呂紹瑜
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 數據分析(Data Analysis) 一、分析流程面: 底下又分不同階段與不同深度。 1. 資料收集(Data Collection) ->抓API、爬蟲、上傳CSV、連接資料庫等等。 2. 資料清理與前處理(Data Cleaning & Preprocessing) ->處理缺失值、格式轉換、欄位重整。 3. 探索性資料分析(Exploratory Data Analysis,EDA) ->視覺化、統計摘要、初步假設、了解資料分布。 4. 資料建模與進階分析(Modeling & Advanced Analytics) ->機器學習模型、時間序列、分群等。 5. 視覺話與報告呈現(Visualization & Communication) ->Tableau、Power BI、報表匯出、Dashboard。 6. 決策應用與部屬(Deployment & Action) ->商業決策、智慧製造、推薦系統等。 二、分析技術面: 根據分析的「深度與複雜度」來分類。 先以常見順序排列: | 分析類型 | 說明 | 常用方法 | 工具/技術 | | ---------- | ---------------------------------------- | ------------------------------ | ------------ | | **描述性分析** | 告訴你「發生了甚麼」 | EDA、平均值、標準差 | Excel、Pandas | | **診斷性分析** | 解釋「為什麼會這樣」 | t檢定、交叉驗證、相關係數 | R、SQL | | **預測性分析** | 預測「接下來會發生甚麼」 | 線性回歸、XGBoost、LSTM | Python ML工具 | | **規範性分析** | 建議「該做甚麼決策」 | 最佳化模型、模擬、強化學習 | AI模型、自動化引擎 | | **大數據分析** | 解決「資料量過大」、「來源多樣」的問題 | 分散式處理、漏斗分析、用戶行為流 |Hadoop、Spark、FineBI | 以技術深度來排序: | 分層 | 說明 | 常見工作職位 | 對應方法 | 常用工具 | | ---- | ------ | --------- | ------- |------- | | **第 1 層:基礎分析層(統計 + EDA)** | 資料整裡 + 基本統計 + 視覺化,用來「了解資料」| 行銷分析師、商業分析師、初階資料分析師| EDA、平均數、標準差、分組、交叉分析、趨勢圖、直方圖、箱型圖 | Excel、Pandas、Power BI、Tableau| | **第 2 層:進階分析層(預測 + 分群 + 機器學習)**| 利用數學模型找出潛在規律或預測未來,資料科學/AI起點 | 資料科學家、AI助理工程師、預測工程師| 線性回歸、分類、聚類、決策樹、時間序列分析| Python(scikit-learn、XGBoost、statsmodels)、R| | **第 3 層:大數據與決策應用層(系統 + 大規模處理 + 自動化)** | 結合多資料源、即時分析、自動化部署與高複雜度商業應用 | 數據架構師、大數據工程師、數據決策分析師、IIoT分析顧問 | 漏斗分析、用戶路徑分析、即時監控、數據湖整合、強化學習 | Spark、Hadoop、Kafka、Airflow、FineBI、Power BI 自動化串接、Tableau server | 一、探索性資料分析(EDA,Exploratory Data Analysis) 二、資料視覺化(Data Visualization) 三、統計檢定(Statistical Testing) 四、機器學習與建模(Predictive Modeling) 五、資料前處理 六、時間序列分析 七、績效評估與報告 一、探索性資料分析(EDA,Exploratory Data Analysis) 了解資料的結構、特徵與潛在問題。 1.敘述統計(Descriptive Statistics) * 平均數、中位數、標準差、最小值、最大值。 2.分布檢視(Distribution Analysis) * 直方圖、箱型圖(boxplot)、密度圖等觀察變數分布。 3.缺失值與異常值檢查 * 檢查是否有缺失值(NaN)、離群值(Outlier)。 4.資料關聯性(Correlation Analysis) * 計算變數間的相關係數(如Pearson)。 二、資料視覺化(Data Visualization) 以圖像化的方式呈現資料趨勢與關係。 *折線圖(Line Plot)、長條圖(Bar Chart)、圓餅圖(Pie Chart)。 *熱力圖(Heatmap)用來觀察相關性矩陣。 *散點圖(Scatter Plot)檢視兩變數關係。 工具:matplotlib、Seaborn、Plotly、Tableau。 三、統計檢定(Statistical Testing) 驗證假設、比較不同群體的差異。 | 方法 | 用途 | | -------- | -------- | | t-test | 比較兩組平均值是否有顯著差異| | ANOVA | 比較多組平均值差異 | | 卡方檢定(Chi-Square Test)| 檢查分類變數間是否獨立 | | 常態性檢定(Shapiro-Wilk、Kolmogorov-Smirnov)| 檢查資料是否服從常態分布| 四、機器學習與建模(Predictive Modeling) 建立預測模型、分群或分類。 | 分類(Classification) | 回歸(Regression) | 分群(Clustering) | | -------- | -------- | -------- | | 決策樹(Decision Tree)| 線性回歸(Linear Regression)| K-means| | 隨機森林(Random Forest)| 多項式回歸(polynomial Regression)| 層次式分群(Hierarchical Clustering)| | 支持向量機(SVM)|Lasso/Ridge Regression| DBSCAN| | 邏輯回歸(Logistic Regression)| XGBoost/LightGBM| | | 神經網路(Neurel Network)| | | 五、資料前處理 提升模型效能,處理不完整或不乾淨的資料。 常見: * 缺失值填補(補0、平均數、中位數、預測) * 標準化與正規化(Standardization/Normalization) * 類別型資料編碼(Label Encoding,One-hot Encoding) * 特徵工程(Feature Engineering) 六、時間序列分析 針對時間性資料進行趨勢預測。 常見: * 移動平均(Moving Average) * 指數平滑法(Exponential Smoothing) * ARIMA/SARIMA模型 * Prophat(Meta提供的時間序列工具) 七、績效評估與報告 衡量分析或模型的效果,產出報告支援決策。 指標: * 準確率(Accuracy)、精確率(Precision)、召回率(Recall) * MSE、RMSE、MAE(回歸誤差指標) * 混沌矩陣(Confusion Matrix) * A/B測試結果分析

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully