地科培訓筆記
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Owners
        • Signed-in users
        • Everyone
        Owners Signed-in users Everyone
      • Write
        • Owners
        • Signed-in users
        • Everyone
        Owners Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Help
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Owners
  • Owners
  • Signed-in users
  • Everyone
Owners Signed-in users Everyone
Write
Owners
  • Owners
  • Signed-in users
  • Everyone
Owners Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    1
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 物理海洋概論 > for 海研所物理組一年級,不是物理系一年級(也不是電機系) > 啊我怎麼在這裡:( > 但我覺得這些東西好像是給高中生的 11/27 > geophysical fluid dynamics ![](https://hackmd.io/_uploads/rJ8RhkXA2.png) ## Week 1 Introduction - 流體力學(?) 海洋物理與一般的流體力學有什麼不同? > substantial difference of water dynamics in the ocean / atmosphere from that in the water tank, river and lake : * T : Times(much larger scale) * L : Length(much larger scale) * V : velocity * f 科式參數 <- (earth rotation) * N 分層(stratification) ## Newton's First Law $F =ma$ ## Reference 1. inertial(慣性坐標系) * relative motion with **constant** velocity 2. non-inertial(非慣性坐標系) * **constant angular velocity** or an accelerating thing (e.g. rotational motion) - 假想力 - 科氏力(非慣性坐標系下的假想力,下略 > ..? > cyclonic eddies > the geophysical flows are always significantly curved, but in a considerably different scale. ![](https://hackmd.io/_uploads/ByAxglXR2.png) 一個圈圈都是一個地轉平衡的結果 $\to$ 海平面高度有差 ### scale of motion - microscale (紊流) - small scale (<100m) - submesoscale (100m - 10km) - mesoscale(100 - 1000km) - large (>1000km) #### Estimate - T = L/U (週期=波長/波速) ![](https://hackmd.io/_uploads/BybwJVMfT.jpg) ![](https://hackmd.io/_uploads/Bk391EfGT.jpg) #### dead water phenomenon - 分層間密度差過大 - 船隻通過時,產生內波 - 引擎的能量轉換為內波,難以前進 > 3 addional scales that play important roles in analyzing geophysical fluid problems : > 1. avarage density ${\rho}_0$ > 2. density variatinon ${\Delta}{\rho}$ > 3. height over such density variation occur : H > 在海水的不可壓縮性之下,溫度、鹽度、壓力的變化都會轉成密度的變化 ${\Delta}{\rho}$ ## 科氏力的影響程度 ### Rotation * ambient rotation rate $\Omega$ > 什麼樣尺度的運動,會使科式力對於該流體的運動產生一定的影響呢? - 2 $\pi$ / 24h + 2$\pi$/365.2422day (轉24小時所考慮的地球自轉速度) 若這個流體運動的時間尺度大於地球自轉一圈的時間尺度的話,我們會期待他會感受到ambient rotation 即科氏力對其的作用會明顯: - $\omega = 2\pi/\Omega T$ - if $\omega$ <= 1, rotation should be considered 若時間尺度(週期)小於地球自轉一週的時間(${\omega} <= 1$),但影響的空間尺度大的話,也會考慮科氏力的作用: ### 空間尺度 - T = L/U considering the velosity and length scales of the motion: \begin{gather*} \epsilon= \frac{time ~of~one~revolution}{T}=\frac{2\pi / \Omega}{L/U}= \frac{2\pi U}{\Omega L} \end{gather*} - T = time taken by particle to cover distance at speed U if ${\epsilon}$ is on the order or less than 1, we conclude that rotation is important ![](https://hackmd.io/_uploads/HkgvrEGM6.jpg) > geophysical flows : such as an ocean current flowing at **10cm/s** and meandering over a distance of 10 km or a wind blowwing at 10m/s in a 100 km wide anticyclonic formation,需要考慮科氏力 >$\epsilon= \frac{2\pi*0.1}{7.3*10^{-5}*10^4}\simeq 1(0.86)$ >$\epsilon= \frac{2\pi*10}{7.3*10^{-5}*10^5}\simeq 10(8.6)$ ## importance of stratification * 地轉流通常包含了不同密度的流體,在重力作用下會趨向一個最小位能的穩定狀態 * 但各種運動會打亂這個平衡,趨向於讓密度大的海水上升,密度小的海水下降,增加系統的位能,並因此減少系統動能,讓流速減慢 * 被打亂的流一樣會想要回到平衡狀態,減少位能,那就會增加海水的動能,並給予海流動量 * 所以透過比較動能跟位能的變化,可以看出分層 * 海水受地形擾動,破壞平衡,那為了要回到平衡狀態,增加的動能 $\to$ 位能,水平運動 $\to$ 垂直擾動 - Geostrophic flow typically involves fluids with varying densities, striving for a stable state with minimal potential energy under the influence of gravity. - Various movements disrupt this equilibrium, causing denser seawater to rise and less dense seawater to descend, increasing the system's potential energy and reducing its kinetic energy, thereby slowing down the flow. - Disturbed flows seek to return to the equilibrium state, reducing potential energy and increasing seawater's kinetic energy, imparting momentum to the current. - Comparing changes in kinetic and potential energy allows us to discern stratification. - Seawater experiences disturbances due to topography, disrupting equilibrium and increasing kinetic energy, resulting in horizontal and vertical perturbations. > ![](https://hackmd.io/_uploads/S1wM9VGzp.jpg) * the corresponding change in potential energy per unit volume is ${\Delta}{\rho}gH$ ,比較位能與動能的變化: ![](https://hackmd.io/_uploads/HkseP720h.png) > **Richardson number**: > 1. 大約=1:位能增加勢必擾亂流場的層化,並轉換成動能,並顯著影響整體的流場。 > 2. 遠小於1 : 動能太小,不足以影響到海洋的層化,而海洋層化有效的限制住海流 > 3. 遠大於1 : 位能變化幾乎無法影響,而層化現象也很難影響海流的變化 ### 科氏力尺度 - 要考量科氏力的作用空間和速度尺度 - 海洋與大氣的差距頗大 ![](https://hackmd.io/_uploads/HJOcwX3Rh.png) #### Atmosphere - L ~ $10^2$ km - U ~ $10^1$ m/s (正常狀況下) #### Ocean - L ~ $10^1$ km - U ~ $10^0$ m/s (正常狀況下) ![](https://hackmd.io/_uploads/H1iL_7nCh.png) --- # Week 2 ![](https://hackmd.io/_uploads/rkpvY7202.jpg) ### 海氣交互作用 * 熱通量、蒸發、降水、逕流、海冰變化等等均會影響海洋的溫度及鹽度,進而影響密度。 * 海洋物理性質變化最快的地方是在近海表地區 * 了解海洋水平密度變化的話,可以推算出海表面的壓力梯度力、以及海流(geostrophic flow) ### T-S gram ![](https://hackmd.io/_uploads/Hk19oX30n.jpg) * 長期海氣交互作用下的平衡結果:) * 鹽度最大的地方在西太平洋會比較淺,南海比較深 * 鹽度最低的地方也是 > 但我不知道為什麼,應該是水團來源深度不同 > 南海鹽度變化較淺 ![](https://hackmd.io/_uploads/B128pQnC3.jpg) > 海表溫變化最大的地方在中緯度 > 赤道地區變化最小,海水的變化相對較穩定 ### Warm pool - Indo-pacific Warm Pool (PWP) - 因為暖水太多,原本在西太平洋,然後就流到印度洋去ㄌ - 近年來 warm pool 變深又變大,可能是global warming 造成ㄉ - warm pool 的深度大約200公尺 ![](https://hackmd.io/_uploads/B16NRQ203.jpg) > 一些特殊分布: > 1. 緯度40度之間,冷海水主要聚集在大洋東側,由於偏東風的影響 > 2. 同時,暖海水主要聚集在大洋西側 > 3. 在一年之中,中緯度大洋西側具有最大的年溫差變化,除了信風帶將暖海水推至大洋西側之外,冬天時源自於陸地的冷空氣也會降低大洋西側的溫度 #### interannual variation - ENSO * PWP 會跑來跑去 ![](https://hackmd.io/_uploads/B1xMXqGG6.png) ### salinity * salinity highly depends on (evaporation - precipitation - river input-ice melting) * 相關係數大概0.6(算高) * 中緯度的蒸發速率最快 * 颱風過後降水,河川流量增加,更多的淡水注入海裡造成鹽度降低(偶發地域性情況) ![](https://hackmd.io/_uploads/BkNmeDB1a.jpg) #### 區域性鹽度變化 * 大河流入(長江的水進入東海,在雨季的時候會特別明顯) * 颱風(西太平洋的鹽度會較中太平洋低),所帶來的大量降水也會造成鹽度減低 * 季風變化所帶來的降水 ![](https://hackmd.io/_uploads/rJ16WPr1T.jpg) ### estimate of density ${\rho} = {\rho}_0 [1 - {\alpha}(T - T_0) + {\beta}(S - S_0)]$ > 海水密度與壓力無關(不可壓縮性),而與溫度和鹽度呈現線性的變化關係 * 密度變化可反映海洋裡面的小尺度對流 ![](https://hackmd.io/_uploads/Hykx7wBkp.jpg) > 高(AAC:南極繞極流)、中(BATS:百慕達)、低(warm pool)緯度水團的溫度與鹽度隨深度變化 * AAC:融冰水溫較低,大量把融化的水輸入高緯地區表層,使次表層地區水溫和鹽度降低,但表面溫度較高仍然是因為陽光照射造成 * 混合層大約50公尺(溫度與鹽度的混合層深度差不多) * Warm pool: salinity max and min: * 夜晚近表層海水溫度低,次表層海水溫度高,重力不穩定產生對流,造成高鹽水累積在次表 * 西方邊界流:流速較快 > STCC(subtropical counter current) and NEC(north equatorial current) (會有斜壓不穩定,可能產生很多eddy(而且他會轉,前後天放入量測海洋速度的儀器,因為eddy會亂動,導致長期量出來的平均速度會減少)) > ![](https://hackmd.io/_uploads/rJbi_DryT.jpg) > 若將不同時間收集到的海流(海表高度) 資訊,統計得出的變異數(或標準差)可看出海洋中的eddy分佈 > ![](https://hackmd.io/_uploads/rk4YKPB16.jpg) - 台灣附近的eddy - STCC and NEC所產生的不穩定導致 - 日本外海 - 西方邊界流底端要轉彎 - 墨西哥灣 - 溫差 #### mesoscale eddy --- ## Week 3 Momentum Conservation ### fluid dynamics in the ocean * 驅動海洋運動的最主要原因是**風吹以及引潮力**作用 * waves and turbulance * Momentum transport * Energy dissipation * Mixing ![](https://hackmd.io/_uploads/rJtKDg2JT.jpg) > 平均海流速度圖,可看出一些洋流系統 ### Momentum * 動量隨時間的變化為力的總和 \begin{gather*}\Sigma F=\frac{dp}{dt}=\frac{dmv}{dt}=ma\end{gather*} * 在海洋中力的總和可能有哪些? * 質量不變,加速度改變(即在慣性座標系中不同位置的切線速度不同),當物體處在慣性座標系下就會有假想力的產生 - 旋轉座標系的加速度$\to$科氏力 \begin{gather*}Momentum \propto v_{wind}\end{gather*} ![](https://hackmd.io/_uploads/rJLL9ghkp.jpg) * x、y、z會隨t改變(假設q為隨便一個物理量,與t, x, y, z有關) * x, y, z 方向的速度影響物理量的變化速度$\partial q\over\partial t$(平流傳導) * advection term (平流項) * 可以改變海洋的特性(特徵),如果有梯度存在的話。速度越大變化越快。 * advection is how the flow moves properties and vectors. it can change the flow property if there is a gradient in the property through which the fluid moves * 流體因為黏滯性不同而在每一層有不同的速度 * 黏滯性不同也會導致上層邊界條件不同(正向應力、切項應力不同) ![](https://hackmd.io/_uploads/BJqGUjGzT.png) ![](https://hackmd.io/_uploads/rycOax3Ja.jpg) ### Coriolis Force \begin{gather*} f = 2 {\Omega} sin({\Phi})\end{gather*} > ${\Omega} = 2{Pi} / 自轉週期(s)$ > inertial period : $T = 2{\pi} / f = {\pi} / sin {\Phi}$ > ${\Omega} = {2{\pi} \over {time~of~revolution}}$ * 科氏力大小: * -fv : zonal direction (南北向速度) * +fu : meridional direction (東西向速度) * 地轉平衡 \begin{gather*} {\partial u \over \partial t} -fv=0\end{gather*} \begin{gather*} {\partial v \over \partial t} -fu=0\end{gather*} ### the balance between inertial acceleration and coriolis force * how the coriolis force push the particles tending to its right hand side of pathway in the noethern hemisphere? * ${\partial u \over \partial t} = +fv > 0$ ![](https://hackmd.io/_uploads/ryjUchGMp.png) * ${\partial v \over \partial t} = -fu < 0$ ![](https://hackmd.io/_uploads/Sywwc3ffa.png) ### momemtum equations in geophysical fluid dynamics ![](https://hackmd.io/_uploads/BkK8Z-316.jpg) > x方向上的動量變化(忽略質量)=東西向速度隨時間的變化 + 平流項 + 科氏力修正 : x方向上氣壓梯度力 + 水平及垂直向的摩擦力 ![](https://hackmd.io/_uploads/SyZzs2fza.png) > y方向概念同x方向 > z方向則是因流體垂直運動較小(僅受重力影響),呈現靜力平衡狀態 ### continuity equation ![](https://hackmd.io/_uploads/HkyKKBcZa.jpg) * 想法思考如下: ![](https://hackmd.io/_uploads/HydOj3zGa.png) ### Energy * the equation governing temperature arises from conservation of energy : ![](https://hackmd.io/_uploads/BkQbqHcbT.png) - $k_T$ is the thermal conductivity of the fluid. (流體溫度擴散速率) - $C_v$ is the heat capacity at constant volume (定容比熱) - Defined $\kappa_T=k_T/\rho C_v$ - ${dT\over dt}= \nabla^2T$ > 分子擴散速率:在水靜止的狀態下,溫度的擴散速率明顯高於鹽度的擴散速率,但若是在紊流的環境下就幾乎都差不多了。 **但是因為有continuity equation ${\to}$ :** ![](https://hackmd.io/_uploads/r1awlpfzp.png) ### Salt * salt budget : 鹽度的變化是基於salt budget : ![](https://hackmd.io/_uploads/HJWWiHc-a.png) > 鹽度的不均勻性 > 表示一小塊海水保存了鹽類的總和,而鹽度的變化是根據這個總和之下,藉由擴散係數重新分布 ### energy equation * 海洋中,海水密度是一個跟壓力、溫度、鹽度有關的一個複雜方程式 ![](https://hackmd.io/_uploads/rJ3dnH9Z6.png) * ${\alpha}$ : 溫度擴散係數 * ${\beta}$ : 鹽度擴散係數 ![](https://hackmd.io/_uploads/SkwtnS9b6.png) - $\kappa_s =\kappa_T$ when mixed by eddies > 假設溫度與鹽度擴散係數相等(若系統內主要是透過分子間的運動、反應過程主導的話則這個假設會失效) > 分子的擴散主要影響小尺度的運動(公尺等級),然而turbulence導致了diffusion在更大的尺度上仍然有作用。 > in turbulance, efficient diffusion is accomplished by eddies, which mix salt and heat at equal rates ![](https://hackmd.io/_uploads/SJo6qHqWp.jpg) ### eddy diffusivity * 紊流的產生:有很多種方法產生。 * 會將他參數化做計算(網格太大,算不到紊流)所以需要輔助一些觀測資料及將其參數化做模擬 ### 公式整理 ![](https://hackmd.io/_uploads/S1ogF6zM6.png) --- ## week 4 ## 海洋現象的尺度 ![](https://hackmd.io/_uploads/Hk_oar5Za.jpg) > 影響時間與影響空間的尺度大致上呈現正相關 ## inertial motions * horizontal, unforced motions are described by : (assume that advective term is 0) * ${du \over dt} - fv = 0$ * ${dv \over dt} + fu = 0$ > how to assume that advection term can be ignored? ### Period > ![](https://hackmd.io/_uploads/ByVgy89-a.jpg) >The inertial period on equator is inf ->seem to be 0. >The period is smaller at the polar. ![](https://hackmd.io/_uploads/HJFyZI5Zp.jpg) > 海表流是可以被衛星遙測觀測到的。黑線代表小震盪(半日朝、全日潮等;藍線為衛星遙測得的地轉流大小,整體而言藍線的變化趨勢與黑線的大趨勢變化相同) ### Drifter track - Spring ![](https://hackmd.io/_uploads/S1ptxL9Zp.jpg) > inertial motion let the drift motion become spiral (繞圈圈),但是有些軌跡跑掉了,是因為有背景流的緣故 ## Homogeneous geostrophic flows \begin{gather*}-fv=-\frac{1}{\rho}\frac{\partial p}{\partial x}\end{gather*} \begin{gather*}fu=-\frac{1}{\rho}\frac{\partial p}{\partial y}\end{gather*} \begin{gather*}0=-\frac{1}{\rho}\frac{\partial p}{\partial z}\end{gather*} ![](https://hackmd.io/_uploads/SkjxzI9bT.png) ### geostrophic flow * implies no pressure work, the flow can persist without a continuous source of energy * 黑潮的形成跟地轉平衡也有關係(海表高度不一形成PGF,地轉平衡後加速(?黑潮的流動) ![](https://hackmd.io/_uploads/B1vuQIq-a.jpg) ### upwelling in the nearshore of Antartica > 咆哮西風!!! > 那邊大多是湧升流 > 赤道地區也大多是湧升流(赤道東風殷艾克曼傳送把海水往臉編送,所以赤道地區就形成了湧升流) > 氣旋中心因低壓的緣故使得也有一點點的upwelling ## Ekman Transport ![](https://hackmd.io/_uploads/SJuWXI5Z6.png) ![](https://hackmd.io/_uploads/By5Mm8qWT.png) > The Ekman transport move horizontally the water volume near the sea surface! --- ## week 5 ## Observation : ocean current ### 早期的海流觀測方式 #### VOS * volunteer observation ship * 用船的飄移推算表面海流(或風) * 缺點:沒有船的地方就沒有資料 #### 漂流瓶 (Drifter) ![](https://hackmd.io/_uploads/Hko7j501a.jpg) > surface current around taiwan measurement by drifting bottle > 日本人用漂流瓶所測得的台灣附近海流數據 > 在冬天東北季風強的時候,表面海流往南走,東北季風減弱的時候漂流瓶往北走(所以說風吹著瓶子走好像比較符合漂流瓶的實際運作情況,並不是海流推著瓶子走) ### 現代觀測手法 * 裝上GPS信號標定位、用特高頻雷達或衛星遙測、裝載海表溫或大氣溫度的感測器、GDP(全球漂流浮標計畫) * 銥衛星 #### 漂流浮標 (drogues) > 遇到西方邊界流等強流,漂流浮標會被帶走測不到某些地方的資料 > 由表面浮球、底下拖著的儀器(sea anchor)所組成。可以量測溫度、壓力等的資料,並將資料即時回傳給衛星做處理。可以量測到最深15公尺的地方 > ![](https://hackmd.io/_uploads/SkUK1LmG6.png) #### Argo(array for real-time geostrophic oceanography) float ![](https://hackmd.io/_uploads/S1gVp5C1T.jpg) > 透過油囊調整自身的浮力,調整自身深度獲得不同深度的海洋資料(溫度、鹽度、深度等),並將資料回傳衛星 > 其最大效益是大約每10天可以下去又上來一次,短中長期的研究分析都適合 > 觀測upper and middle layer of ocean (0 - 1000m) #### Ocean Current - Mooring 錨定 * long term observation, time series data * 比較貴 * 底部是固定住的,所以可以減少被海流幹走的機會 * 但相對資料品質也會較好,而且可以在那條繩子上掛一堆儀器,能夠測量的東西也比較多 ![](https://hackmd.io/_uploads/rkmPMI7Ga.png) #### Rotor type * 像是風向風速計,由葉片轉動推算海流速度(但可能上面會長髒東西,因此改以電磁式海流儀) #### Electromagnetic type * 偵測海水中的帶電粒子流經儀器,產生的電磁場交互作用推算速度 #### Acoustic Doppler Current Profiler ADCP * 運用都卜勒效應偵測上層海水不同深度的海流速度(打一個聲波,看他反射回儀器的速度變化) * 如果放在船上,量到的是相對運動速度(因為船在動,因此需扣掉船速才是絕對的海流速度資料) ![](https://hackmd.io/_uploads/HJaRm8XGp.jpg) #### Mooring-TRBM ADCP - Trawl Resistant Bottom Mount ![](https://hackmd.io/_uploads/Hktygj0kp.png) * 有時候會在船下面放ADCP,以船的移動軌跡測量海流流向與流速 #### Mooring - Surface buoy (表面浮球) * 浮標移動,可以回傳 * 設計用來拉一條常常得線到海底,上面掛各種東西以量測不同深度的資料 * 會因為浮標上長藻類,形成廣大的漁場 * 以前會在浮標下方擺一個ADCP(或掛一大堆儀器),但通常打到的都是魚的移動速度(noise),最後放棄 > proteu buoy : includes ADCP, 各種溫度計、風向風速計等等、CTD... ### Hydrograph Data * 用水文資料獲得海流資料 * geostrophic balance assumptiion : coriolis force and pressure data (地轉流) * CTD * 因為科技進步所以水文資料就越變越少ㄌ:( ![](https://hackmd.io/_uploads/SyFBXi0J6.jpg) > 上層:shipboard ADCP,下層:CTD的地轉流資料 ### remote sensing data ** satellite data * 海面高度異常值 > 海面高度的水平方向變化大概1-2公尺,但衛星在飛的時候也會受到地球重力的影響有1-2公尺的抖動,所以量到的異常值是? > 渦旋問題 > 多天飛多次一點之後得出因地表重力異常的誤差值,用以修正 ![](https://hackmd.io/_uploads/rJVpU0vep.png) > 海面高度高,形成輻散環流,反之輻合 ### RADAR * 運用電磁波(微波)觀察電無波的反射訊號(背向散射係數)去看海面粗糙度。 * 接收回來得訊號會受到布拉格定律影響(訊號高峰兩邊會有雜訊) ![](https://hackmd.io/_uploads/HJ8jDRvga.jpg) * 都卜勒效應 * 逕向都卜勒雷達(需兩個方向的資料才可以得出平面風場) ### Sea soar CTD * 底拖CTD,背船拖著走因此可以獲得連續的資料 ![](https://hackmd.io/_uploads/B1u3FCwx6.jpg) ### Sea glider > 水下滑翔機 * 屬於無人機但本身無動力。透過控制油囊的大小改變浮力大小,以控制他的方位 * 是一個非常省力的儀器,雖較為費時但是資料數很多 > Slocum electric Glider communication > why Iridium antenna? > attached ARGOS and Freewave antenna ### wave glider * 用波浪的能量讓他移動 * 調整自己旗的方向(在波鋒與波谷的方向會不同),當調整達到合力以後便可以自由控制 --- ## week 5 ## Coastal ocean and semi-enclosed ocean ## Coastal processes - effective of rivers - coastal upwelling - related to topography, stratification, and shoreline - red tide - be induced by upwelling (?) > - Shelf waves - coastal trapped wave, like Kelvin and seiche wave - Seiche induced by local storm - edge wave ### Coastal upwelling - Ekman transport - The surface water be removed, by continuous function, generated upwelling (when the wind leaves the coast) ### Red tide (赤潮) - Related to upwelling or river discharge - Red algae don't process photosynthesis but removed the Oxygen $\to$ Eutrophication - 使水體嚴重缺氧,導致生物死亡 ### RIP Current (離岸流) > RIP :( * 發生在海底地形有缺口的地方 * 有分feeder, neck, head ### Shoreline erosion - $v=\sqrt{gh}$ - Snell law :) ![](https://hackmd.io/_uploads/HJSEQ62Gp.png) - The Shoreline should be flat at last. ## Semi-enclosed Sea * arctic ocean * ### Arctic Ocean - narrow waterway - Bering strait - Fram Dtrait - Lomonosov ridge - Only 20% open water in summer - Latent Heat flux << sensible heat flux - Because Most of Ocean covered by Ice - Salinity 2-20psu ### Mediterranean Sea - Strait of Gibraltar : width 12km deep 300m - deep water can't exchange with ocean - Evaporate > rainfall - T~13.5C salinity ~38.5 psu, well mixed. - salt rock :( - Mistral and cyclonic circulation > mistral : > cold and heavy air rolling down from the Alps, and accelerated by going through the narrow valley > ![image](https://hackmd.io/_uploads/rknTEJoLa.png) - generated upwelling and downwelling - deep convection - 1cm/s and 5cm/s ### Black sea - Bosphorus Strait - outflow in the upper layer - was a fresh lake at last ice age. ### Japan Sea - Political issue ### South China Sea - Political issue - 九段線/十一段線 - 島/礁 - 人工/天然 - Strait - 台灣海峽/呂宋海峽 - 其他缺口太淺 - Wind - Season Wind ## week 6 ## 河口海洋 * 鹽度較為異常的區域通常是在近岸河口、半封閉海洋的地方 * ### Costal Ocean includes : - 60% poppulation - 90% total catch - 5% sea surface, <0.5 % sea water - 10%-20% primary production - 80% organic materials - 90% sendiments - 75-90% 河川帶過來的東西 - 50% CO2吸收 ### estuary types :::success 參考 **[這裡](https://oceanservice.noaa.gov/education/tutorial_estuaries/est05_circulation.html)** ::: estuary includes 3 parts : * marine or lower estuary * middle estuary * upper or fluvial estuary * ![IMG_0762.jpeg](https://hackmd.io/_uploads/HybA2xUma.jpg) #### coastal plain / drowned river valleys * middle latitude area * formed when rising sea level flood existing river valleys > Newyork / Thames river ![IMG_0763.jpeg](https://hackmd.io/_uploads/Syu8pxLX6.jpg) #### Fjord estuaries * high latitude area * long, deep * 主要是冰河侵蝕之後水跑進去造成ㄉ * submarine ridge in the mouth (block the tidal motion) > sonn valley * ![IMG_0764.jpeg](https://hackmd.io/_uploads/B1VhalLXp.jpg) #### Bar-built estuaries - sand bars (砂壩、沙丘使內部形成潟湖) - lagoon - 平行海岸線的沙丘或島嶼使得內部海域與外部海域產生區隔 ![IMG_0765.jpeg](https://hackmd.io/_uploads/SkfE0gU7a.jpg) #### Tectonic - volcanic eruption, faulting, landslide etc. > san francisco bay ### salinity and stratification in estuary ![IMG_0766.jpeg](https://hackmd.io/_uploads/rJ0KAeI7a.jpg) - highly stratified - partially mixed - Well mixed #### High stratified Estuary * 淡水向外流,海水相當於往下inflow, 造成分層(halocline)鹽度有相當大的傾斜(halocline)。但是仍然有些混合,所以表面鹽度>0但很小 > salt wedge : > * most stratified, least mixed > * rapidly river water discharges into the ocean and the tidal currents are weak. > ![IMG_0767.jpeg](https://hackmd.io/_uploads/H1hEkWIm6.jpg) * 流切不穩定造成垂直混合(若分層很大表示沒有混合) * #### Partial mixed Estuary * tidal induced turbulation due to 底部摩擦 * 流切沒有很大的時候 - tubulent eddies,造成垂直混合,分層破壞 - sea water upwelling to the upper layer - 2-layers structure - ![IMG_0768.jpeg](https://hackmd.io/_uploads/HysZgbUma.jpg) #### well-mixed estuary * strong bottom friction -> strong vertical mixing * tidal current speed large than river current speed(潮流流速>河流流速) * homogeneous salinity vertical profile ### Simmons Ratio - N is a ratio between the volume of fresh river discharge coming down the estuary per tidal cycle and flood volume > N >= 1.0 : highly stratified > 0.5 > N > 0.2 : partially mixed > N <= 0.1 : well mixed ### Ippen number * tidal properties of amplitude and phase * relationship between energy and estuary mixing ### Hansen parameter ### convective flow in an estuary * 不考慮科氏力(河口尺度小於rossby deformation radius) * 只考慮壓力梯度力、摩擦力 * mixing due to the turbulance * strong mixing occurs at the interface of the salt wedge \begin{gather*}T_0=T_i+R\end{gather*} \begin{gather*}T_0S_0=T_iS_i\end{gather*} > 0 : at surface > i : at bottom > * 鹽量守恆 > R : river flow > 從上下游的鹽度的變化,根據鹽量守恆,推算出河川入流量有多少,去推算是哪一種混合(richardson number) - Through measure the salinity: \begin{gather*}T_0=R\frac{S_i}{S_i-S_0}\end{gather*} \begin{gather*}T_i=R\frac{S_0}{S_i-S_0}\end{gather*} ### Richardson number \begin{gather*}R_i = -\frac{g\partial \rho}{\rho \partial z}/(\frac{\partial u}{\partial z})^2\end{gather*} - no dimension無因次 - small richadson number, strong vertical mixing ## kelvin-helmholtz instability * R < 0.25 * kh波 ![IMG_0769.jpeg](https://hackmd.io/_uploads/BkwlmWU76.jpg) 估算河川入海ㄉ流量,會影響到海水進來跟出去的量 分辨率: ![IMG_0770.jpeg](https://hackmd.io/_uploads/ry697WL76.jpg) 判斷河川入海以後,海水與其混合更新的時間 --- ## week 7 ## internal wave ### Atmospheric internal wave ![image](https://hackmd.io/_uploads/By4xV4kNT.png) [又要地牛翻身?台中出現地震雲氣象站:高積雲是變天前兆](https://www.google.com/url?sa=i&url=https%3A%2F%2Fnews.ltn.com.tw%2Fnews%2Flife%2Fbreakingnews%2F4157029&psig=AOvVaw1gysJb6z03Z4r85VpxFMPn&ust=1699939683737000&source=images&cd=vfe&opi=89978449&ved=0CBMQjhxqFwoTCLCGyvmewIIDFQAAAAAdAAAAABAE) > 層積雲(morning glory) ### Observation #### Echo sounder and marine Radar - the reflect signal by Plankton shows the internal wave signature. ### internal wave theory * 海水中溫度、鹽度不均勻的分層,導致有不同的密度分層 * the properties of internal wave is related to the stratification * 內波是指不同密度分層之間的介面上的波動 ![IMG_0818](https://hackmd.io/_uploads/r1xprEJV6.jpg) > the change of temperatue and wave height in intenal wave is really huge (12度 and 200m) #### solitary wave (孤立波) - The behavior of solitary wave like a particle and wave. Just like the photon. - Renamed Soliton. - 有波動性也有粒子性 #### effect of internal soliton * induce the strong vertical motion, horizontal velocity, vertical shear, density perturbations, and nutrient pumping. #### Distribution - South (china) Sea (最大) - East (china) Sea - 幾乎所有的大陸邊緣 > internal solitary wave generated in the Luzon strait > ![IMG_0821](https://hackmd.io/_uploads/SkBpdV1V6.jpg) > why the internal wave height is huge in south china sea : > 潮流經過台灣南邊兩個海脊,產生波(internal tides,是由於海底地形擠壓的緣故產生波,又剛好有共振+南海斜溫層不明顯,再加上南海海盆越來越淺,讓波高變高,形成large amplitude internal solitary wave,最後在東沙附近碎掉消散) > ![IMG_0822](https://hackmd.io/_uploads/SJWFtVkVp.jpg) * 內波上下震盪造成的垂直運動,內波前後緣速度較慢,中間速度較快,造成後面追上前面,水堆積疊加,因而往下(後)沉,補充後緣波速比較慢的地方的水,造成表面出現擾動產生波 ![IMG_0823](https://hackmd.io/_uploads/BJK354k4a.jpg) ![IMG_0824](https://hackmd.io/_uploads/ByG09Ek4T.jpg) > 也可用CTD測量海水密度看內波 > 南海的內波消散能量很大(水平行進距離短) > 內波的波峰前緣會出現isotropic waves #### Environment effect - upward current $\to$ nutrients. - 鯨豚跟著內波走,捕抓被內波弄暈ㄉ東西 - Sound recorded - Eat at Daytime and Play at night - Oil Drilling - Submarine drown ### marine chemistry ![IMG_0826](https://hackmd.io/_uploads/r1cwTEkVp.jpg) > U2 case (內波通過後往上拉,可以看到好像整層水掉下來的特徵) ### internal solitary wave and underwater acoustic propagation * 導致聲音在內波之間震盪,可能會改變聲音傳遞路徑(因為內波的產生,深層水上來,聲速較大,因此聲波在傳遞的時候遇到內波波峰的地方會產生折射(或全反射),改變路徑) * ![IMG_0827](https://hackmd.io/_uploads/ByMSANJ4p.jpg) --- ## week 7.5 ## El Nino (基本上跟高中差不多) ### history * every 2 - 3 years, the current direction reverse and the temperature rise obviously * the air pressure of Darwin and Tahiti will oscillate (southern oscillation) * ENSO(聖嬰——南方震盪) ### 機制 * weak trade wind -> push the warm pool toward east * walker circulation also move toward the east (because of the warm pool move to the east, speed up the convection in the place) * walker circulation 不只一個(多個連續ㄉ) * ![IMG_0829](https://hackmd.io/_uploads/H1ttErJ46.jpg) ### indexes * forcasting * ![IMG_0830](https://hackmd.io/_uploads/S1SgHr1NT.jpg) > 將海水依照海表溫變化分區進行預報(準確率0.47) > 海氣交互作用!!! #### TOGA * tropical ocean global atmosphere * 研究ENSO 的計畫,量測海表溫、海面風速、上層海洋的熱力結構 * autonomous temperature line acquisition system (ATLAS) * TAO array * ![IMG_0831](https://hackmd.io/_uploads/r19nUr1V6.jpg) ### monthly mean SST ![IMG_0832](https://hackmd.io/_uploads/r1txPHkVp.jpg) > 每幾年熱海水就跑到東邊去ㄌ ![IMG_0833](https://hackmd.io/_uploads/r107wS1Va.jpg) > monthly heat content average >聖嬰現象跟政權交替有關 ### effects of El Nino * haze fires in Indonesia * Nazca Line (被沖掉...?) * Reduction Fisheries * 湧升流減少,營養鹽減少導致魚群離開但鳥還在(改抓鳥??) * sea surface height anomaly(higher in east and lower in the west) * the number of typhoom won't change but the formation region will change. ### 聖嬰年ㄉ溫度變化跟乾濕變化 ![IMG_0834](https://hackmd.io/_uploads/S18BuSJNa.jpg) ### 反聖嬰年的溫度變化跟乾濕變化 ![IMG_0835](https://hackmd.io/_uploads/B1tPdrJVT.jpg) --- ## week 8 ## Ocean Wave > 風乍起吹皺一番春水 ### Strakes * gravity waves : breaking waves, strakes, sea spray - 碎波的邊界引起的水輻合 - sea spray (aerosal particles formed from the ocean) ### wave generating force (生波外力) * tides (gravity on earth) * land slides, eruptions, faulting(seismic sea waves) * arrival of a storm surge, change in pressure (seiche) > seiche : standing wave in the closed or enclosed water > 水深不同有著不同的波速,這些波撞到邊緣反射跟原波產生干涉導致有駐波的產生 > > ${T = {2L \over \sqrt{gh} }}$ > 週期算長,所以有類似潮汐的感覺,稱為假潮 #### Forced Force (強制波) * 生波力量持續 * maintained by its distrurbing force - Tides(gravity force) #### Free Force (自由波) * 波動和生波力無關 (像是瞬時震盪後產生的脈衝波,如海嘯、風浪,海面上看到很多波幾乎都是自由波) - propagte after disturbing force - Seismic Wave (land slides, eruption, faulting) - Storm (changing pressure) - wind 而波浪在產生的過程中,受到兩種外力作用: #### Disturbing Force - wave generated force #### restoring Force - return the water surface to flatness - tries to flatten waves ### wind wave ![IMG_0885](https://hackmd.io/_uploads/SJRwz_dEa.jpg) - 產生風浪的三大條件: 1. wind strength 2. wing duration 3. fetch (wind distance) #### dispersion * there are many wave within different frequencies in the fetch. (forced wave)(短周期的波,因風力持續作用,尚未離開fetch,所以屬於強制波) * relationship between wave frequency and wavelength (但不是所有的波,其波長與頻率都有一定的關係)(但我覺得蠻唬爛的) * 長週期的波可以傳比較遠 * 離開風域後的風屬於自由波(長週期、湧浪swell) ### seawater particle motion under waves ![IMG_0886](https://hackmd.io/_uploads/B1A2EuOEa.jpg) #### deep-water waves * 水深大於1/2波長 * dispersive wave * 波速我相信大家都知道 #### shallow--water waves * 水深小於1/20波長 * non-dispersive wave ![IMG_0887](https://hackmd.io/_uploads/rk4zPudNT.jpg) #### when wave approch shore * 波浪傳進海岸得時候會慢慢從深水波轉回淺水波 * 所以波前逐漸變得平行海岸線 * 波速變慢(水深變淺) * 波高變高形成碎浪(波尖比>1/7) * snell's law > rip current(裂流、離岸流) > 波浪碎掉之後,在近岸形成沿岸流,輻合成離岸流從裂口流出去(會加速,因為經過narrow neck, by 白努力定律或你要說狹管效應) > ![IMG_0890](https://hackmd.io/_uploads/rJ5g1KdNp.jpg) ### wave breaking * 碎波: * 波尖比(H/L)(steepness) * 在深水波:波尖比>1/7 * 在淺水波:波尖比>0.88 > breaking waves on slopes > ![IMG_0889](https://hackmd.io/_uploads/r1N9h_dNp.jpg) ### wave energy in the ocean * wave spectrum (能量對週期作圖) * ![IMG_0888](https://hackmd.io/_uploads/B1QnYduNT.jpg) > 有義波高(H(1/3))(significant wave height) > 把一段時間的記錄到的波高從大到小排,取前1/3平均為有義波高 ### wave observations * wave radar(飄在海上) * marine radar(近岸雷達,放在岸邊) * SAR(看海面粗糙度的相位變化推出海面風速,在推斷出海面波浪的速度) * Triton / GNSS-R --- ## week 9 ## Tides > 八月十八潮 壯觀天下無 老蘇寶了 > 錢塘潮:( ### definition * 海水受月球和太陽引力作用造成海面週期性的上升和下降現象(只算天文作用力) * 引潮力:地月之間萬有引力+慣性, > barycenter(共同質心) > 啊不小心洩題了,啊這個distance between moon and barycenter is 81/82r, r = avg. Earth-Moon semi-axis ### equilibrium theory of tides (平衡潮理論) * 假設海水已達靜力平衡,然後地球在海水面下轉動,可解釋一天之中會有兩次漲退潮(半日潮) * 推算受月球引力作用造成0.55m海水面升高,太陽造成0.24m海水面升高 * 太陽的引潮力大約是月球的2/5倍 ### diurnal tide * 實際上月球公轉軌道也與地球赤道不平行(大概也夾23.5角ㄅ ),所以中低緯度的地方多半日潮,高緯度多全日潮(好潮😎):( * Spring tides 大潮 * neap tides 小潮 ### dynamic theory of tides(潮系動力理論) * 也算一種波浪 > 說不會考ㄏ > 調和分析:把潮系高度紀錄拆成很多個cosine波,找潮汐波裡面的振幅跟相位,增進潮系預報準確度 > amphidromic point (無潮點) * the theory uses the same tide-producing force but accounts for all the complicating factors: * depths and configuration of the ocean basins * 科氏力 * inertia of the water masses * frictional forces --- ## week 10 ## Regional ocean surface circulation - 中國沿岸流:東北季風把(長江、東海陸棚)淡水吹進台灣海峽(偏北)形成中國沿岸流 - 黑潮沒碰到琉球島弧,也離台灣東海岸有一點點距離 > >> 詹森:越界紀錄保持人還是我 >> :高中地科很多沒更新:( >> :大家都是研究生自己研究一遍:( - **內潮**:台灣南部兩個海脊那邊因為潮汐遇到地形起伏、重海水往上,然後沒有東西支撐所以就掉下來,產生震盪(跑一跑會打結)(非線性內波)(孤立波) > :振幅跟台電大樓一樣高(?? - Vortex:好大的渦旋 / 有一些mesoscale eddies影響黑潮的變動 - cyclonic eddie 氣旋式漩渦抵銷黑潮流(但實際上是把黑潮擠到旁邊去?) - anti-cyclonic eddie 加速黑潮流速 ![IMG_0974](https://hackmd.io/_uploads/HJvjwkirp.jpg) > 在台灣做地科研究應該要有很多支持的:( > 乾隆年間郁永河過海渡台回去寫了裨海遊記:( 可謂台灣海洋學先祖 * 澎湖水道顏色比較深 * 台灣灘(中國會去挖砂) [![IMG_0975](https://hackmd.io/_uploads/HkNCwJjra.jpg) ](https://) * 從能量觀點來看,台灣海峽裡面從海峽北部下來的潮波為主(南邊從澎湖水道上去或呂宋島弧繞射進海峽的能量比較少) * 雲彰隆起那邊的潮差最大 * 海峽北邊下來的kelvin wave碰到地形突然變深,反射一部分波回去,跟原波產生共振(像是駐波or1/4的潮汐波長)造成雲彰隆起那邊潮差很大(潮波共振) * https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2003GL019373 * continuous function > boundary condition -> 自由端反射? > ![Uploading file..._4w0kscfcf]() * 不是因為潮流從南北方向來匯集造成的潮差大 * 平衡潮理論底下潮汐的波長為半個地球周長 - 長江錢塘江波動影響潮波 - ### 台灣附近洋流跟水團的變化 > 水團都是從別的地方跑來,台灣海峽本身沒有水團 > ![IMG_0979](https://hackmd.io/_uploads/ryMYT1jST.jpg) > ![IMG_0980](https://hackmd.io/_uploads/rJR2aJjBp.jpg) > 黃色:中國沿岸流、SCSW:南海水團、KBW:黑潮支流(kuroshio branch water) ### 黑潮 * 平均寬度100公里、約800公尺深 * kuroshio paradox(雖然很少營養鹽但是生物多樣性很高) * 流速10-30sv 公式重傳一下(找不到) > swordtip squid! 跟黑潮在台灣東北部的湧升流有關係 > 內波(或內潮)對南海附近的珊瑚生長有影響(內波把深層的營養鹽帶到表面) --- ## week 11 ## ocean surface ciculation > ARGO 重出江湖(調整浮筒的大小跟油量控制方向,大概每8, 9天上去下來一次) > 有壓力計,realtime data, 更準確的預報等等 ### atmospheic circulation ![IMG_1029](https://hackmd.io/_uploads/HkOI0GNLT.jpg) * temperate cell (Ferrel cell) * subtropical cell (Hadley cell) * 赤道無風帶 * 馬緯度無風帶 * == * 北半球大洋環流的方向趨勢大致上跟大氣環流差不多,加上科氏力讓海流偏轉(Ekman spiral) > 艾克曼spiral 老艾寶了 * 大洋西邊都有強流(kuroshio, gulf stream, 東澳洋流,巴西洋流,阿古拉斯暖流)啊就西方邊界流 > Canary current ### formation of ocean surfce current * solar radiation $\to$ winds $\to$ Ekman transport $\to$ sea level gradient $\to$ coriolis force(Ekman Spiral) $\to$ circulation ![IMG_1030](https://hackmd.io/_uploads/ryPkGm4LT.jpg) > 海水向中間集中,但因水位高低差 -> 梯度力作用水會往四周流出(clockwise) $\frac{dP}{dz} = -\rho g$ ## Review: F= ma ![IMG_1031](https://hackmd.io/_uploads/By3O7XVIp.jpg) ![](https://hackmd.io/_uploads/SyZzs2fza.png) ![](https://hackmd.io/_uploads/SyZzs2fza.png) ### upper ocean response to winds * 表面有個邊界條件:z = 0的地方,風應力與密度、黏滯係數、速度有關 ![IMG_1032](https://hackmd.io/_uploads/Hyu4BQV8T.jpg) ![IMG_1033](https://hackmd.io/_uploads/H181IX4La.jpg) > * 東西向的海水傳送(風應力)是南北向的風造成(Ekman layer內風對水的作用) > (式中為從遠離邊界層(海底)積分到邊界曾) ### continuous function and up or down - due to ET, in the cycle system, the water will convergent or divvergent - continuous function(水體不可壓縮) - conv $\to$ upwelling - div $\to$ downwelling ### potential vorticity conservation :::success 參考 **[這裡會很有幫助](https://popopo.medium.com/%E4%BD%95%E8%AC%82sverdrup-transport-%E5%A4%A7%E6%B4%8B%E7%92%B0%E6%B5%81%E4%B8%AD%E7%9A%84%E8%A5%BF%E9%82%8A%E7%95%8C%E5%BC%B7%E5%8C%96-western-intensification-%E5%A6%82%E4%BD%95%E4%BE%86%E7%9A%84-aa7c28f2041f)** ::: - Due to ET, water be compressed, the potential vorticity should decrease, then current toward to south. - 當考慮艾克曼流的時候,要考慮風應力及科氏力對其的平衡作用 > 位渦守恆 : ${Q = {f + {\zeta} \over {H}}}$ > f : 行星渦度,${\zeta}$ : 相對渦度,H : 單位流體在垂直方向的長度 > > 根據Ekman transport,北半球風場在副熱帶地區形成順時針環流風場,驅使大洋表面的環流是以順時針方式流動,水體主要往大洋中間流,在中間形成downwelling。 > > 由於downwelling的產生,使水體被壓縮,H減小(shrinking effect),根據位渦守恆,Q為定值,因此${f + {\zeta}}$(絕對渦度)勢必增加。又由於大洋上相對渦度相較於行星渦度的影響較小,因此水會往行星渦度較小的地方移動,也就是往低緯度方向前進,形成Sverdrup transport. > ![image](https://hackmd.io/_uploads/r1PWQOhIT.png) > 而由於這邊的風場對大洋產生了負渦度,根據渦度守恆,必須要有正渦度(逆時針方向)去平衡它,而正渦度的產生主要是透過與邊界的摩擦力產生,但在西方因為環流向北,又增加行星渦度。根據位渦守恆,相對渦度減少,需要有更強的正渦度來達成平衡,因此會增加與西方邊界的摩擦力,海流流量流速增加,形成西方強化現象 > 風場(順時針環流)對海水製造出負的相對渦度(順時針相對渦度為負)(svardrup transport),使水體向南移動 > 中間因ET產生downwelling ![IMG_1034](https://hackmd.io/_uploads/BJ_AU7N8a.jpg) ![IMG_1035](https://hackmd.io/_uploads/B1mdvQ4L6.jpg) > 根據連續方程式,水體向南移動之後來到了行星渦度比較小的地方,水體不可壓縮,所以往回流(?造成westward intensification,然後跑到西邊界的時候因為無法跨越赤道,所以向著科氏力方向旋轉,但因為水量多所以流量大流速快,形成西方邊界流 >

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully