劉家成
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee
  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 2024q1 Homework2 (quiz1+2) contributed by < `fatcatorange` > # 第一周測驗題: ## 測驗一 在以下程式嗎中,應是要取得串列的尾端指標,因此此處透過 while 迴圈逐個向後,直到串列尾端,故 `AAAA` 應為 `(*left)->next` ```c node_t *list_tail(node_t **left) { while ((*left) && (*left)->next) left = &(AAAA); return *left; } ``` 同樣的,在`BBBB` 中,要求的是整個佇列的長度,因此同樣為 `(*left)->next` 接下來分析 quick_sort 的函式: 首先,初始時 begin[0] 為串列開頭,end[0] 則為串列尾端。 在每一輪開始時,將 pivot 設定 begin[i],並由 pivot 的下一元素開始執行: ```c node_t *L = begin[i], *R = end[i]; if (L != R) { node_t *pivot = L; value = pivot->value; node_t *p = pivot->next; pivot->next = NULL; ``` 接下來,程式開始由pivot的下個元素開始,逐一比對當前節點的 value 值是否比 pivot 大,若是則加入 right(將該節點設為 right 的頭,並連接原本的 right head),否則加入 left 。 因此,此處 `CCCC` 應為 p->next。 之後就是將 left 和 right 加入陣列中,此處 begin[i] 為left,而 end[i] 會是這個部份的尾端,因此應為 list_tail(left),而 begin[i+1]、end[i+1] 放入的是pivot, begin[i+2] 放入 right,尾端則同樣放入 list_tail(right)。 ```c begin[i] = left; end[i] = list_tail(left); begin[i + 1] = pivot; end[i + 1] = pivot; begin[i + 2] = right; end[i + 2] = list_tail(right); ``` 到這裡,已經將原本的 list 切成三部份: begin[i] ~ end[i]:比 pivot 小的部份 begin[i+1] ~ end[i+1]:pivot 自己一個點 begin[i+2] ~ end[i+2]:比 pivot 大的部份 到下一輪時,會由 begin[i+2] 和 end[i+2] 開始一樣步驟,假設此時 begin[i+2] != end[i+2]: 重做剛才的步驟,再切成三等份 否則的話,代表這部份只剩下一個節點或零個節點: 若為一個節點,將該節點加入結果 然後將 i-- ,代表這個部份做完了 由於每次切割後都是 i+=2,也就是針對比 pivot 大的部份進行動作,因此最早被加進 result 的必定是最大的,而下個被加入的是第二大的,又因為每次插入都是插在頭節點前面,因此最後結果就會是一由小至大排序好的串列。 ## 測驗二 測試程式碼: `create_sample`: 創建一個鍊結串列,內容隨機。 `copy_list`: 創見一個 from 為開頭的串列的複製,並放入 space 陣列中 :::info 此處 space 是一個陣列,內容是一堆 element_t ,因此 space 指標才能直接進行 ++ 操作 ::: `compare`: 回傳兩節點內值的大小差距,並把 priv 指標內的值 +1。 `check_list`: 透過 `list_for_each_entry_safe` 巨集檢查所有節點是否有按照順序排列,因為此巨集會有一個 safe 指標會在每一輪先更新成 entry 的 next ,因此透過 safe 可以直接當成是 entry 的下一個節點。 此函式會檢查 3 項事項: 1. 是否按照順序排列,可透過檢查 entry 和 safe 節點的值得知 2. 是否為 stable (假如原本有兩個 1,以 1 和 **1**代表,若原本順序事先 1 才是 **1**,排序後不能變成先 **1** 才 1),可以透過檢查 seq 得知,若後面的點 seq 比前面的節點的 seq 還大,代表並不是 stable。 >目前沒有找到 seq 第一次是在哪裡定義,其含意應是元素原始的出現順序 3. 節點數是否和原先串列的節點數相同。 接下來為 timsort 的程式碼部份: 首先,創建一個 head 指標,並且在一開始將 tail 指向 head 的位址,因此 AAAA 應為: ```c &head ``` 接下來,此處會透過指標的指標操作,先比較 a, b 兩節點的值,若 a 較小或相等,代表目前應該插入的是 a ,因此將執行 `*tail = a`,可參考下圖(省略部份未用到的節點內容),假設初始有a, b 指標和 tail 指向 head 的位址: ```graphviz digraph QueueRelationships { node [shape=record, fontname="Arial"]; // Define the queue context, which manages individual queues alist_1 [label="{list_node_a1| next: list_head*\l |val:int = 1}", style=filled, fillcolor=lightblue]; alist_2 [label="{list_node_a2| next: list_head*\l |val:int = 3}", style=filled, fillcolor=lightblue]; alist_3 [label="{list_node_a3| next: list_head*\l |val:int = 5}", style=filled, fillcolor=lightblue]; a->alist_1->alist_2->alist_3 blist_1 [label="{list_node_b1| next: list_head*\l |val:int = 2}", style=filled, fillcolor=lightblue]; blist_2 [label="{list_node_b2| next: list_head*\l |val:int = 4}", style=filled, fillcolor=lightblue]; blist_3 [label="{list_node_b3| next: list_head*\l |val:int = 6}", style=filled, fillcolor=lightblue]; b->blist_1->blist_2->blist_3 tail->head } ``` 當 a->val 比 b->val 小時,先將 tail 指向的指標改為指向 a,在第一次時就是 head,因此變為: ```graphviz digraph QueueRelationships { node [shape=record, fontname="Arial"]; // Define the queue context, which manages individual queues alist_1 [label="{list_node_a1| next: list_head*\l| val:int = 1}", style=filled, fillcolor=lightblue]; alist_2 [label="{list_node_a2| next: list_head*\l| val:int = 3}", style=filled, fillcolor=lightblue]; alist_3 [label="{list_node_a3| next: list_head*\l| val:int = 5}", style=filled, fillcolor=lightblue]; a->alist_1->alist_2->alist_3 blist_1 [label="{list_node_b1| next: list_head*\l| val:int = 2}", style=filled, fillcolor=lightblue]; blist_2 [label="{list_node_b2| next: list_head*\l| val:int = 4}", style=filled, fillcolor=lightblue]; blist_3 [label="{list_node_b3| next: list_head*\l| val:int = 6}", style=filled, fillcolor=lightblue]; b->blist_1->blist_2->blist_3 tail->head->alist_1 } ``` 接下來,改將 tail 指向 a->next 的指標,並將 a 改為 a->next,也就是改為: ```graphviz digraph QueueRelationships { node [shape=record, fontname="Arial"]; // Define the queue context, which manages individual queues alist_1 [label="{list_head_a1| <next>next: list_head*\l | val:int = 1}", style=filled, fillcolor=lightblue]; alist_2 [label="{list_head_a2| next: list_head*\l |val:int = 3}", style=filled, fillcolor=lightblue]; alist_3 [label="{list_head_a3| next: list_head*\l |val:int = 5}", style=filled, fillcolor=lightblue]; a->alist_2 alist_1->alist_2 blist_1 [label="{list_head_b1| next: list_head*\l |val:int = 2}", style=filled, fillcolor=lightblue]; blist_2 [label="{list_head_b2| next: list_head*\l |val:int = 4}", style=filled, fillcolor=lightblue]; blist_3 [label="{list_head_b3| next: list_head*\l |val:int = 6}", style=filled, fillcolor=lightblue]; b->blist_1->blist_2->blist_3 tail->alist_1:next[label = "指向 a1->next 的位址"] } ``` :::info 此處的 tail 並非指向 list_head_a1 ,而是 list_head_a1 的 next 指標的位址,這樣等一下要進行插入時,可以直接修改 next 指標指向的位址。 ::: 下一輪因為 b 指向的 b1 的值比 a 指向的 a2 的值小,因此是要插入 b1 的節點,這時可以透過修改 tail 指向的指標(也就是 a1 的 next)來達成,也就是變為: ```graphviz digraph QueueRelationships { node [shape=record, fontname="Arial"]; // Define the queue context, which manages individual queues alist_1 [label="{list_head_a1| next: list_head*\l| val:int = 1}", style=filled, fillcolor=lightblue]; alist_2 [label="{list_head_a2| next: list_head*\l| val:int = 3}", style=filled, fillcolor=lightblue]; alist_3 [label="{list_head_a3| next: list_head*\l| val:int = 5}", style=filled, fillcolor=lightblue]; a->alist_2->alist_3 alist_1->blist_1 blist_1 [label="{list_head_b1| next: list_head*\l| val:int = 2}", style=filled, fillcolor=lightblue]; blist_2 [label="{list_head_b2| next: list_head*\l| val:int = 4}", style=filled, fillcolor=lightblue]; blist_3 [label="{list_head_b3| next: list_head*\l| val:int = 6}", style=filled, fillcolor=lightblue]; b->blist_1->blist_2->blist_3 tail->alist_1 } ``` 然後和前面一樣,tail 改為指向 b->next 指標的位址,並把 b 改為 b->next , 因此會變成: ```graphviz digraph QueueRelationships { node [shape=record, fontname="Arial"]; // Define the queue context, which manages individual queues alist_1 [label="{list_head_a1| next: list_head*\l val:int = 1}", style=filled, fillcolor=lightblue]; alist_2 [label="{list_head_a2| next: list_head*\l val:int = 3}", style=filled, fillcolor=lightblue]; alist_3 [label="{list_head_a3| next: list_head*\l val:int = 5}", style=filled, fillcolor=lightblue]; a->alist_2->alist_3 alist_1->blist_1 blist_1 [label="{list_head_b1| <next> next: list_head*\l| val:int = 2}", style=filled, fillcolor=lightblue]; blist_2 [label="{list_head_b2| next: list_head*\l| val:int = 4}", style=filled, fillcolor=lightblue]; blist_3 [label="{list_head_b3| next: list_head*\l| val:int = 6}", style=filled, fillcolor=lightblue]; b->blist_2->blist_3 tail->blist_1:next[label="指向 b1->next的指標"] } ``` 依照這個步驟持續下去,最後就可以完成 merge > 此處最值得注意的就是 merge 是透過指標的指標直接修改了目前 tail 節點的 next 指標指向的位址,因此就不需要額外配置空間。 因此, BBBB 應為 &(a->next), CCCC 則為 &(b->next) 接下來, build_prev_link 將 list 串列接上 tail,因此程式開始時先將 tail->next = list 接下來,將list->prev 接上 tail,並且將 list 和 tail 往前,直到 list 為 NULL。 最後必須結束時 list 為 NULL,而 tail 會是最後一個節點,將 tail->next 接到 head,並將 head->prev 接到 tail 形成環狀鏈結串列。 DDDD 為 tail->next EEEE 為 head->prev list->prev = tail? `merge_final`:將 a, b 兩串列 merge,每輪將較小的節點連接至要回傳的串列,如果 a 的節點先用盡,會用 `build_prev_link` 來連接剩下的 b 串列的節點,否則將 b 指標改為 a 後再做 `build_prev_link` 例如此情況 a 的節點已經用盡: ```graphviz digraph QueueRelationships { node [shape=record, fontname="Arial"]; // Define the queue context, which manages individual queues alist_1 [label="{list_head_a1| next: list_head*\l val:int = 1}", style=filled, fillcolor=lightblue]; head->alist_1 tail->alist_1 a->NULL blist_1 [label="{list_head_b1| next: list_head*\l val:int = 2}", style=filled, fillcolor=lightblue]; blist_2 [label="{list_head_b2| next: list_head*\l val:int = 4}", style=filled, fillcolor=lightblue]; blist_3 [label="{list_head_b3| next: list_head*\l val:int = 6}", style=filled, fillcolor=lightblue]; blist_1->blist_2->blist_3 b->blist_1 } ``` 則會將 b 串列和 head, tail 進行 `build_prev_link` 而如果是 b 串列先耗盡: ```graphviz digraph QueueRelationships { node [shape=record, fontname="Arial"]; // Define the queue context, which manages individual queues alist_1 [label="{list_head_a1| next: list_head*\l val:int = 1}", style=filled, fillcolor=lightblue]; alist_2 [label="{list_head_a1| next: list_head*\l val:int = 7}", style=filled, fillcolor=lightblue]; alist_3 [label="{list_head_a1| next: list_head*\l val:int = 9}", style=filled, fillcolor=lightblue]; head->alist_1 tail->alist_1 a->alist_2->alist_3 blist_1 [label="{list_head_b1| next: list_head*\l val:int = 2}", style=filled, fillcolor=lightblue]; blist_2 [label="{list_head_b2| next: list_head*\l val:int = 4}", style=filled, fillcolor=lightblue]; blist_3 [label="{list_head_b3| next: list_head*\l val:int = 6}", style=filled, fillcolor=lightblue]; blist_1->blist_2->blist_3 alist_1->blist_1 b->alist_2 } ``` 由於 b 也已經改成指向串列 a ,因此可以同樣透過 ` build_prev_link(head, tail, b);`來完成串接後面的節點。 ## find_run 在此函式中目標是要找出一組 run ,而其回傳值是一個 struct,內容包含該 run 的開頭和結尾。 例如,假設有以下節點,初始狀態為(藍色代表指標): ```graphviz digraph structs { node[shape=record] prev [label= "{prev}",style=filled,fillcolor=lightblue]; list [label= "{list}",style=filled,fillcolor=lightblue]; head [label= "head",style=filled,fillcolor=lightblue] next [label= "next",style=filled,fillcolor=lightblue] struct1 [label="<prev> prev|<data> data:6|<next> next"]; struct2 [label="<prev> prev|<data> data:4|<next> next"]; struct3 [label="<prev> prev|<data> data:5|<next> next"]; struct4 [label="<prev> prev|<data> data:7|<next> next"]; list->struct1 head->struct1 next->struct2 prev->NULL struct1:next->struct2 struct2:prev->struct1 struct2:next->struct3 struct3:prev->struct2 struct3:next->struct4 struct4:prev->struct3 } ``` 接下來就會檢查 list->data 和 next->data,這裡的狀況是 list 的值較大,因此會執行: ```c len++; list->next = prev; prev = list; list = next; next = list->next; head = list; ``` 執行上述步驟後,會變為以下狀況: ```graphviz digraph structs { node[shape=record] prev [label= "{prev}",style=filled,fillcolor=lightblue]; list [label= "{list}",style=filled,fillcolor=lightblue]; head [label= "head",style=filled,fillcolor=lightblue] next [label= "next",style=filled,fillcolor=lightblue] struct1 [label="<prev> prev|<data> data:6|<next> next"]; struct2 [label="<prev> prev|<data> data:4|<next> next"]; struct3 [label="<prev> prev|<data> data:5|<next> next"]; struct4 [label="<prev> prev|<data> data:7|<next> next"]; list->struct2 head->struct1 next->struct3 prev->struct1 struct1:next->NULL struct2:prev->struct1 struct2:next->struct3 struct3:prev->struct2 struct3:next->struct4 struct4:prev->struct3 } ``` 接下來會檢查 list->data 是否仍大於 list->data 若是則繼續重複執行,否則跳離迴圈 這裡的範例已經不符合,因此離開迴圈,而離開後會在將 prev->next 設為 list,因此結果為: ```graphviz digraph structs { node[shape=record] prev [label= "{prev}",style=filled,fillcolor=lightblue]; list [label= "{list}",style=filled,fillcolor=lightblue]; head [label= "head",style=filled,fillcolor=lightblue] next [label= "next",style=filled,fillcolor=lightblue] struct1 [label="<prev> prev|<data> data:6|<next> next"]; struct2 [label="<prev> prev|<data> data:4|<next> next"]; struct3 [label="<prev> prev|<data> data:5|<next> next"]; struct4 [label="<prev> prev|<data> data:7|<next> next"]; list->struct2 head->struct1 next->struct3 prev->struct1 struct1:next->NULL struct2:prev->struct1 struct2:next->struct1 struct3:prev->struct2 struct3:next->struct4 struct4:prev->struct3 } ``` 若單純只看 next 指標,程式已經成功找出了一組 run: ```graphviz digraph structs { node[shape=record] struct1 [label="<prev> prev|<data> data:6|<next> next"]; struct2 [label="<prev> prev|<data> data:4|<next> next"]; struct1:next->NULL struct2:next->struct1 } ``` 而未設定好的 prev 指標則可在後續 merge 時透過`build_prev_link`設定,可以發現這麼做之後還會把 new 的節點反轉過來。 考慮另一情況,就是一開始 list->data <= next->data 時: ```graphviz digraph structs { node[shape=record] prev [label= "{prev}",style=filled,fillcolor=lightblue]; list [label= "{list}",style=filled,fillcolor=lightblue]; head [label= "head",style=filled,fillcolor=lightblue] next [label= "next",style=filled,fillcolor=lightblue] struct1 [label="<prev> prev|<data> data:1|<next> next"]; struct2 [label="<prev> prev|<data> data:2|<next> next"]; struct3 [label="<prev> prev|<data> data:5|<next> next"]; struct4 [label="<prev> prev|<data> data:7|<next> next"]; list->struct1 head->struct1 next->struct2 prev->NULL struct1:next->struct2 struct2:prev->struct1 struct2:next->struct3 struct3:prev->struct2 struct3:next->struct4 struct4:prev->struct3 } ``` 此時,程式執行以下程式碼一輪後會是: ```c do { len++; list = next; next = list->next; } while (next && cmp(priv, list, next) <= 0); list->next = NULL; ``` ```graphviz digraph structs { node[shape=record] prev [label= "{prev}",style=filled,fillcolor=lightblue]; list [label= "{list}",style=filled,fillcolor=lightblue]; head [label= "head",style=filled,fillcolor=lightblue] next [label= "next",style=filled,fillcolor=lightblue] struct1 [label="<prev> prev|<data> data:1|<next> next"]; struct2 [label="<prev> prev|<data> data:2|<next> next"]; struct3 [label="<prev> prev|<data> data:5|<next> next"]; struct4 [label="<prev> prev|<data> data:7|<next> next"]; list->struct2 head->struct1 next->struct3 prev->NULL struct1:next->struct2 struct2:prev->struct1 struct2:next->struct3 struct3:prev->struct2 struct3:next->struct4 struct4:prev->struct3 } ``` 實際上,就是不需要做特別的事,因為原本就是按照順序的了,因此串列最後的狀況就會是 ```graphviz digraph structs { node[shape=record] prev [label= "{prev}",style=filled,fillcolor=lightblue]; list [label= "{list}",style=filled,fillcolor=lightblue]; head [label= "head",style=filled,fillcolor=lightblue] next [label= "next",style=filled,fillcolor=lightblue] struct1 [label="<prev> prev|<data> data:1|<next> next"]; struct2 [label="<prev> prev|<data> data:2|<next> next"]; struct3 [label="<prev> prev|<data> data:5|<next> next"]; struct4 [label="<prev> prev|<data> data:7|<next> next"]; list->struct4 head->struct1 next->NULL prev->NULL struct1:next->struct2 struct2:prev->struct1 struct2:next->struct3 struct3:prev->struct2 struct3:next->struct4 struct4:prev->struct3 } ``` 不管是何種情況,最後要把 head 的 prev 改為 NULL 來切斷與前面的連接,並在最前面接上一個開頭`head->next->prev = (struct list_head *) len;`,最後將 head, next 回傳即可。 ### timsort 有了前面那些函式,可以開始分析 timsort,首先,函式透過迴圈不斷找出 run ,當 run 數量達成一定條件(還在看...)時會先進行合併。 ```c do { /* Find next run */ struct pair result = find_run(priv, list, cmp); result.head->prev = tp; tp = result.head; list = result.next; stk_size++; tp = merge_collapse(priv, cmp, tp); } while (list); ``` 接下來,透過 `merge_force_collapse` 合併所有 run。 最後,因為剛才接上的可能有些是在 find_run 中的狀況一,其 prev 節點未設定好,透過 build_prev_link 調整好。 :::warning 後面的一些程式碼目前只能看懂大致架構.. ::: # 第二週測驗 ## 測驗一 ### list_add_head: 首先,此串列的結構應如下: ```graphviz digraph structs { node[shape=record] head [label="h|<first> first",style="filled",fillcolor = "lightblue"]; struct1 [label="<prev> pprev|<data> data:6|<next> next"]; struct2 [label="<prev> pprev|<data> data:4|<next> next"]; struct3 [label="<prev> pprev|<data> data:5|<next> next"]; struct4 [label="<prev> pprev|<data> data:7|<next> next"]; struct1:next->struct2 struct1:prev->head:first struct2:prev->struct1:next struct2:next->struct3 struct3:prev->struct2:next n->struct4 head:first->struct1 } ``` 假設要把 n 指向的節點插入此串列的開頭,可以透過修改目前第一個節點的 pprev 指標,因為這個指標指向的是 h 的 first 指標,透過指標的指標可以直接修改,也就是改為指向 n 指向的節點的 next 指標的位址 ```graphviz digraph structs { node[shape=record] head [label="h|<first> first",style="filled",fillcolor = "lightblue"]; struct1 [label="<prev> pprev|<data> data:6|<next> next"]; struct2 [label="<prev> pprev|<data> data:4|<next> next"]; struct3 [label="<prev> pprev|<data> data:5|<next> next"]; struct4 [label="<prev> pprev|<data> data:7|<next> next"]; struct1:next->struct2 struct1:prev->struct4:next struct2:prev->struct1:next struct2:next->struct3 struct3:prev->struct2:next n->struct4 head:first->struct1 } ``` 接下來必須讓 n 指向的節點的 next 指標指向原本的第一個節點,並將 n 指向的節點的 pprev 指標指向為 h->first 的位址,並把 h->first 改為指向 n 指向的節點,也就是: ```graphviz digraph structs { node[shape=record] head [label="h|<first> first",style="filled",fillcolor = "lightblue"]; struct1 [label="<prev> pprev|<data> data:6|<next> next"]; struct2 [label="<prev> pprev|<data> data:4|<next> next"]; struct3 [label="<prev> pprev|<data> data:5|<next> next"]; struct4 [label="<prev> pprev|<data> data:7|<next> next"]; struct1:next->struct2 struct1:prev->struct4:next struct2:prev->struct1:next struct2:next->struct3 struct3:prev->struct2:next struct4:prev->head:first struct4:next->struct1 n->struct4 head:first->struct4 } ``` 這樣就完成了插入頭的行為,因此 `AAAA`應為 h->first。 ### find: ~~首先,函式會先針對整個串列進行遍歷,根據 `hlist_for_each` 巨集, BBBB 的內容應為此串列的 head,因此應為 heads~~ 傳入的 heads 應為一個包含多個 head 節點的陣列,因此 BBBB 應為 &(heads[hash]),代表到那個 bucket 去找是否存在資料。 在每一輪,函式創建一個 order_node pointer,由此處可知 CCCC 應為 list_entry。 此處是在檢查是否在指定的串列中找到該數,若有則回傳 index,否則回傳 1。 ### node_add: 此函式用於將值插入某個 bucket,首先先分配一塊節點空間,接下來根據其值算出應該插在哪一個 bucket 後即可透過 node_add_head 插入,概念和前個函式相似, DDDD 應為 &(heads[hash]) ## 測驗二 ### hlist_del: 在此函式中要刪除特定的節點,因此透過修改 pprev 這個指標指向的位置來達成,具體如下,假設要刪除紅色節點: ```graphviz digraph structs { node[shape=record] head [label="h|<first> first",style="filled",fillcolor = "lightblue"]; struct1 [label="<prev> pprev|<data> data:6|<next> next"]; struct2 [label="<prev> pprev|<data> data:4|<next> next"style="filled",fillcolor = "red"]; struct3 [label="<prev> pprev|<data> data:5|<next> next"]; struct4 [label="<prev> pprev|<data> data:7|<next> next"]; struct1:next->struct2 struct1:prev->struct4:next struct2:prev->struct1:next struct2:next->struct3 struct3:prev->struct2:next struct4:prev->head:first struct4:next->struct1 n->struct2 head:first->struct4 } ``` 透過以下操作,串列變成: ```c struct hlist_node *next = n->next, **pprev = n->pprev; *pprev = next; ``` ```graphviz digraph structs { node[shape=record] head [label="h|<first> first",style="filled",fillcolor = "lightblue"]; struct1 [label="<prev> pprev|<data> data:6|<next> next"]; struct2 [label="<prev> pprev|<data> data:4|<next> next"style="filled",fillcolor = "red"]; struct3 [label="<prev> pprev|<data> data:5|<next> next"]; struct4 [label="<prev> pprev|<data> data:7|<next> next"]; struct1:next->struct3 struct1:prev->struct4:next struct2:next->struct3 struct3:prev->struct2:next struct4:prev->head:first struct4:next->struct1 next->struct3 n->struct2 pprev->struct3:prev head:first->struct4 } ``` 接下來只要透過再修改 next 指標的 pprev 的指標改為指向 pprev,就可以完成移除該節點的操作: ```graphviz digraph structs { node[shape=record] head [label="h|<first> first",style="filled",fillcolor = "lightblue"]; struct1 [label="<prev> pprev|<data> data:6|<next> next"]; struct2 [label="<prev> pprev|<data> data:4|<next> next"style="filled",fillcolor = "red"]; struct3 [label="<prev> pprev|<data> data:5|<next> next"]; struct4 [label="<prev> pprev|<data> data:7|<next> next"]; struct1:next->struct3 struct1:prev->struct4:next struct2:next->struct3 struct3:prev->struct1:next struct4:prev->head:first struct4:next->struct1 next->struct3 head:first->struct4 } ``` 因此, EEEE 應填入 next->pprev。 ### LRUCacheFree: 此處在把 cache 內的節點釋放,因為其透過 list_for_each_safe 巨集,且 pos, n 為 list_head 型態的指標,因此 FFFF 的 member_name 應為 link。 而在刪除節點時,是要傳入該節點的 link 部份的指標,實際上就是 pos 指標,因此 GGGG 應為 pos。 ### LRUCacheGet: 此處在抓取 cache 內某個節點並將其移動至最前面,因此 HHHH 部份應為 node,因為目前是在遍歷 hlist 而不是普通的 list 。 接下來就可以透過 list_move 來把 pos 指向的節點移動到前面 ```c void lRUCacheFree(LRUCache *obj) { struct list_head *pos, *n; list_for_each_safe (pos, n, &obj->dhead) { LRUNode *cache = list_entry(pos, LRUNode, node); list_del(pos); free(cache); } free(obj); } ``` :::info 部份待補 ::: ## 測驗三 巨集`__const_hweight8(w)`: ```c #define __const_hweight8(w) \ ((unsigned int) ((!!((w) & (1ULL << 0))) + (!!((w) & (1ULL << 1))) + \ (!!((w) & (1ULL << 2))) + (!!((w) & (1ULL << 3))) + \ (!!((w) & (1ULL << 4))) + (!!((w) & (1ULL << 5))) + \ (!!((w) & (1ULL << 6))) + (!!((w) & (1ULL << 7))))) ``` 這個巨集主要在計算共有多少個 bit 被設定成 1,首先假如有一個值 200,那麼他的二進位表示法為: ``` 11001000 ``` 假設我們對這個數字進行 ```c (!!((w) & (1ULL << 0))) ``` 相當於不進行左移,而其結果就是 200 & 1 的結果,那其實就是看: ``` 11001000 00000001 -------- 00000000 ``` 也就是看最後一位元是否為 1 ,此處是否,因此回傳 0 。 至於`!!`的用意,以另一個例子來看,如 (!!((w) & (1ULL << 3))) ``` 11001000 00001000 -------- 00001000 ``` 這時會回傳結果 8 ,但不能直接把 8 加上去,因此首先透過 ! 符號,當結果 > 0 時就會變為 0 ,否則變為 1。 因此, !! 符號的用意為: ``` !!8->!0->1 ``` 也就是當結果 > 0 時變 1 ,否則不變。 因此,做 8 次就是取前8位元不為0的 bit 數。 而 `__const_hweight16` 實際上就是做兩次,但第一次做前 8 位元,第二次做後 8 位元。 後面也都相同,例如 `__const_hweight32` 就做兩次 `__const_hweight16` `__const_hweight64(w)` 就做兩次 `__const_hweight32` __ffs 主要功能就是找到第一個不為 1 的在第幾位,因為概念類似,此處假設只有 8-bit ```c if ((word & 0xff) == 0) { num += 8; word >>= 8; } ``` 假如對 10010000 做這個操作: ``` num = 0 10010000 11111111 -------- 10010000 ``` 此處不為 0 ,因此繼續往下: ```c if ((word & 0xf) == 0) { num += 4; word >>= 4; } ``` ``` num = 0 10010000 00001111 -------- 00000000 ``` 此處為答案為 0 ,因此執行 if 內的行為後繼續往下: ```c if ((word & 0x3) == 0) { num += 2; word >>= 2; } ``` ``` num = 4 00001001 00000011 -------- 00000001 ``` 此處不為 0 ,因此繼續往下: ```c if ((word & 0x1) == 0) num += 1; ``` ``` num = 4 00001001 00000001 -------- 00000001 ``` 仍不為 0 ,中止條件,因此答案為 4 由上述規律,可判斷 AAAA 為 0xffffffff ## __clear_bit 這個函式在清掉 index nr 的 bit, 首先 BIT_MASK(nr) 巨集將返回一個值,其 bit 除了 nr 外皆為 0,例如: ``` BIT_MASK(5) ->000...00100000 ``` 因此,透過 *p &= ~mask 即可完成 clear_bit,例如: ``` nr = 5 *addr = 11110111 ``` 其mask: ``` 00100000 ``` 而 *addr & ~mask 即為: ``` 11010111 ``` 因此, BBBB 應為 ~mask。 ## fns 這個函式是尋找第 n 個 set bit,概念其實比較簡單,例如假如要找第 2 個: ``` 11010011 ``` 先透過 ffs 找到第一個,之後把這個 bit 用 clear_bit 清掉 ``` 11010010 ``` 之後再找一次 ffs 就是答案,假如要找第 n 個,就是做 n-1 次 ffs和 clear_bit 後,再做一次 ffs 的結果就是答案。

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully