李哲豪
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

Your note will be visible on your profile and discoverable by anyone.
Your note is now live.
This note is visible on your profile and discoverable online.
Everyone on the web can find and read all notes of this public team.
See published notes
Unpublish note
Please check the box to agree to the Community Guidelines.
View profile
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
2
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
# 使用 PEFT 和 Unsloth Fine-tuning LLM ## 載入 Base Model 我們下載 4-bit Mistral 7b 的模型並透過 unsloth 的 **`FastLanguageModel`** 類別載入。 ```python from unsloth import FastLanguageModel max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. # 4bit pre quantized models we support for 4x faster downloading + no OOMs. fourbit_models = [ "unsloth/mistral-7b-bnb-4bit", "unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "unsloth/llama-2-7b-bnb-4bit", "unsloth/llama-2-13b-bnb-4bit", "unsloth/codellama-34b-bnb-4bit", "unsloth/tinyllama-bnb-4bit", ] # More models at https://huggingface.co/unsloth model, tokenizer = FastLanguageModel.from_pretrained( model_name = "unsloth/mistral-7b-bnb-4bit", # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, attn_implementation="flash_attention_2", # 使用 Flash Attention-2 # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf ) ``` 我們查看一下 base model 本身 tokenizer 的 **`bos_token`**、**`eos_token`** 和 **`pad_token`** 分別是什麼。 ```python tokenizer.bos_token, tokenizer.eos_token, tokenizer.pad_token # ('<s>', '</s>', '<unk>') tokenizer.bos_token_id, tokenizer.eos_token_id, tokenizer.pad_token_id # (1, 2, 0) ``` ## 加入 LoRA adapters 我們只需要訓練 LoRA 模組的參數,佔不到所有參數的 10%。 ```python model = FastLanguageModel.get_peft_model( model, r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128 target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",], lora_alpha = 16, lora_dropout = 0, # Supports any, but = 0 is optimized bias = "none", # Supports any, but = "none" is optimized use_gradient_checkpointing = True, random_state = 3407, use_rslora = False, # We support rank stabilized LoRA loftq_config = None, # And LoftQ ) ``` ## 資料準備 我們使用 `ChatML` 格式進行對話風格的微調。這邊示範 ShareGPT 風格的 [OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5) 資料集。`ChatML` 呈現多輪對話,如下圖所示: ``` <|im_start|>system You are a helpful assistant.<|im_end|> <|im_start|>user What's the capital of France?<|im_end|> <|im_start|>assistant Paris.<|im_end|> ``` :::success :notebook: Note 若要僅訓練 completions(忽略使用者的輸入),請閱讀 [Train on completions only](https://hackmd.io/@6j0OMC7UQbGqQLfUg9pauA/H1CYpAK3T) 的章節。 ::: 我們使用 unsloth 自家的 **`get_chat_template`** 函數來取得正確的聊天模板。此支援 `zephyr`、`chatml`、`mistral`、`llama`、`alpaca`、`vicuna`、`vicuna_old` 和 `unsloth`。 通常需要訓練 **`<|im_start|>`** 和 **`<|im_end|>`**。我們將 **`<|im_end|>`** 映射為 EOS token,並保留 **`<|im_start|>`** 不變。這不需要對額外的 token 進行額外的訓練。 :bulb:【Note】注意 ShareGPT 使用 `{"from": " human", "value" : "Hi"}` 而不是 `{"role": "user", "content" : "Hi"}`,因此我們使用 **`mapping`** 來映射它。 ```python from unsloth.chat_templates import get_chat_template tokenizer = get_chat_template( tokenizer, chat_template = "chatml", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth mapping = {"role" : "from", "content" : "value", "user" : "human", "assistant" : "gpt"}, # ShareGPT style map_eos_token = True, # Maps <|im_end|> to </s> instead ) def formatting_prompts_func(examples): convos = examples["conversations"] texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False) for convo in convos] return { "text" : texts, } pass from datasets import load_dataset dataset = load_dataset("teknium/OpenHermes-2.5", split = "train") dataset = dataset.map(formatting_prompts_func, batched = True,) ``` 現在 tokenizer 的 **`eos_token`** 變成 **`<|im_end|>`**,但 **`eos_token_id`** 依舊維持本來的數值,也代表著不需要額外訓練新的 token。 ```python tokenizer.bos_token, tokenizer.eos_token, tokenizer.pad_token # ('<s>', '<|im_end|>', '<unk>') tokenizer.bos_token_id, tokenizer.eos_token_id, tokenizer.pad_token_id # (1, 2, 0) ``` :::danger :no_entry: 嚴重 在訓練之前要確保 tokenizer 的 **`eos_token`** 是否和 **`pad_token`** 不一樣,如果使用 **`SFTTrainer`** 進行訓練且參數設定 **`packing=False`** 及 **`data_collator=None`**,則 **`data_collator`** 預設使用 **`transformers.DataCollatorForLanguageModeling`**,而它不會計算 **`pad_token`** 的 loss,因此 **`eos_token`** 和 **`pad_token`** 一樣,就意味著模型學不到生成 **`eos_token`**。 ::: 接下來,讓我們透過印出第一筆來看看 `ChatML` 格式是如何運作的。 ```python dataset["conversations"][1] # [{'from': 'human', # 'value': 'In analytical chemistry, what is the principle behind the use of an internal standard in quantitative analysis?\nA. It compensates for variations in sample preparation and instrumental response.\nB. It enhances the sensitivity of the analytical method.\nC. It reduces the detection limit of the analytical method.\nD. It increases the resolution between analyte peaks in chromatography.\nE. None of the above.', # 'weight': None}, # {'from': 'gpt', # 'value': 'A. It compensates for variations in sample preparation and instrumental response.', # 'weight': None}] print(dataset[1]["text"]) # <|im_start|>user # In analytical chemistry, what is the principle behind the use of an internal standard in quantitative analysis? # A. It compensates for variations in sample preparation and instrumental response. # B. It enhances the sensitivity of the analytical method. # C. It reduces the detection limit of the analytical method. # D. It increases the resolution between analyte peaks in chromatography. # E. None of the above.<|im_end|> # <|im_start|>assistant # A. It compensates for variations in sample preparation and instrumental response.<|im_end|> ``` ## 訓練模型 現在讓我們來使用 Huggingface TRL 的 **`SFTTrainer`**![TRL SFT 文件](https://huggingface.co/docs/trl/sft_trainer)。Unsloth 也支持 TRL 的 **`DPOTrainer`**! ```python import torch from trl import SFTTrainer from transformers import TrainingArguments trainer = SFTTrainer( model = model, tokenizer = tokenizer, train_dataset = dataset, dataset_text_field = "text", max_seq_length = max_seq_length, dataset_num_proc = 2, packing = False, # Can make training 5x faster for short sequences. neftune_noise_alpha = 5, args = TrainingArguments( per_device_train_batch_size = 2, gradient_accumulation_steps = 4, warmup_steps = 5, max_steps = 60, learning_rate = 2e-4, fp16 = not torch.cuda.is_bf16_supported(), bf16 = torch.cuda.is_bf16_supported(), logging_steps = 1, optim = "adamw_8bit", weight_decay = 0.01, lr_scheduler_type = "linear", seed = 3407, output_dir = "outputs", ), ) ``` :::warning :warning: 警告 確定 tokenizer 的 **`eos_token`** 和 **`pad_token`** 不一樣之後,要記得傳入 tokenizer 到 **`SFTTrainer`**,如果沒有且 tokenizer 本身沒有設定 **`pad_token`**,則 **`SFTTrainer`** 會將 **`pad_token`** 設定和 **`eos_token`** 一樣,導致不會訓練 **`eos_token`**。 ::: ```python trainer_stats = trainer.train() # {'loss': 1.7715, 'learning_rate': 4e-05, 'epoch': 0.0} # {'loss': 1.6014, 'learning_rate': 8e-05, 'epoch': 0.0} # {'loss': 1.2659, 'learning_rate': 0.00012, 'epoch': 0.0} # {'loss': 1.4734, 'learning_rate': 0.00016, 'epoch': 0.0} # {'loss': 1.6183, 'learning_rate': 0.0002, 'epoch': 0.0} # {'loss': 1.3259, 'learning_rate': 0.00019636363636363636, 'epoch': 0.0} # {'loss': 1.2349, 'learning_rate': 0.00019272727272727274, 'epoch': 0.0} # {'loss': 1.403, 'learning_rate': 0.0001890909090909091, 'epoch': 0.0} # 13%|██████ | 8/60 [00:35<03:27, 4.00s/it] ``` ## Inference 讓我們來運行模型吧!由於我們使用的是 `ChatML`,因此請使用 **`apply_chat_template`** 並將 **`add_generation_prompt`** 設為 **`True`** 進行推理。 ```python from unsloth.chat_templates import get_chat_template tokenizer = get_chat_template( tokenizer, chat_template = "chatml", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth mapping = {"role" : "from", "content" : "value", "user" : "human", "assistant" : "gpt"}, # ShareGPT style map_eos_token = True, # Maps <|im_end|> to </s> instead ) FastLanguageModel.for_inference(model) # Enable native 2x faster inference messages = [ {"from": "human", "value": "Next number of the fibonnaci sequence: 1, 1, 2, 3, 5, 8,"}, ] inputs = tokenizer.apply_chat_template( messages, tokenize = True, add_generation_prompt = True, # Must add for generation return_tensors = "pt", ).to("cuda") outputs = model.generate(input_ids = inputs, max_new_tokens = 64, use_cache = True) tokenizer.batch_decode(outputs) ``` 輸出結果: ``` ['<|im_start|>user\nNext number of the fibonnaci sequence: 1, 1, 2, 3, 5, 8,<|im_end|> \n<|im_start|>assistant\nThe next number in the Fibonacci sequence is 13.<|im_end|>'] ``` 您也可以使用 **`TextStreamer`** 進行持續的推論 - 這樣您可以逐個查看生成的 token,而不是等待整個過程! ```python FastLanguageModel.for_inference(model) # Enable native 2x faster inference messages = [ {"from": "human", "value": "Next number of the fibonnaci sequence: 1, 1, 2, 3, 5, 8,"}, ] inputs = tokenizer.apply_chat_template( messages, tokenize = True, add_generation_prompt = True, # Must add for generation return_tensors = "pt", ).to("cuda") from transformers import TextStreamer text_streamer = TextStreamer(tokenizer) _ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 128, use_cache = True) ``` 輸出結果: ``` <|im_start|>user Next number of the fibonnaci sequence: 1, 1, 2, 3, 5, 8,<|im_end|> <|im_start|>assistant The next number in the Fibonacci sequence is 13.<|im_end|> ``` ## 儲存、載入微調模型 若要將最終模型儲存為 LoRA adapters,請使用 Huggingface 的 **`push_to_hub`** 進行線上儲存,或使用 **`save_pretrained`** 進行本機儲存。 :bulb:【Note】這僅保存 LoRA adapters,而不是完整模型。要儲存到 16 位元或 GGUF,請向下捲動! ```python model.save_pretrained("lora_model") # Local saving # model.push_to_hub("your_name/lora_model", token = "...") # Online saving ``` 現在我們載入剛剛儲存用於推理的 LoRA adapters。 ```python from unsloth import FastLanguageModel from unsloth.chat_templates import get_chat_template max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. model, tokenizer = FastLanguageModel.from_pretrained( model_name = "lora_model", # YOUR MODEL YOU USED FOR TRAINING max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, attn_implementation="flash_attention_2", ) FastLanguageModel.for_inference(model) # Enable native 2x faster inference tokenizer = get_chat_template( tokenizer, chat_template = "chatml", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth mapping = {"role" : "from", "content" : "value", "user" : "human", "assistant" : "gpt"}, # ShareGPT style map_eos_token = True, # Maps <|im_end|> to </s> instead ) messages = [ {"from": "human", "value": "What is a famous tall tower in Paris?"}, ] inputs = tokenizer.apply_chat_template( messages, tokenize = True, add_generation_prompt = True, # Must add for generation return_tensors = "pt", ).to("cuda") from transformers import TextStreamer text_streamer = TextStreamer(tokenizer) _ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 128, use_cache = True) ``` 輸出結果: ``` <|im_start|>user What is a famous tall tower in Paris?<|im_end|> <|im_start|>assistant The Eiffel Tower is a famous tall tower in Paris, France. It was built in 1889 as the entrance arch to the 1889 World's Fair and is named after its designer, Gustave Eiffel. The tower is 324 meters (1,063 feet) tall and is one of the most recognizable symbols of Paris and France. It is located on the Champ de Mars, a large public park in the 7th arrondissement of Paris.<|im_end|> ``` ## Saving to float16 for VLLM 我們也直接支援儲存為 `float16`。選擇 **`merged_16bit`** 以儲存為 `float16`,或選擇 **`merged_4bit`** 以儲存為 `int4`。我們也允許作為後備方案使用 **`lora`** adapters。 使用 **`push_to_hub_merged`** 上傳到您的 Hugging Face 帳號!您可以前往 https://huggingface.co/settings/tokens 取得您的個人 tokens。 ```python # Merge to 16bit model.save_pretrained_merged("model_16bit", tokenizer, save_method = "merged_16bit",) model.push_to_hub_merged("hf/model", tokenizer, save_method = "merged_16bit", token = "") # Merge to 4bit model.save_pretrained_merged("model_4bit", tokenizer, save_method = "merged_4bit",) model.push_to_hub_merged("hf/model", tokenizer, save_method = "merged_4bit", token = "") # Just LoRA adapters model.save_pretrained_merged("model_lora", tokenizer, save_method = "lora",) model.push_to_hub_merged("hf/model", tokenizer, save_method = "lora", token = "") ``` :notebook: 使用 **`save_pretrained_merged()`** 函數可以傳入 tokenizer,它會一起儲存模型和 tokenizer。 現在我們載入剛剛 merge 好的 16-bit 模型並進行 inference,查看輸出結果是否一致。 ```python from unsloth import FastLanguageModel max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ load_in_4bit = False # Use 4bit quantization to reduce memory usage. Can be False. model, tokenizer = FastLanguageModel.from_pretrained( model_name = "model_16bit", # YOUR MODEL YOU USED FOR TRAINING max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, attn_implementation="flash_attention_2", ) FastLanguageModel.for_inference(model) messages = [ {"from": "human", "value": "Next number of the fibonnaci sequence: 1, 1, 2, 3, 5, 8,"}, ] inputs = tokenizer.apply_chat_template( messages, tokenize = True, add_generation_prompt = True, # Must add for generation return_tensors = "pt", ).to("cuda") from transformers import TextStreamer text_streamer = TextStreamer(tokenizer) _ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 128, use_cache = True) ``` 輸出結果: ``` <|im_start|>user Next number of the fibonnaci sequence: 1, 1, 2, 3, 5, 8,<|im_end|> <|im_start|>assistant The next number in the Fibonacci sequence is 13.<|im_end|> ``` 我們可以看到輸出的結果一模一樣,接著就可以拿它在 vLLM 進行部署。 :::warning :warning: 警告 使用 **`FastLanguageModel.from_pretrained()`** 載入 16-bit 模型進行 inference 時,要特別小心 **`load_in_4bit`** 參數要設為 **`False`**,由於 LoRA 的 weight 已經合併到 base model,如果再進行 4-bit 量化會損失準確率,導致 inference 行為和原先不一致。 :::

Import from clipboard

Paste your markdown or webpage here...

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template has been removed or transferred.
Upgrade
All
  • All
  • Team
No template.

Create a template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

Slide Example

API Docs

Edit in VSCode

Install browser extension

Contacts

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

Note content is identical to the latest version.
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully