HappyLego
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

Your note will be visible on your profile and discoverable by anyone.
Your note is now live.
This note is visible on your profile and discoverable online.
Everyone on the web can find and read all notes of this public team.
See published notes
Unpublish note
Please check the box to agree to the Community Guidelines.
View profile
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
# GSLA题选 ###### tags: `Linear Algebra` 以下收集了GSLA上我觉得有意义的题,只是一部分。 发在论坛上还是太乱了,干脆全都搬到hackmd,大家有想补充的就可以随时补充。 CHAP 1:Introduction to Vectors --- ### P.S 1.1 T9:给出平行四边形的三个顶点,不用距离公式,能用向量的线性组合找出第四个顶点吗(将点看成向量)。这个线性组合具有普适性吗? T16、20、22:这三题内涵差不多。T20里问三个向量的线性组合满足什么条件会在虚线内的三角形里,答案是c+d+e=1,这感觉不显然啊??有人能给一个论证🐎? 来自2022年的论证: c+d+e=1那个,受网上解法启发,可以设三角形内部点为D,u的终点为A,v的终点为B,w的终点为C,原点设为O。DA, DB, DC共面,所以DA=mDB+nDC,有OA-OD=m(OB-OD)+n(OC-OD),化简得(1-m-n)OD=-mOA-nOB+OC,本来又有OD=cOA+dOB+eOC,一一对应就得到相加为1了。 ### P.S 1.3 T3:提到了个sum matrix,把前n个奇数作为输入,能输出n个完全平方数。说明了完全平方数的性质之一。 T14:依然强调了行秩和列秩的关系,证明不难。 CHAP 2:Solving Linear Equations --- ### P.S 2.1: T14:有一段时间没去想Ax=b的问题了,不知道为什么我一直以为x_particular一定在row space里面……然后,问一个~~非常愚蠢的~~paradox,在这个问题里面,我有一个x_particular和三个x_special,显然这四个向量线性无关,那为什么我的解空间是3D的而不是4D的(真的很简单的一个问题,居然还想了我蛮久的 T29:之前讲Markov matrix的时候我好像忘了说Markov matrix的power也是Markov matrix。证明的话可以用到斌头老师昨天补充的那个rank-one pieces的加法,或者有什么更直观的证明方法可以跟帖说一下? ### P.S 2.3 T30:GL_n有一个det=1的子群的实例 ### P.S 2.4 T16:关于乘法次数,作为Cser还是要知道的 T22: D、E都是保长度的正交矩阵,涉及旋转,我觉得这题的几何直观要建立起来(我自己有点懵 T37:给出了结合律的证明 ### PS 2.5: T43:提到了Schur complement,但是没有说明白是什么的complement,和Schur分解有联系🐎 ### PS 2.6: T15:昨天吵了很久为什么对称矩阵L=U^T, 这里给出了LDU分解的唯一性的证明,用LDU分解的唯一性去证L=U^T 还是比较显然的(捂脸)。要关注一下各种分解的唯一性了。 T22:constant-diagonal matrix,🐎一下 ### PS 2.7: T14:reverse the order of diagonal的操作,🐎一下 T18:纠正一个东西!!antisymmetric和skew-symmetric是同一个东西,而且它们对角线上元素都为0 T26:对称矩阵的快速消元,🐎一下 T31:没看懂这题意思,但直觉告诉我这道题挺有内涵 T34:LS分解:一个方阵可以被分解为一个下三角和一个对称矩阵,看到对称矩阵,先🐎一下再说 CHAP 3:Vector Spaces and Subspaces --- ### PS 3.1: T11:注意一下(a)、(b)的区别(感觉这种找matrix space的基的题目就是在找信息 T24:$C(AB) \in C(A)$,经常用到的结论,🐎一下 ### PS 3.2: T59:N($A^TA$)=N(A),也是常用结论,🐎一下 ### PS 3.4: T28:还是找matrix space的基的问题,这里需要多少信息呢 ### PS 3.5: Page 187讲了CR分解!可能第一次看的时候没把它当回事 T10:random matrix的rank最有可能是多少?可能需要一些概率相关的知识…… T20(b):用A的ER分解来找左零空间的基,这个操作🐎一下 CHAP 4:Orthogonality --- ### P.S 4.1: T7:Fredholm's Alternative,想表达的是如果b不在C(A)中,那么在N(A^T )中总能找到一个与b内积为1的向量吗 T9:N($A^TA$)=N(A)的证明 ### P.S 4.2: page210:The left nullspace is important in projections,感觉这句话挺内涵,🐎一下 T33:Kalman filter T34:如果P1、P2是投影矩阵,P1P2也是投影矩阵iff P1P2=P2P1 ### P.S 4.3: T21:关于e、p、$\hat{x}$的空间关系 ### P.S 4.4: T6:正交矩阵的乘积也是正交矩阵 T19:分解R=DU,可以证明A^T A的pivots是R的对角线上元素的平方(Gram-schmidt on A corresponds to elimination on A^T A),补充一个page513的fast orthogonalization,LU分解和QR分解的关系可能比我们想象中的要密切 T25:给出了2x2下的QR分解的公式,前提是det>0 T30:给出了一组wavelet但是没怎么深挖 T34:之前讲reflection的时候我讲错了!!$Q=I-2uu^T$,u不是mirror,u是垂直于mirror CHAP 5:Determinants --- ### P.S 5.1: T7: 给出了reflection matrix的其他形式 T14:GS老先生偏爱的tridiagonal里的-1,2,-1 matrix,可以推det的通项 T18:Vandermonde determinant,推通项的过程中要用到det的蛮多性质,挺有意思的 ### P.S 5.2: T15:tridiagonal 1,1,1 matrix,有周期性的determinant T16:determinant有fibonacci性质的1,1,-1 tridiagonal matrix T17:det有类似fibonacci性质的-1,2,-1 tridiagonal T22:det有类似fibonacci性质的1,3,1 tridiagonal(~~131啊嘿嘿嘿~~ ### P.S 5.3: page279 cross product的定义 T20:Hadamard矩阵,传说这是一个很厉害的矩阵(逃),然后二阶的Hadamard是二阶的Fourier嘿嘿嘿 CHAP 6:Eigenvalues and Eigenvectors --- ### P.S 6.1: T14:2x2 rotation matrix的eigenvalue通项 T34:这个permutation的eigenvector matrix是4-point discrete Fourier transform matrix嘿嘿嘿 ### P.S 6.2: T28:对角化的唯一性 T30、31:Cayley-Hamilton Theorem,将矩阵的多项式和eigenvalue的多项式联系在一起 T34:rotation matrix的power T35:对角化的rank-one形式,这题还补充了个在eigenvector matrix X^-1 的行空间的left eigenvectors ### P.S 6.4: page339:给出了2x2对称矩阵的eigenvector的公式嘿嘿嘿 page340:谱定理的rank-one decomposition page343:之前讲过的-1,2,-1矩阵和-1,1,-1矩阵的eigenvector matrix是sine和cosine matrix(虽然我也没懂这个为什么叫sine和cosine matrix,还有那个“discrete sine/cosine transform" T36:对称矩阵的congruent ### P.S 6.5: page356:evil Hilbert matirx T35:postive definite的congruent也是positive definite:the crucial matrix in engineering CHAP 8:Linear Transformations --- ### P.S 8.1: 个人觉得T13-19挺有意思嗷,关于linear transformation的input and output **page415:** 引入了一个“isometric”的概念:If $Q_1,Q_2$ are orthogonal , $C=Q_1^TAQ_2$ is isometric to A So a matrix is isometric to its singular value matrix **page420** 我们知道,可以找到matrix B let $A=BJB^{-1}$ ,这里说明了B的cols是A的generalized eigenvector ### P.S 8.3: T2-4:都是找generalized eigenvector的问题,420页看完之后其实还会有点懵,做几道题才能找到一些pattern(逃

Import from clipboard

Paste your markdown or webpage here...

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template has been removed or transferred.
Upgrade
All
  • All
  • Team
No template.

Create a template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

Slide Example

API Docs

Edit in VSCode

Install browser extension

Contacts

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

Note content is identical to the latest version.
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully