siestally
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Owners
        • Signed-in users
        • Everyone
        Owners Signed-in users Everyone
      • Write
        • Owners
        • Signed-in users
        • Everyone
        Owners Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Help
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Owners
  • Owners
  • Signed-in users
  • Everyone
Owners Signed-in users Everyone
Write
Owners
  • Owners
  • Signed-in users
  • Everyone
Owners Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    --- type: slide math 高中數學 成發 --- # 三角龍復活計畫 <span style="color:red; font-size:150%;">研究三角形衍生形的奧秘</span> --- ## 研究動機 <span style="font-size:120%">之前在練能力競賽的題目時,寫到一題三角形衍生形的題目,很有挑戰性,當時解出來覺得很有成就感。在之後的奧數競賽中,又遇到同樣的題目但不同性質,於是我們想深入研究此題的不同解法。</span> --- ## 題目(奧數) | ![495046781_1918793708660035_3651214876402958146_n](https://hackmd.io/_uploads/BJqwOWIbel.png) | 令 $\triangle ABC$ 為一銳角三角形。<br>作點 $A_1$ 使得 $\triangle A_1BC$ 為以 $A_1$ 為頂角,<br>且與 $\triangle ABC$ 不重疊的等腰直角三角形。<br>同理,作點 $B_1$ 與 $C_1$,使得 $\triangle AB_1C$ 與 $\triangle AC_1B$ 分別為<br>以 $B_1$ 與 $C_1$ 為頂角,且皆與 $\triangle ABC$ 不重疊的等腰直角三角形。<br><br>證明 $AA_1$、$BB_1$、$CC_1$ 三線共點。 | |--|--| --- ## 題目(能競) | ![495046991_9660337234041763_2931656340173058730_n](https://hackmd.io/_uploads/rJxeo-8Zle.png) | 在 $\triangle ABC$ 外側作等腰直角三角形 $\triangle BCD$、$\triangle CAE$、$\triangle ABF$,<br>其中 $\angle D$、$\angle E$、$\angle F$ 為直角。<br><br>證明:$EF = AD$ 且 $EF \perp AD$。 | |--|--| --- <!-- slide --> ## 解一(延伸) | ![幾何圖](https://hackmd.io/_uploads/ByT-UbIbel.png) | 由定理一可知,$\overline{BE} \perp \overline{DF}$,同理 $\overline{AD} \perp \overline{EF}$、$\overline{CF} \perp \overline{DE}$。<br><br>故此三條 $BE, AD, CF$ 為 $\triangle DEF$ 的三邊高,交於其垂心,得證。 | |--|--| ---- ## 解二(西瓦+正弦) 令 $\overline{A_1A}$、$\overline{B_1B}$、$\overline{C_1C}$ 分別交 $\overline{BC}$、$\overline{AC}$、$\overline{AB}$ 於 $D$、$E$、$F$。<br> 由正弦定理可得: $$ \frac{\overline{BD}}{\sin \angle BA_1D} = \frac{\overline{A_1D}}{\sin \angle A_1BD} = \frac{\overline{A_1D}}{\sin \angle A_1CD} = \frac{\overline{CD}}{\sin \angle CA_1D} $$ 同理,應用正弦定理於 $\triangle ABA_1$ 與 $\triangle ACA_1$,可得: $$ \frac{\overline{AB}}{\sin \angle BA_1A} = \frac{\overline{AA_1}}{\sin \angle ABA_1}, \quad \frac{\overline{AC}}{\sin \angle CA_1A} = \frac{\overline{AA_1}}{\sin \angle ACA_1} $$ 因此: $$ \frac{\sin \angle BA_1A}{\sin \angle CA_1A} = \frac{\overline{AB}}{\overline{AC}} \cdot \frac{\sin \angle ABA_1}{\sin \angle ACA_1} $$ 又因為: $$ \angle BA_1D = \angle BA_1A, \quad \angle CA_1D = \angle CA_1A $$ 所以有: $$ \frac{\overline{BD}}{\overline{CD}} = \frac{\sin \angle BA_1A}{\sin \angle CA_1A} = \frac{\overline{AB}}{\overline{AC}} \cdot \frac{\sin(\angle B + 45^\circ)}{\sin(\angle C + 45^\circ)} $$ 同理可得: $$ \frac{\overline{CE}}{\overline{AE}} = \frac{\overline{BC}}{\overline{AB}} \cdot \frac{\sin(\angle C + 45^\circ)}{\sin(\angle A + 45^\circ)} $$ $$ \frac{\overline{AF}}{\overline{BF}} = \frac{\overline{AC}}{\overline{BC}} \cdot \frac{\sin(\angle A + 45^\circ)}{\sin(\angle B + 45^\circ)} $$ 將三式相乘得: $$ \frac{\overline{BD}}{\overline{CD}} \cdot \frac{\overline{CE}}{\overline{AE}} \cdot \frac{\overline{AF}}{\overline{BF}} =\left( \frac{\overline{AB}}{\overline{AC}} \cdot \frac{\sin(\angle B + 45^\circ)}{\sin(\angle C + 45^\circ)} \right) \cdot \left( \frac{\overline{BC}}{\overline{AB}} \cdot \frac{\sin(\angle C + 45^\circ)}{\sin(\angle A + 45^\circ)} \right) \cdot \left( \frac{\overline{AC}}{\overline{BC}} \cdot \frac{\sin(\angle A + 45^\circ)}{\sin(\angle B + 45^\circ)} \right) = 1 $$ 由西瓦定理(Ceva's Theorem)可得結論: $$ \boxed{\overline{AD}、\overline{BE}、\overline{CF} \text{ 共點}} $$ --- <span style="color:purple; font-size:150%;">以下為能競的一題多解</span> --- ## 幾何古典旋轉 ### 直角 ![圖](https://hackmd.io/_uploads/SJKLrGIbgg.png) --- **第一步:** 將 $\triangle BCE$ 繞著點 $E$ **逆時針旋轉 $90^\circ$**。 **第二步:** 以 $\triangle BB'E$ 為 **等腰直角三角形**, 證明邊長相等與兩線垂直,進而推論目標性質成立。 --- 首先將 $\triangle BCE$ 逆時針旋轉 $90^\circ$,可得: $\overline{BC} = \overline{AB'}$,$\overline{CE} = \overline{AE}$,$\overline{BE} = \overline{B'E}$, 且 $\overline{BE} \perp \overline{B'E}$(旋轉後垂直性成立)。 又有:$\angle FBA + \angle B'BE = 45^\circ + 45^\circ = 90^\circ$, 因此 $\angle B'BE$ 為直角。 接著連接 $\overline{BB'}$, 則有:$\angle AB'E + \angle ABE = \angle EBC + \angle ABE = 90^\circ$。 因此 $\triangle BB'E$ 為 **等腰直角三角形**。 --- **計算邊長:** $\overline{B'B} = \overline{BA} + \overline{AB'} = \dfrac{1}{\sqrt{2}} (\overline{BF} + \overline{BD}) = \dfrac{1}{\sqrt{2}} \overline{DF}$ 又知: $\overline{BE} = \overline{BB'} \cdot \dfrac{\sqrt{2}}{2}$ 故推出: $\overline{FD} : \overline{BB'} = \overline{BE} : \overline{BB'} = \sqrt{2} : 1$ $\Rightarrow \overline{FD} = \overline{BE}$ $\Rightarrow \boxed{\text{得證}}$ ---- ### 銳角 ![494857316_1665230654868346_1345806888793962445_n](https://hackmd.io/_uploads/B1yAhz8bel.png) ## 步驟一: 先將 △BCE 繞著 E 點**逆時針旋轉 90°** <br> ## 步驟二: 連接 $\overline{BB'}$,證明 $\triangle BDF \sim \triangle AB'B$ <br> ## 步驟三: 以 $\triangle BDF \sim \triangle AB'B$ 去證明 **等長與垂直性** <br><br> --- ## 證明細節: $\angle BAB' = 360^\circ - (45^\circ + \angle BAC + \angle EAB')$ <br> $\quad\quad\quad = 360^\circ - (45^\circ + \angle BAC + \angle BCA + 45^\circ)$ <br> $\quad\quad\quad = 360^\circ - (270^\circ - \angle ABC)$ <br> $\quad\quad\quad = 90^\circ + \angle ABC = \angle FBD$ <br> 由比例關係得: $\dfrac{\overline{AB}}{\overline{BF}} = \dfrac{\overline{BD}}{\overline{AB'}} = 1 : \sqrt{2}$ <br> $\therefore \triangle BDF \sim \triangle AB'B$(**SAS 相似**) <br><br> --- ## 角度與相似性證明: ① $\angle ABE = \angle B'BF$ <br> ② $\angle BFD = \angle B'BA$ <br> ③ $\angle B'BE = \angle B'BA + \angle ABE = \angle FBA$ <br> <br> $\angle GHE = \angle FBB' + \angle BFD + \angle B'BA + \angle ABE$ <br> 由①②可得: $\quad 2(\angle ABE + \angle B'BA)$ <br> 由③得: $\quad 2 \times 45^\circ = 90^\circ$,得證。 <br> $\therefore \triangle AB'B \sim \triangle BDF$ <br><br> --- ## 利用相似三角形求邊長比與等長: $\because \triangle AB'B \sim \triangle BDF$ <br> $\therefore \dfrac{\overline{FD}}{\overline{B'B}} = \dfrac{1}{\sqrt{2}}$ <br> 又因為 $\quad \overline{BE} = \overline{BB'} \cdot \dfrac{\sqrt{2}}{2}$ <br> 所以: $\quad \dfrac{\overline{FD}}{\overline{B'B}} = \dfrac{\overline{BE}}{\overline{BB'}} = \sqrt{2} : 1$ <br> $\Rightarrow \overline{FD} = \overline{BE}$,得證 ✅ <br><br> ---- ### 鈍角 ![494867875_1065141982138779_233954561790706103_n](https://hackmd.io/_uploads/S1hJTGL-ex.png) ### 第一步: 先將 △BCE 繞著點 E **逆時針旋轉** --- ### 第二步: 連接 $\overline{BB'}$ <br> 證明 △BDF ~ △AB'B --- ### 第三步: 延伸 $\overline{BE}$ 到 $\overline{DF}$,交於 G 點 --- ### 第四步: 以 △BDF ~ △AB'B 去證明 **等長與垂直關係** --- ## 相似三角形證明(SAS 相似) $\angle BAB' = 45^\circ + \angle BAC + \angle EAB'$ <br> &emsp;&emsp;= $45^\circ + \angle BAC + \angle BCA + 45^\circ$ <br> &emsp;&emsp;= $270^\circ - \angle ABC = \angle DBF$ <br><br> 比例關係: $\displaystyle AB : BF = BD : AB' = 1 : \sqrt{2}$ <br> $\Rightarrow$ 故 △BDF ~ △AB'B(**SAS 相似**) --- ## 等長與垂直的推導 ① $\angle BFD = \angle B'BA$ <br> ② $\angle GBF = 180^\circ - \angle FBA - \angle ABB' - \angle B'BE$ <br> &emsp;&emsp;= $90^\circ - \angle ABB'$ <br><br> 由 ①② 可得: $\angle FGE = \angle GBF + \angle GFB = 90^\circ$ <br><br> 因 △AB'B ~ △BDF <br> $\Rightarrow \displaystyle FD : B'B = 1 : \sqrt{2}$ <br> 又 $\displaystyle BE = BB' \cdot \frac{\sqrt{2}}{2}$ <br> $\Rightarrow \displaystyle FD : BB' = BE : BB' = \sqrt{2} : 1$ <br> $\Rightarrow \boxed{FD = BE}$ <br><br> **得證** --- ## 解析幾何證明 ![圖](https://hackmd.io/_uploads/BJ6VQbUZll.png) 不失一般性,假設 $A(0,0)$,$B(a,b)$,$C(1,0)$。<br> 接下來用旋轉矩陣與複數兩種方式,分別求出 $D$、$E$、$F$ 三點座標,以下僅列出 $F$ 點的推導過程: --- ## 🔁 旋轉矩陣法求 $F$ 點 以 $A$ 為中心,將 $B$ 點**逆時針旋轉 $45^\circ$**,再將向量長縮小為 $\dfrac{1}{\sqrt{2}}$ 倍,可得 $F$ 點。<br> 運用旋轉矩陣與伸縮概念: $$ \frac{\sqrt{2}}{2} \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} =\begin{bmatrix} \frac{1}{2}a - \frac{1}{2}b \\ \frac{1}{2}a + \frac{1}{2}b \end{bmatrix} $$ 所以 $F$ 點座標為 $\left( \frac{1}{2}a -\frac{1}{2}b,\ \frac{1}{2}a + \frac{1}{2}b \right)$。<br> 同理可得:<br> * $E = \left( \frac{1}{2},\ -\frac{1}{2} \right)$<br> * $D = \left( \frac{1}{2} + \frac{1}{2}a + \frac{1}{2}b,\ \frac{1}{2} - \frac{1}{2}a + \frac{1}{2}b \right)$ --- ## 🔢 複數法求 $F$ 點 將各點對應為複數表示:<br> * $A \to 0 + 0i$<br> * $B \to a + bi$<br> * $C \to 1 + 0i$<br> 以 $A$ 為中心,將 $B$ 點逆時針旋轉 $45^\circ$ 並縮小為 $\frac{1}{\sqrt{2}}$ 倍,<br> 即對應的複數乘以 $e^{i\frac{\pi}{4}} \cdot \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \cdot ( \cos 45^\circ + i \sin 45^\circ )$: $$ F = (a + bi) \cdot \left( \cos 45^\circ + i\sin 45^\circ \right) \cdot \frac{\sqrt{2}}{2}=\left(\frac{1}{2}a - \frac{1}{2}b \right)+\left( \frac{1}{2}a + \frac{1}{2}b \right)i $$ 所以 $F = \left( \frac{1}{2}a - \frac{1}{2}b,\ \frac{1}{2}a + \frac{1}{2}b \right)$ --- ## 📐 向量垂直性證明 證明 $\vec{BE} \perp \vec{DF}$,即: $$ \vec{BE} \cdot \vec{DF} = 0 $$ 各向量為:<br> * $\vec{DF} = \left( -\frac{1}{2} - b,\ -\frac{1}{2} + a \right)$<br> * $\vec{BE} = \left( \frac{1}{2} - a,\ -\frac{1}{2} - b \right)$<br> 內積計算為:<br> $$ \vec{BE} \cdot \vec{DF} = 0 \Rightarrow \vec{BE} \perp \vec{DF} $$ 同理可得:<br> * $\vec{DE} \perp \vec{CF}$<br> * $\vec{EF} \perp \vec{AD}$<br> 且觀察可知:<br> * $\vec{DF} = \vec{BE}$<br> * $\overline{DE} = \overline{CF}$<br> * $\overline{EF} = \overline{AD}$ --- ## 📌 三線共點證明 證明 $\overline{AD}$、$\overline{BE}$、$\overline{CF}$ 三線共點。<br> 先求各直線方程式: * $\overline{AD}:\quad (1 - a + b)x - (1 + a + b)y = 0$<br> * $\overline{BE}:\quad (1 + 2b)x - (2a - 1)y = a + b$<br> * $\overline{CF}:\quad (a + b)x - (a - b - 2)y = a + b$ --- ### 利用克拉瑪法則求交點 **$\overline{AD}$ 與 $\overline{BE}$ 交點:** $$ x = \frac{ \begin{vmatrix} 0 & 1 + a + b \\ a + b & 2a - 1 \end{vmatrix} }{ \begin{vmatrix} 1 - a + b & 1 + a + b \\ 1 + 2b & 2a - 1 \end{vmatrix} } = \frac{a^2 + b^2 + a + b + 2ab}{2a^2 + 2b^2 - 2a + 4b + 2} $$ $$ y = \frac{ \begin{vmatrix} 1 - a + b & 0 \\ 1 + 2b & a + b \end{vmatrix} }{ -\begin{vmatrix} 1 - a + b & 1 + a + b \\ 1 + 2b & 2a - 1 \end{vmatrix} } = \frac{-a^2 + b^2 + a + b}{2a^2 + 2b^2 - 2a + 4b + 2} $$ --- **$\overline{AD}$ 與 $\overline{CF}$ 交點:** $$ x = \frac{ \begin{vmatrix} 0 & 1 + a + b \\ a + b & a - b - 2 \end{vmatrix} }{ \begin{vmatrix} 1 - a + b & 1 + a + b \\ a + b & a - b - 2 \end{vmatrix} } = \frac{a^2 + b^2 + a + b + 2ab}{2a^2 + 2b^2 - 2a + 4b + 2} $$ $$ y = \frac{ \begin{vmatrix} 1 - a + b & 0 \\ a + b & a + b \end{vmatrix} }{ \begin{vmatrix} 1 - a + b & 1 + a + b \\ a + b & a - b - 2 \end{vmatrix} } = \frac{-a^2 + b^2 + a + b}{2a^2 + 2b^2 - 2a + 4b + 2} $$ 可見兩組交點相同,故三線共點。 --- ### ✅ 也可利用三階行列式幾何判別: 若三個直線的係數組成的行列式為 0,則三線共點: $$ \begin{vmatrix} 1 - a + b & -(1 + a + b) & 0 \\ 1 + 2b & -(2a - 1) & a + b \\ a + b & -(a - b - 2) & a + b \end{vmatrix} = 0 $$ 故得證三線共點。 --- ## 向量 ![](https://hackmd.io/_uploads/H1lB1wDZeg.png) --- ## 🧮 向量垂直證明:$\vec{BE} \perp \vec{FD}$ 計算 $\vec{BE} \cdot \vec{FD}$: $$ \vec{BE} \cdot \vec{FD} = \vec{BE} \cdot (\vec{BD} - \vec{BF}) = \vec{BE} \cdot \vec{BD} - \vec{BE} \cdot \vec{BF} $$ 將 $\vec{BD} = \vec{CE} - \vec{CB}$, $\vec{BF} = \vec{AE} - \vec{AB}$ 代入: $$ = \vec{BE} \cdot \vec{CE} - \vec{BE} \cdot \vec{CB}- \vec{BE} \cdot \vec{AE} + \vec{BE} \cdot \vec{AB} $$ 接下來帶入具體長度與角度關係: \begin{aligned} & \frac{ab}{2} \cos(90^\circ +C)-\frac{a}{\sqrt{2}} \cos(A + 45^\circ)+\frac{a^2}{2\sqrt{2}}\\&+\frac{bc}{2}\cos(90^\circ + A)+\frac{b}{\sqrt{2}}\cos(A + 45^\circ)-\frac{c}{2}\end{aligned} 整理與化簡: $$ =-\frac{ab}{2}\cos C +\frac{a^2}{2}+\frac{bc}{2}\cos A-\frac{c^2}{2} $$ 再套用餘弦定理: $$ \cos C = \frac{a^2 + b^2 - c^2}{2ab}, \quad \cos A = \frac{b^2 + c^2 - a^2}{2bc} $$ 代入: $$ =\frac{ab}{2}\cdot\frac{a^2 + b^2 - c^2}{2ab}+ \frac{a^2}{2}+ \frac{bc}{2}\cdot\frac{b^2 + c^2 - a^2}{2bc}-\frac{c^2}{2}=0 $$ **✅ 得證:$\vec{BE} \perp \vec{FD}$** --- ## 🧮 向量長度相等證明:$|\vec{BE}| = |\vec{FD}|$ ### 計算 $|\vec{BE}|^2$ $$ |\vec{BE}|^2 = |\vec{AE} - \vec{AB}|^2= |\vec{AE}|^2 - 2 \vec{AE} \cdot \vec{AB} +|\vec{AB}|^2 $$ $$ = \left( \frac{b}{\sqrt{2}} \right)^2- 2 \cdot \frac{b}{\sqrt{2}} \cdot c \cos(A +45^\circ)+ c^2 $$ 利用和角公式: $$ \cos(A + 45^\circ) = \cos A \cos 45^\circ - \sin A \sin 45^\circ = \frac{1}{\sqrt{2}} (\cos A - \sin A) $$ 代入後得: $$ |\vec{BE}|^2= \frac{b^2}{2}- bc (\cos A - \sin A)+ c^2= \frac{b^2}{2} - bc \cos A + bc \sin A + c^2 $$ 由餘弦定理表示 $\cos A$,又由正弦定理得: $$ \cos A = \frac{b^2 + c^2 - a^2}{2bc}, \quad \sin A = \frac{a}{2R} $$ 整理後: $$ |\vec{BE}|^2 = \frac{c^2 + a^2}{2} + bc \sin A $$ --- ### 計算 $|\vec{FD}|^2$ $$ |\vec{FD}|^2 = |\vec{BD} - \vec{BF}|^2 = |\vec{BD}|^2 - 2 \vec{BD} \cdot \vec{BF} + |\vec{BF}|^2 $$ $$ = \left( \frac{a}{\sqrt{2}} \right)^2- 2 \cdot \frac{a}{\sqrt{2}} \cdot \frac{c}{\sqrt{2}} \cos(B + 90^\circ)+ \left( \frac{c}{\sqrt{2}} \right)^2 $$ 注意 $\cos(B + 90^\circ) = -\sin B$,得: $$ |\vec{FD}|^2 = \frac{a^2 + c^2}{2} + ac \sin B $$ 再由正弦定理: $$ \sin B = \frac{b}{2R} $$ 整理得: $$ |\vec{FD}|^2 = \frac{a^2 + c^2}{2} + ac \cdot \frac{b}{2R} $$ --- ### 比較兩式: $$ |\vec{BE}|^2 = \frac{a^2 + c^2}{2} + bc \cdot \frac{a}{2R} \\ |\vec{FD}|^2 = \frac{a^2 + c^2}{2} + ac \cdot \frac{b}{2R} $$ 兩式相等,因此: $$ \boxed{|\vec{BE}| = |\vec{FD}|} $$ **✅ 得證** ---- ## 向量分析 ![image](https://hackmd.io/_uploads/rJ0iv1DWll.png) --- ## Step 1. 展開向量運算 \begin{aligned} \vec{DA} \cdot \vec{EF} &= (\vec{DB} + \vec{BA}) \cdot (\vec{EA} + \vec{AF}) \\ &= \left( \tfrac{1}{2} \vec{CB} + \tfrac{1}{2} \vec{KB} + \vec{BA} \right) \cdot \left( \tfrac{1}{2} \vec{CA} + \tfrac{1}{2} \vec{JA} + \tfrac{1}{2} \vec{AG} + \tfrac{1}{2} \vec{AB} \right) \\ &= \left( \tfrac{1}{2} \vec{CA} + \tfrac{1}{2} \vec{KB} + \tfrac{1}{2} \vec{BA} \right) \cdot \left( \tfrac{1}{2} \vec{CB} + \tfrac{1}{2} \vec{JA} + \tfrac{1}{2} \vec{AG} \right) \\ &= \tfrac{1}{4} \left( \vec{CA} \cdot \vec{CB} + \vec{CA} \cdot \vec{JA} + \vec{CA} \cdot \vec{AG} \right. \\ &\quad\quad + \vec{KB} \cdot \vec{CB} + \vec{KB} \cdot \vec{JA} + \vec{KB} \cdot \vec{AG} \\ &\quad\quad \left. + \vec{BA} \cdot \vec{CB} + \vec{BA} \cdot \vec{JA} + \vec{BA} \cdot \vec{AG} \right) \end{aligned} --- ## Step 2. 群組並簡化內積項 $$ = \frac{1}{4} \left[ \vec{CB} \cdot (\vec{CA} + \vec{BA}) + \vec{KB} \cdot (\vec{JA} + \vec{AG}) + \vec{GA} \cdot \vec{AC} - \vec{AJ} \cdot \vec{BA} \right] $$ --- ## Step 3. 幾何輔助構造與結論推導 以 $\vec{CA}$ 方向延伸兩倍,得 $\vec{CN} = 2\vec{CA}$:<br> $$ = \frac{1}{4} \left( \vec{CB} \cdot (\vec{BC} + \vec{CN}) - \vec{BK} \cdot \vec{JG} \right) \\ = \frac{1}{4} \left( \vec{CB} \cdot \vec{BN} - \vec{BK} \cdot \vec{JG} \right) $$ 又 $\angle NAB = 180^\circ - \angle CAB = \angle JAG$,<br> $\triangle NAB \cong \triangle JAG$(**SAS**),且 $NA = CA = JA$,$BA = GA$<br> $\Rightarrow \vec{NA} \perp \vec{JA}$,<br> 故可將 $\triangle NAB$ 視為 $\triangle JAG$ 以 $A$ 為頂點,<br> **逆時針旋轉 $90^\circ$:** $$ \vec{JG} \perp \vec{NB} $$ 將 $\vec{JG}$ 平移使其與 $\vec{CB}$ 相交於 $A$ 點(設為 $N'$,即 $\vec{N'B}$)<br> 又 $\vec{BN'} \perp \vec{CB}$,且 $\vec{KB} = \vec{CB}$,<br> 故得: 1. $\vec{KB} = \vec{CB}$,$\vec{BN'} = \vec{JG} = \vec{NB}$ <br> 2. $\Rightarrow \vec{CB} \cdot \vec{BN} = \vec{BK} \cdot \vec{JG}$ 因此: $$ \vec{DA} \cdot \vec{EF} = 0 \quad \textbf{得證} $$ --- ## 🔭 未來展望 在我們鑽研的過程中,我們有找到這兩題題目可能發想自兩大經典外建三角形成果:<br><br> 1. **拿破崙定理** —— 一邊外建正三角形可導出新的正三角形<br> 2. **Kiepert 系列** —— 一邊外建底角為 $\theta$ 的等腰三角形,<br>   外建三角形與原三角形相似,且三連線透視共點<br><br> 之後我們想要繼續深入探究,並應用高中所學證明這些成果和延伸。 --- ## 📚 參考資料 一:針崴崴、黃賽軒:三角形包雙點的外圍區域之共點問題<br> 第60屆中小學科學展覽 數學科 國中組<br><br> 二:陳昀諺、蕭兆原、李幸宏、庄嘉吉:三角形拓展型的幾何性質研究<br> 第52屆中小學科學展覽 數學科 高中組<br><br> 三:Yadis 團隊專欄:104學科學探究能力競賽函數試驗詳解<br> 🔗 [https://yadismath.blogspot.com/2020/08/blog-post.html](https://yadismath.blogspot.com/2020/08/blog-post.html) --- ## 研究團隊l - 班級:221 - 成員:李龍穎、廖烱量、胡家睿 **指導老師:** 吳惠美

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully