Eric
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 莫隊算法 一個基於[分塊](https://hackmd.io/86kWJsh6S5KjPzYLc1xsxg?view)之上的演算法 先來看例題: ## 不帶修改莫隊算法 ### 題目:給定一陣列a和q項查詢[l,r],求[l,r]中有幾個不同的數字 對於每個詢問,可以拿上一次詢問完的[l,r]加上移動到與這一次詢問的[l,r]的差異值,就是答案,那麼現在的問題就是 : 所有詢問間的位移最小值 依照上面的想法可以先寫出一個code ```cpp= int ans=0,cnt[MAXN]={0},a[]={..../*test*/}; void add(int val){ if(cnt[val]==0) ans++; cnt[val]++; } void sub(int val){ if(cnt[val]==1) ans--; cnt[val]--; } //main----------- int l=0,r=-1; //初始化 for(int i=0;i<q;i++){ cin >> ql >> qr; while(l<ql) sub(a[l++]); while(l>ql) add(a[--l]); while(r<qr) add(a[++r]); while(r>qr) sub(a[r--]); cout << ans << '\n'; } ``` 但是這樣會來來回回很多次,所以回到我們之前的問題 : 如何讓位移量最小化 ### 排序 但要怎麼排呢? 假設我們的側資長這樣 ``` L R : 5 8 1 10 6 9 5 9 1 5 3 10 1 9 1 1 6 9 2 3 ``` <b>(法1)</b> 我們可以依照L由小到大,如果L一樣,就依照R ```cpp= bool cmp(node a,node b){ if(a.l!=b.l) return a.l<b.l; else return a.r<b.r; } ``` ``` L R : 1 1 1 5 1 9 1 10 2 3 3 10 5 8 5 9 6 9 6 9 ``` L是很好沒錯,但R在L換數字時就會跳很大了,所以我們可以在適當的範圍內讓L跳,像是做完第一組詢問後可以跳(2,3) <b>(法2)</b> 利用分塊概念,當L在不同塊時,用塊去排序,當L在同一塊時,用R去排序 ```cpp= int k=(int)sqrt(n); bool cmp(node a,node b){ if(a.l/k!=b.l/k) return a.l/k>b.l/k; else return a.r<b.r; } ``` ``` L R : 1 1 2 3 1 5 1 9 1 10 5 8 5 9 3 10 6 9 6 9 ``` <b>加速</b> 一開始右界會從最左邊跑到最右邊,此時下一塊可由最右邊開始,從右跑到左,再下一塊就由最左邊開始,這樣比較有效率 ```cpp= bool cmp(Q a,Q b){ if(a.F/k==b.F/k){ if((a.F/k)%2) return a.S>b.S; else return a.S<b.S; } return a.F/k<b.F/k; } ``` ``` L R : 1 1 2 3 1 5 1 9 1 10 3 10 5 9 5 8 6 9 6 9 ``` :::spoiler ZJ b417: 區間眾數 Code ```cpp= #include <bits/stdc++.h> #define MAXN 100005 #define pii pair<int,int> using namespace std; typedef struct{ int l,r,id; }node; int cnt[MAXN]={0},cntcnt[MAXN]={0},ma=0,k; bool cmp(node a,node b){ return a.l/k==b.l/k?a.r<b.r:a.l/k<b.l/k; } void add(int pos){ cntcnt[cnt[pos]]--; cnt[pos]++; cntcnt[cnt[pos]]++; if(cntcnt[cnt[pos]]==1) ma=max(ma,cnt[pos]); } void sub(int pos){ cntcnt[cnt[pos]]--; cnt[pos]--; cntcnt[cnt[pos]]++; if(cntcnt[cnt[pos]+1]==0 && ma==cnt[pos]+1) ma=cnt[pos]; } int main(){ cin.sync_with_stdio(0),cin.tie(0),cout.tie(0); int n,m; cin >> n >> m; k=(int)sqrt(n); vector<int> v(n+1); for(int i=1;i<=n;i++){ cin >> v[i]; } vector<node> q(m); for(int i=0;i<m;i++){ cin >> q[i].l >> q[i].r; q[i].id=i; } sort(q.begin(),q.end(),cmp); vector<pii> ans(m); int l=1,r=0; for(auto p:q){ while(l<p.l) sub(v[l++]); while(l>p.l) add(v[--l]); while(r<p.r) add(v[++r]); while(r>p.r) sub(v[r--]); ans[p.id].first=ma; ans[p.id].second=cntcnt[ma]; } for(auto i:ans) cout << i.first << ' ' << i.second << '\n'; return 0; } ``` ::: ## 帶修改莫隊算法 ### 分塊 要分成n^2/3^塊,別問我問什麼,我也不知道 (2022/6/28)更 : 因為時間複雜度最小,至於怎麼證明有待研究 ```cpp= k=pow(n,2/3.0); ``` ### 排序 優先順序為左塊>右塊>t,t為第幾次修改 ```cpp= struct Q{ int l,r,t,idx; bool operator<(Q b){ if(l/k==b.l/k){ if(r/k==b.r/k){ return t<b.t; }else{ return r/k<b.r/k; } }else{ return l/k<b.l/k; } } }q[MAXN]; ``` ### 修改 跟前面一樣,就只是多了個t要判斷,在修改的時候,如果要修改的編號不在[l,r]那就直接修改,否則要先把此元素在[l,r]中刪掉,然後新增此修改值,最後在修改陣列的值,要注意的是不能直接覆蓋,而是交換,因為後面有可能會把此元素換回未修改前的值。 注意:在函式裡做交換要取本尊來交換 ```cpp= void modity(Q x,M &y){ if(x.l<=y.idx && y.idx<=x.r){ sub(a[y.idx]); add(y.val); } swap(a[y.idx],y.val); } //新增要判斷的 while(t<q[i].t) modity(q[i],m[++t]); while(t>q[i].t) modity(q[i],m[t--]); ``` :::spoiler Code ```cpp= #include <bits/stdc++.h> #define int long long using namespace std; #define pii pair<int,int> #define F first #define S second #define pb push_back #define all(a) (a).begin(),(a).end() #define mem(a) memset(a,0,sizeof(a)) #define binary_search #define inf LLONG_MAX #define mod 1000000007 const int MAXN=133335; int N=1,n,x,k; //----------------------------------- int a[MAXN],mp[1000005],l,r,t,qid,mid,cnt; struct Q{ int l,r,t,idx; bool operator<(Q b){ if(l/k==b.l/k){ if(r/k==b.r/k){ return t<b.t; }else{ return r/k<b.r/k; } }else{ return l/k<b.l/k; } } }q[MAXN]; struct M{ int idx,val; }m[MAXN]; void add(int val){ if(!mp[val]) cnt++; mp[val]++; } void sub(int val){ mp[val]--; if(!mp[val]) cnt--; } void modity(Q x,M &y){ if(x.l<=y.idx && y.idx<=x.r){ sub(a[y.idx]); add(y.val); } swap(a[y.idx],y.val); } signed main(){ cin.sync_with_stdio(0),cin.tie(0); int q_num; char info; cin >> n >> q_num; k=pow(n,(double)2/(double)3); for(int i=1;i<=n;i++) cin >> a[i]; for(int i=0;i<q_num;i++){ cin >> info; int l,r,x,val; if(info=='Q'){ cin >> l >> r; q[qid]={l,r,mid,qid}; qid++; }else{ cin >> x >> val; m[++mid]={x,val}; } } sort(q,q+qid); vector<int> ans(qid); for(int i=0;i<qid;i++){ while(l<q[i].l) sub(a[l++]); while(l>q[i].l) add(a[--l]); while(r>q[i].r) sub(a[r--]); while(r<q[i].r) add(a[++r]); while(t<q[i].t) modity(q[i],m[++t]); while(t>q[i].t) modity(q[i],m[t--]); ans[q[i].idx]=cnt; } for(auto i:ans) cout << i << '\n'; } ``` ::: ## 回滾莫對 ### 題目:給你一個n項的陣列,有q次詢問,每次詢問區間[l,r]中$max\{cnt_x×x\}$的值 莫對其念是當我們得知一個區間$[l,r]$的值後,我們可以以這個區間來位移到我們要查詢的區間,這樣就不用每個都從頭算了。 在位移的值後,我們可以發現在新增元素的時候很好寫,只需要跟答案取最大值就好,但刪除元素的時候就沒那麼容易了,因此我們可以採用一個方法 : 回朔,先記錄下更新此元素前的最大值是多少,接著還刪除此元素後就考可以一併更新最大值了。 ```cpp= void add(int x){ stk.push({cur_ma,x}); cnt[x]++; cur_ma=max(cur_ma,cnt[x]*x); } void roll_back(){ pii top=stk.top();stk.pop(); cur_ma=top.F; cnt[top.S]--; } ``` 如果$[l,r]$在同一個block的時候可以先做,直接暴力求解,不同block時,以下為更新的步驟 : 初始話時,L要在左界屬於的block+1的最左邊的格子,R要在左界屬於的block的最右邊,因最左界往左跑,要初始話在-1的地方,右界同理。 接著右界移動,左界移動,然後更新答案,最後再把左界移到初始位置,因為左界是照block順序排的,右界是直接照順序排的,因此左界要回朔,再移動到新的左界,右界只需要一直往右移動就好了,因為回朔具有單調性,因此左界每次都要回到最初的起點才不會左把右界混和。 ```cpp= for(auto [ql,qr,i]:q){ if(ql/k==qr/k) continue; if(ql/k!=block){ while(!stk.empty()) roll_back(); block=ql/k; L=(block+1)*k; R=L-1; } while(R<qr) add(a[++R]); while(ql<L) add(a[--L]); ans[i]=curma; while(L<(block+1)*k) roll_back(),L++; } ``` :::spoiler Code ```cpp= #include <bits/stdc++.h> using namespace std; #define int long long #define MAXN 100005 #define pb push_back #define all(a) (a).begin(),(a).end() #define pii pair<int,int> #define F first #define S second #define inf LLONG_MAX int a[MAXN],ans[MAXN],ori[MAXN],cnt[MAXN],k,curma; stack<pii> stk; struct Q{ int l,r,i; bool operator<(Q b){ return (l/k==b.l/k ? r<b.r : l/k<b.l/k); } }; void add(int x){ stk.push({curma,x}); cnt[x]++; curma=max(curma,cnt[x]*ori[x]); } void roll_back(){ pii top=stk.top();stk.pop(); curma=top.F; cnt[top.S]--; } signed main(){ int n,m; cin >> n >> m; k=sqrt(n); vector<int> tmp; for(int i=0;i<n;i++){ cin >> a[i]; tmp.pb(a[i]); } sort(all(tmp)); tmp.resize(unique(all(tmp))-tmp.begin()); for(int i=0;i<n;i++){ int id=lower_bound(all(tmp),a[i])-tmp.begin(); ori[id]=a[i]; a[i]=id; } vector<Q> q; for(int i=0;i<m;i++){ int l,r; cin >> l >> r; l--,r--; q.pb({l,r,i}); if(l/k==r/k){ for(int j=l;j<=r;j++) add(a[j]); ans[i]=curma; for(int j=l;j<=r;j++) roll_back(); } } sort(all(q)); int L=0,R=0,block=-1; for(auto [ql,qr,i]:q){ if(ql/k==qr/k) continue; if(ql/k!=block){ while(!stk.empty()) roll_back(); block=ql/k; L=(block+1)*k; R=L-1; } while(R<qr) add(a[++R]); while(ql<L) add(a[--L]); ans[i]=curma; while(L<(block+1)*k) roll_back(),L++; } for(int i=0;i<m;i++) cout << ans[i] << '\n'; } ``` :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully