黃建程
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 2017人工智慧年會筆記 - 2200人參與 - 今年新增大宗參與團體:電子製造業 - 人員組成前三:工程師/中階主管/學生 - 台灣人工智慧學校: http://aiacademy.tw - [議程表](http://datasci.tw/agenda/?conf=AI) --- ## Day 1 --- ### [==`1_R0: Taiwan's Opportunities in the AI-First World`==](http://datasci.tw/lfchien/) >[name=簡立峰Google Taiwan 董事總經理][color=#30accc] [time=Thu, Nov 9, 2017 09:30, R0] - [Google 簡立峰:AI 時代,如果你家有兩個小孩,一個出國賺錢,另一個把家裡照顧好](https://www.inside.com.tw/2017/09/27/ai-industry) - 應把焦點放在全球化與台灣角色定位 - Mobile-First -> AI-First - Highlight: 圖像辨識是目前做得最好的應用 - 未來兩三年的可能新應用:自動駕駛 - 思考:多出來的時間可能增強手遊、直播行業/ 但不利於保險業 - Open Source極為重要 - 開發流程:先以Prototype探測使用者反應而後再開發 - [Progress in AI (wiki)](https://en.wikipedia.org/wiki/Progress_in_artificial_intelligence) - **人類與生俱來的能力很難AI化,人類後天習得的能力較容易AI化** - 2000-2015 是台灣錯失的時間 (台灣因金融風暴收回許多投資) - 台灣沒有橫向連繫 (B2B模式有保密義務),沒有Open Source文化 - 2007 iPhone/Android/Facebook/Youtube - Paradigm Shift: software is eating the world - Behavior is converging(電視->電腦->手機) - manufacturing-based -> service-based - Trends: Smartphone as AI supercomputer - 個資 --> 儲存於手機 - Trends: AI at Home - Trends: AI on Carl - Trends: Drone: Next Camera Follows You - 台灣優勢:硬體有優勢 應用要把握 - 建議跨領域,把軟體人才放在不同領域 - 軟硬整合/ 智慧製造/ 智慧醫療/ 智慧照料 - 信賴服務 ### [`2_R0: Optimizing for User Experience with Data Science and Machine Learning`](http://datasci.tw/edchi/) >[name=紀懷新Google Research Scientist][color=#30accc][time=Thu, Nov 09, 2017 11:00, R0] - Happy Engaged Users - 從人的觀點開始:思考人與人的關係,人與機器的關係 - measure 用戶體驗 - 互動翻譯 (解消人與人溝通的障礙) - The Recommendation Problem (User/ Context/ Item) - 使用RNN做推薦功能 (Sequential feature with time parameter) - Measure --> Optimize --> Impact - 何為正確的量測 (高層可能帶有預設立場去限定量測標的,但需聽取底層意見) ### [`3_R0: Recent advances of deep learning in Google`](http://datasci.tw/ccchiu/) > [name=邱中鎮Google Brain Software Engineer][color=#30accc][time=Thu, Nov 09, 2017 11:50, R0] - 提昇正確率的有效的方法:調整Architecture (費時) - Learning the architecture (機器設計Architecture節省人力) - [Learning Transferable Architectures for Scalable Image Recognition](https://arxiv.org/abs/1707.07012) - Sequence-to-sequence with attention (for 翻譯功能) - 新應用例子: - Predictive tasks for healthcare (病例影像辨識) - Robotics: (讓機器學習/模仿行為模式) - Robotics: Learning from simulation - TPU (Tensor Processing Unit)介紹 - TensorFlow (已支援多種語言,包含JavaScript) - g.co/brain - 想想有無更簡單的方法再使用Deep Learning ### [==`4_R0: Representation Learning on Big and Small Data`==](http://datasci.tw/eyuchang/) > [name=張智威 (Edward Y. Chang)HTC Research & Healthcare President][color=#30accc][time=Thu, Nov 09, 2017 13:30, R0] - [DeepQ](https://deepq.com/) - 複雜變數 (for example 300, 000 parameters) -> Big Data is requirement - Internet Economy (APP市場飽和,有1.5 billion user才能賺錢) - **VR/AR + AI Opportunites** - IoT devices - AI:暴力解法 : 使用Big Data - 輔助醫生決策 ### [`5_R2: Amazing GANs`](http://datasci.tw/ironhead-chuang/) >[name=莊鐵鴻KKStream Engineer][color=#30accc][time=Thu, Nov 09, 2017 14:35, R2] [PDF](https://drive.google.com/file/d/0B__CRtmLqhr1TGEtVzkzQ0pYX0o4d2dCRHlFcjVhaFA5dGE4/view) - 學習建議: - Get GPUs - TensorFlow - 勤讀Paper - 課程[cs231n](http://cs231n.stanford.edu/syllabus.html) ### [`6_R2: 兩位跨域者的深度學習之路`](http://datasci.tw/seanyu/) >[name=游為翔 中央研究院資訊科學研究所資料科學家][name=楊証琨 中央研究院資訊科學研究所資料科學家][color=#30accc][time=Thu, Nov 09, 2017 15:25, R2] - reinforcement & observation learning 也是心理學上的理論 - [研之有物](http://research.sinica.edu.tw/) - Python VS R (視需求選擇) - 傳統方法有時較好,不需要硬套Deep Learning ### [`7_R2: 預測式分析於商務服務之應用與挑戰`](http://datasci.tw/wchwang/) >[name=黃維中工研院巨資中心副主任][color=#30accc][time=Thu, Nov 09, 2017 16:40, R2] - 解讀過去/預測未來 -> 現在做出決策 - 消費偏好: - Many problems can be represented as matrices -> matrics分解 - 統計+降維 - 原物料價格: - 計量經濟-時間序列 ARIMA - Hybird Model: ARIMA+Neural Network (ARIMA-NNET) - 商品趨勢: - 因素關聯分析 - RNN - 金融理財: - KYC客戶理解/ 投資軌跡 - 混合式模型效果顯著 (統計式+機器學習 / 時間序列 + 神經網路) - 外部/非結構資料的理解仍是難題 ### [`8_R2: 機器智能與人類行為: 跨領域決策分析於醫療應用`](http://datasci.tw/cclee/) >[name=李祈均清華大學電機工程系助理教授][color=#30accc][time=Thu, Nov 09, 2017 17:30, R2] - 人類行為訊號 - 可紀錄的行為量化辨識 - AI- behavior analysis - 機器智態:透過量化高維度空間、輔助加速專家判斷(流式細胞儀) - 節省時間花費/ 高準確度 - 機器智能:透過行為計算直接進行疾病風險評估 (預測中風) - 機器智能:非結構式人行為記錄應用於醫療上(聲音影像文字) - BSP (Behavioral Signal Processing) - 機器智能:透過行為計算量化感受 (痛覺評分指數/ 自閉) - LSTM - 規模化一致計算人行為、量化感受、改進醫決策療可能性 - 人本運算( Human-centric Computing) - 提供專家決策工具、全新各種的可能 (顯微鏡:不只是放大) - 12月有Emtion-AI演講 --- ## Day 2 --- ### [==`1_R0: AlphaGo-深度學習與強化學習的勝利`==](http://datasci.tw/ajahuang/) >[name=黃士傑Google DeepMind Research Scientist][color=#30accc][time=Fri, Nov 10, 2017 09:15, R0] - **人因夢想而偉大** - DeepMind: Solve intelligence. Use it to make the world a better place. - AphaGo -> Master -> 徹底脫離人類知識的AlphaGo Zero - 人類下圍棋的直覺:策略網路 (Policy Network) - AphaGo的最主要突破:判斷形勢的價值網路 (Value Network) - David Silver的創見 強化學習結合深度學習/ 左右互博的自我學習/ 克服overfitting - 科學的精神在於互相分享 --> 所以先寫論文再挑戰李世石 - Tensor Processing Unit (TPU) 幫助很大 - 再進階的原因 - 第四盤AlphaGo的初學者錯誤 - AlphaGo Master : - 13 layer -> 40 layer - Dual Network (20 -block ResNet) - 改善Trainning pipeline, MCTS - AI的未來- 人類的工具、與人類合作 (烏鎮比賽經驗) - AlphaGo Zero 3天走過人類幾千年圍棋研究的歷程 - AlphaGo: 深度學習+強化學習的勝利 - 硬體資源與TPU扮演重要角色 - AlphaGo Zero展示了強化學習的巨大潛力 - 紀錄片[<<AlphaGo>>](https://www.youtube.com/watch?v=p4iFCufhY24) {%pdf https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf %} [Mastering the game of Go without human knowledge](https://www.nature.com/articles/nature24270.epdf?author_access_token=VJXbVjaSHxFoctQQ4p2k4tRgN0jAjWel9jnR3ZoTv0PVW4gB86EEpGqTRDtpIz-2rmo8-KG06gqVobU5NSCFeHILHcVFUeMsbvwS-lxjqQGg98faovwjxeTUgZAUMnRQ) ### [`2_R0: CGI and CGI`](http://datasci.tw/icwu/) >[name=吳毅成交通大學資訊工程系教授][color=#30accc][time=Fri, Nov 10, 2017 10:45, R0] - 圍棋是AI的果蠅 (如同果蠅之於基因) - Monte-Carlo Tree Search (MCTS) - Reinforcement Learning (RL) - Agent (take action) <- > Enviironment (feedback) - Two Model-Free Reinforcement Learning - Monte-Carlo Learning - Temporal-Difference (TD) learning) - Multi-labelled (ML) Value Network (與AlphaGo不同處) - TAAI 2017 @ NTU ### [`3_R0: The Interplay of Big Data, Machine Learning, and Artificial Intelligence`](http://datasci.tw/htlin/) >[name=林軒田Appier Chief Data Scientist][color=#30accc][time=Fri, Nov 10, 2017 11:35, R0] - Big data (`source`) -> Machine learning (`technique`) -> AI (`outcome`) - 資料整合 -> 使用ML方法 -> AI - 學界: - Small or Big Data are both important - Focus on Model side - 先射箭再畫靶,先有理論才想應用 - 業界: - 可成熟運作的系統是重點 - Domain是重要的(思考如何放進系統) - Top-down: 解決需求為主 - From Big Data to AI? - why not, 是很好的POC - AI目標:easily - intelligently - Has Big Data Made AI Easier? - possibly. but easier than what? - 四個重點: - Simple Model - feature processing - complexlty control - model selection - 進業界後的重心改變: - feature processing * based on domain knowledge - model selection *properly and systematically - Working with big data systems and system people - resource constrains ### [`4_R1: 時空軌跡分析技術於人流與載具預估`](http://datasci.tw/wcpeng/) >[name=彭文志交通大學資訊工程系教授暨多媒體研究所所長][color=#30accc][time=Fri, Nov 10, 2017 13:15, R1] - 人流動線不易掌握(若只有track in / out資訊) - 使用Cellular data from mobile phone (電信公司提供) - [ptx平台 公共運輸整合資料流通服務平台](https://ptx.transportdata.tw/PTX/) - 需解決uncertainty/ oscillation issue - [Demo](http://gpxlcj.github.io) ### [`5_R1: 從手解演算法看 AI,搶錢搶糧搶未來`](http://datasci.tw/ilovekalvar/) >[name=林國銘遠時數位科技 Sr. Manager][color=#30accc][time=Fri, Nov 10, 2017 14:05, R1] [PDF](https://drive.google.com/file/d/1wu-r-HVrtY5ii79lLTEmN8Ipvp-KNMdC/view) - 只專注於應用面而不重視基礎演算法會失去競爭力 - 請[google 達摩院](https://www.google.com.tw/search?q=%E9%81%94%E6%91%A9%E9%99%A2&oq=%E9%81%94%E6%91%A9%E9%99%A2&aqs=chrome..69i57j0l5.8506j0j7&sourceid=chrome&ie=UTF-8) - 不再是Tensorflow+GPU就能搞出一片天的時代 - 學習沒有懶人包 - [台灣機器學習社群](https://www.facebook.com/%E5%8F%B0%E7%81%A3%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92-227523057274498/)/手撕演算法社群 - [Youtube 台灣機器學習](https://www.youtube.com/channel/UCFo-MaY7Lt2884nW4CL8siA) (手解演算法) - 堅持從底層著手 ### [`6_R1: 運用 Spark 與電腦視覺科技協助瀕臨絕種的雪豹`](http://datasci.tw/herman-wu/) >[name=吳宏彬大中華區微軟 Technical Evangelist][color=#30accc][time=Fri, Nov 10, 2017 14:55, R1] - VoTT (lable open source tool) - Microsoft Cognitive Toolkit (CNKT, the fastest toolkit for RNN) - MMLSpark - Power BI ### [`7_R0: 大數據情緒分析的經驗分享`](http://datasci.tw/yishin) >[name=陳宜欣清華大學資工系副教授][color=#30accc][time=Fri, Nov 10, 2017 16:10, R0] [PDF](https://drive.google.com/file/d/1OR44pOhH4rUmiIOUEL4mZGfxXh7IZD3s/view) - Crowdsourcing (群眾的潛意識) - Twitter with hashtag - 非情緒資料-新聞 - 向孩子學習 ### [`8_R0: 認知神經科學 x人工智慧`](http://datasci.tw/tren-huang) >[name=黃從仁臺灣大學心理學系助理教授][color=#30accc][time=Fri, Nov 10, 2017 17:00, R0] {%slideshare TrenHuang/x-81854373 %} - 認知神經科學 (心智-大腦) - 人工智慧/認知科學 (心智-電腦) - 類神經網路/計算神經科學 (電腦-大腦) - 兩個領域可以共演化 (更了解人類心智運作/更好的人工智慧) - 如何設計/了解深度學習網路? --> **從認知神經科學找答案** - CNN在許多層面上仿製人類物體辨識系統 - 大腦處理What & Where會優先處理Where - Attention 機制 -> Enhance Signal - 知覺--> 記憶 --> 動作 (所以RNN加入短期記憶機制) - 把Machine Learning(黑盒子)當人研究

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully