X) :=~&(X^4-\mathfrak{z})(X^3-\mathfrak{z})(X^3-\mathfrak{z}\omega)(C_0(X)-r_0(X))+\alpha(X^8-\mathfrak{z})(X^3-\mathfrak{z})(X^3-\mathfrak{z}\omega) (C_1(X) - r_1(X))~+ \\[0.2cm] &+\alpha^2 (X^8-\mathfrak{z})(X^4-\mathfrak{z})(C_2(X) - r_2(X)), \end{align} where: - The polynomial $r_0 \in \mathbb{F}_{<8}[X]$ is such that $r_0(h_0\omega_8^i) = C_0(h_0\omega_8^i)$, for $i \in [8]$, that is: $$ r_0(X) = \sum_{i=1}^8 C_0(h_0\omega_8^{i-1})L_i^{(S_0)}(X). $$ - The polynomial $r_1 \in \mathbb{F}_{<4}[X]$ is such that $r_1(h_1\omega_4^i) = C_1(h_1\omega_4^i)$, for $i \in [4]$, that is: $$ r_1(X) = \sum_{i=1}^4 C_1(h_1\omega_4^{i-1})L_i^{(S_1)}(X). $$ - The polynomial $r_2 \in \mathbb{F}_{<6}[X]$ is such that $r_2(h_j\omega_3^i) = C_2(h_j\omega_3^i)$ for $i \in [3]$, $j\in\{2,3\}$, that is: $$ r_2(X) = \sum_{i=1}^3 C_2(h_2\omega_3^{i-1})L_i^{(S_2)}(X) + \sum_{i=4}^6 C_2(h_3\omega_3^{i-1})L_i^{(S_2)}(X). $$ $P$ computes the polynomial $W(X) := f(X)/Z_T(X)\in \mathbb{F}_{<9n-6}[X]$ and sends $[W]_1 := [(f/Z_T)(x)]_1$. #### Round 5: Compute a random evaluation point $y \in \mathbb{F}$ : $$ y = H(transcript) $$ P computes the polynomial $L \in \mathbb{F}_{<9n}[X]$: \begin{align} L(X) :=~&(y^4-\mathfrak{z})(y^3-\mathfrak{z})(y^3-\mathfrak{z}\omega)(C_0(X) - r_0(y))+\alpha(y^8-\mathfrak{z})(y^3-\mathfrak{z})(y^3-\mathfrak{z}\omega)(C_1(X) - r_1(y))~+ \\[0.2cm] &+\alpha^2 (y^8-\mathfrak{z})(y^4-\mathfrak{z})(C_2(X) - r_2(y))-Z_T(y)\frac{f(X)}{Z_T(X)}. \end{align} $P$ computes the polynomial $W'(X) := \frac{L(X)}{Z_{T\backslash S_0}(y)(X-y)} \in \mathbb{F}_{<9n-1}[X]$ and sends $[W']_1 := [W'(x)]_1$. <!-- Add the inverse sent from P to V and the correspoding checks in the verifier description --> Return: $$ \pi_{\text{SNARK}} = \left( \begin{split} \begin{array}{c} [C_1]_1,[C_2]_1,[W]_1,[W']_1, \\ \bar{q_L}, \bar{q_R}, \bar{q_O}, \bar{q_M}, \bar{q_C}, \bar{S}_{\sigma_1}, \bar{S}_{\sigma_2}, \bar{S}_{\sigma_3}, \bar{a}, \bar{b}, \bar{c}, \bar{z}, \bar{z}_{\omega}, \bar{T_1}_{\omega}, \bar{T_2}_{\omega} \end{array} \end{split} \right) $$ ### <ins>Verifier algorithm:</ins> #### Verifier preprocessed input: <!-- $$ \begin{split} &[q_{L}]_1 := q_L(x) \cdot [1]_1, [q_{R}]_1 := q_R(x) \cdot [1]_1, [q_{O}]_1 := q_O(x) \cdot [1]_1, [q_{M}]_1 := q_M(x) \cdot [1]_1, \\ &[q_{C}]_1 := q_C(x) \cdot [1]_1, [S_{\sigma_1}]_1 := S_{\sigma_1}(x) \cdot [1]_1, [S_{\sigma_2}]_1 := S_{\sigma_2}(x) \cdot [1]_1, \\ &[S_{\sigma_3}]_1 := S_{\sigma_3}(x) \cdot [1]_1, x \cdot [1]_2 \end{split} $$ --> $$ [C_0]_1 := C_0(x) \cdot [1]_1, x \cdot [1]_2 $$ $V((w_i)_{i\in[\ell]}, \pi_\text{SNARK})$ : 1. Validate $[C_1]_1,[C_2]_1,[W]_1,[W']_1 \in \mathbb{G}_1$. 1. Validate $\bar{q_L}, \bar{q_R}, \bar{q_O}, \bar{q_M}, \bar{q_C}, \bar{S}_{\sigma_1}, \bar{S}_{\sigma_2}, \bar{S}_{\sigma_3}, \bar{a}, \bar{b}, \bar{c}, \bar{z}, \bar{z}_{\omega}, \bar{T_1}_{\omega}, \bar{T_2}_{\omega} \in \mathbb{F}$. 1. Validate $w_i \in \mathbb{F}$ for $i \in [\ell]$. 1. Compute challenges $\beta,\gamma,\mathfrak{z},\alpha,y \in \mathbb{F}$ as in prover description, from the common inputs, public input, and the elements of $\pi_\text{SNARK}$. 1. Compute zero polynomial evaluation $Z_H(\mathfrak{z})=\mathfrak{z}^n-1$. 1. Compute Lagrange polynomial evaluation $L_1(\mathfrak{z}) = \frac{\omega(\mathfrak{z}^n−1)}{n(\mathfrak{z}−\omega)}$. 1. Compute public input polynomial evaluation $PI(\mathfrak{z}) = \sum_{i=1}^{\ell} -w_iL_i(\mathfrak{z})$. 1. Computes $r_0(y) = \sum_{i=1}^8 C_0(h_0\omega_8^{i-1})L_i^{(S_0)}(y)$. To this end, $V$ needs to compute $Z_0$, and he can do so from $\bar{q_L}, \bar{q_R}, \bar{q_O}, \bar{q_M}, \bar{q_C}, \bar{S}_{\sigma_1}, \bar{S}_{\sigma_2}, \bar{S}_{\sigma_3}$. 1. Computes $r_1(y) = \sum_{i=1}^4 C_1(h_1\omega_4^{i-1})L_i^{(S_1)}(y)$. To this end, $V$ needs to compute $Z_1$, and he can do so from $\bar{q_L}, \bar{q_R}, \bar{q_O}, \bar{q_M}, \bar{q_C}, \bar{a}, \bar{b}, \bar{c}$. In particular, to compute $T_0(\mathfrak{z})$, he proceeds as follows: $$ T_0(\mathfrak{z}) = \left(\bar{q_L}\bar{a} + \bar{q_R}\bar{b} + \bar{q_O}\bar{c} + \bar{q_M}\bar{a}\bar{b} + \bar{q_C} + PI(\mathfrak{z})\right)\frac{1}{Z_H(\mathfrak{z})} $$ 1. Computes $r_2(X) = \sum_{i=1}^3 C_2(h_2\omega_3^{i-1})L_i^{(S_2)}(X) + \sum_{i=4}^6 C_2(h_3\omega_3^{i-1})L_i^{(S_2)}(X)$. To this end, $V$ needs to compute $Z_2$, and he can do so from $\bar{S}_{\sigma_1}, \bar{S}_{\sigma_2}, \bar{S}_{\sigma_3}, \bar{a}, \bar{b}, \bar{c}, \bar{z}, \bar{z}_{\omega}, \bar{T_1}_{\omega}, \bar{T_2}_{\omega}$. In particular, to compute $T_1(\mathfrak{z})$ and $T_2(\mathfrak{z})$, he proceeds as follows: \begin{align} T_1(\mathfrak{z}) = &~\left[L_1(\mathfrak{z})(\bar{z}-1)\right]\frac{1}{Z_H(\mathfrak{z})} \\ T_2(\mathfrak{z}) = &~\left[(\bar{a} + \beta \mathfrak{z} + \gamma) (\bar{b} + \beta k_1 \mathfrak{z} + \gamma) (\bar{c} + \beta k_2 \mathfrak{z} + \gamma) \bar{z} \right. \\ & \left.-(\bar{a} + \beta \bar{S}_{\sigma_1} + \gamma) (\bar{b} + \beta \bar{S}_{\sigma_2} + \gamma) (\bar{c} + \beta \bar{S}_{\sigma_3} + \gamma) \bar{z}_{\omega}\right]\frac{1}{Z_H(\mathfrak{z})} \end{align} :::info Helper for the Steps 8,9,10: \begin{align} C_0(h_0\omega_8^{i}) = &~\bar{q_L} + (h_0\omega_8^{i}) \cdot \bar{q_R} + (h_0\omega_8^{i})^2 \cdot \bar{q_O} + (h_0\omega_8^{i})^3 \cdot \bar{q_M} + (h_0\omega_8^{i})^4 \cdot \bar{q_C} \\[0.2cm] &~+(h_0\omega_8^{i})^5 \cdot \bar{S}_{\sigma_1} + (h_0\omega_8^{i})^6 \cdot \bar{S}_{\sigma_2} + (h_0\omega_8^{i})^7 \cdot \bar{S}_{\sigma_3} \\[0.2cm] C_1(h_1\omega_4^i) = &~\bar{a} + (h_1\omega_4^i) \cdot \bar{b} + (h_1\omega_4^i)^2 \cdot \bar{c} + (h_1\omega_4^i)^3 \cdot T_0(\mathfrak{z}) \\[0.2cm] C_2(h_2\omega_3^i) = &~\bar{z} + (h_2\omega_3^i) \cdot T_1(\mathfrak{z}) + (h_2\omega_3^i)^2 \cdot T_2(\mathfrak{z}) \\[0.2cm] C_2(h_3\omega_3^i) = &~\bar{z}_\omega + (h_3\omega_3^i) \cdot \bar{T_1}_\omega + (h_3\omega_3^i)^2 \cdot \bar{T_2}_\omega \end{align} ::: 11. Compute the polynomial commitment $[F]_1$: \begin{align} [F]_1 := &~[C_0]_1 + \alpha\frac{(y^8-\mathfrak{z})(y^3-\mathfrak{z})(y^3-\mathfrak{z}\omega)}{(y^4-\mathfrak{z})(y^3-\mathfrak{z})(y^3-\mathfrak{z}\omega)}[C_1]_1+\alpha^2\frac{(y^8-\mathfrak{z})(y^4-\mathfrak{z})}{(y^4-\mathfrak{z})(y^3-\mathfrak{z})(y^3-\mathfrak{z}\omega)}[C_2]_1 \end{align} 1. Compute group-encoded batch evaluation $[E]_1$: \begin{align} [E]_1 := &~\left(r_0(y) + \alpha\frac{(y^8-\mathfrak{z})(y^3-\mathfrak{z})(y^3-\mathfrak{z}\omega)}{(y^4-\mathfrak{z})(y^3-\mathfrak{z})(y^3-\mathfrak{z}\omega)}r_1(y)+\alpha^2\frac{(y^8-\mathfrak{z})(y^4-\mathfrak{z})}{(y^4-\mathfrak{z})(y^3-\mathfrak{z})(y^3-\mathfrak{z}\omega)}r_2(y)\right) \cdot [1]_1 \end{align} 1. Compute the full difference $[J]_1$: $$ [J]_1 := (y^8-\mathfrak{z})[W]_1 $$ 1. Validate all evaluations: $$e([F]_1 - [E]_1 - [J]_1 + y[W']_1, [1]_2) \stackrel{?}{=} e([W']_1,[x]_2)$$ ## Some Doubts and Open Questions - [Solved] **Election of $A$**: ~~For our use case $12$ is a good candidate since it is the least common multiple of $3$ and $4$, but in the paper they claim that $24$ is necessary. Why? I think that they say that because~~ they are considering the commitment to the preprocessed polynomials (which are $8$ are therefore the $\text{lcm}(3,4,8)=24$). ~~However, we have seen the verifier do not need to use the commitments to the preprocessed polynomials, and therefore are not necessary.~~ - [Solved] **Section 7 Assumptions:** ~~At the beginning of Section 7, why do you assume that $24n$ divides $p-1$?~~ I suppose that is to guarantee the existence of the different roots that have to be computed during the protocol. YES: it is to be able to compute roots of the generator $\omega$. - [Solved] ~~**Preprocessed Polynomials** $q_L,q_R,q_O,q_M,q_C,S_{\sigma_1},S_{\sigma_2},S_{\sigma_3}$: I do not know yet why the verifier need to use the commitments to the preprocessed polynomials, I need to figure it out (it only uses $[x]_2$ from the preprocessing). Why do they need to send to the verifier in Lemma 6.4? In case we have to, the prover computes $g:=\text{combine}_{t_0}(\overline{f_0})$ and sends the commitment to $g$ to the verifier, which I do not see how this commitment would be used by the verifier itself.~~ - [Solved] **Computation of $r_1,r_2$**: In round 4 of the proving algorithm, the prover computes the polynomials $r_1 \in \mathbb{F}_{<4}[X]$ and $r_1 \in \mathbb{F}_{<6}[X]$ by Lagrange interpolation. How does the verifier need to obtain them? He needs so to compute $r_1(y),r_2(y)$. If they are computed via Lagrange interpolation, the verifier complexity will be dominated by this computation (rather than elliptic curve operations). - ~~We are exploring the prover sending $r_1(y)$ and $r_2(y)$ to the verifier, but we must check if this would break the soundness of the protocol. Moreover, this would increase the proof size by $2$ field elements.~~ - We are exploring a sound alternative: the prover sending to the verifier the inverse needed to compute the $10$ Lagrange polynomials needed in the definition of $r_1(y),r_2(y)$. We are using a batching protocol for computing multiple inverses, so with one is enough. ###### tags: `PlonK`

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully