Liang-Bo Wang
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # PyCon TW 2016 Collaborative Talk Notes <br> Day 2 - R0 > ### Quick Links > - [Portal for Collobration Notes 共筆統整入口](https://hackfoldr.org/pycontw2016) (hosted by [hackfoldr](https://hackfoldr.org/about) and [HackMD](https://hackmd.io/)) > - [Program Schedule 議程時間表](https://tw.pycon.org/2016/events/talks/) > - [PyCon TW 2016 Official Site 官網](https://tw.pycon.org/2016/) > > ### How to update this note? > - Everyone can *freely* update this note. 任何人都能自由地更新內容。 > - Please respect all the participants and follow our [code of conduct](https://tw.pycon.org/2016/about/code-of-conduct/) during discussion. 討論、記錄時,請遵守大會的[行為準則](https://tw.pycon.org/2016/about/code-of-conduct/)。 ## Talk: 用Numpy做一個自己的股票分析系統 - Info: https://tw.pycon.org/2016/events/talk/35734163478806534/ - Speaker: PF - Slides: http://slides.com/iampf/pycon-2016 - 歷史資料可從台灣期貨交易所、台灣證卷交易所 - 分析資料:時間、開盤價、收盤價、最高價、最低價、成交量 - 買賣情況分三種:買進、賣空、不動 - itertools!! - np.convolve np.piecewise - multiprocess - GPU: PyCuda(還是要寫C!! orz) - Amcharts.js jQuery Flask Sqlite - 有問題可以找 pf@hst.tw ## Talk: 轉轉轉好運旺來一起來之雲端轉檔大作戰! - Info: https://tw.pycon.org/2016/events/talk/70089712156541000/ - Speaker: 林進錕 - Slides: http://www.slideshare.net/ssuser25242a/ss-62714359 ##### 已有可用的套件 * Gearman: 從 worker 出發的 workflow,但是workflow寫死在worker中了 * Spotify Luigi * Others(Tractor, Celery...) ##### What we need * 不想管理 Job Server * 去中心化 * 自我管理 * 晚上好好睡覺 XD * Top-down: Wroker 可以根據需要,調整種類或需要 #### [KKBOX 的 MASS 套件](https://github.com/kkbox/mass) ## Talk: Continuous Deployment in AWS Lambda and Python - Info: https://tw.pycon.org/2016/events/talk/69186595164520503/ - Speaker: Suiting - Slides: http://bit.ly/1sssLYO #### Deploy pipeline developer -> github -> jenkins -> S3 -> lambda deployer ## Talk: Deep Learning with Python & TensorFlow - Info: https://tw.pycon.org/2016/events/talk/56874546946375700/ - Speaker: Ian Lewis - Twitter @IanMLewis - [線上演講影片](https://www.youtube.com/watch?v=2hYljESm0eQ&feature=youtu.be#t=2h35m15s) - specific field of ML -> ANN -> deep ANN - ANN good at: classification problem - Tensor: n-dim arrary DNN = a large matrix operations You need distributed training [Google揭露首款自製機器學習專用晶片TPU](http://www.ithome.com.tw/news/106042) - [Tensorflow](https://www.tensorflow.org/) - core is cpp-based (thus fast computation) and provide python interface - Graph: dataflow graph - core concepts - constants - Placeholders: fed with data on execution - Variables - Sessions - Operations - [MNIST Tutorials](https://www.tensorflow.org/versions/master/tutorials/index.html) [Jeff Dean's Talk](YoutubeLink) [Tensorflow workshop](https://github.com/amygdala/tensorflow-workshop) > 根本通靈 > NN 就是個 black box, 過程做了什麼都不知道 >[一天搞懂深度學習]( http://www.slideshare.net/tw_dsconf/ss-62245351) > 這個 notebook 找得到嗎 > 什麼東西notebook找的到? > 目前正在講的 jupyter notebook > [jupyter](https://github.com/jupyter) > 你說的是這個檔案對嗎 > 對的 > 可能在他電腦裡? 不知道有沒有公布QQ > github 裡有一個 [notebook](https://github.com/jupyter/notebook) 項目 > ask him for sharing the note after talk? > 從他的twitter來看,這是他第一次講這題目 > jupyter 大多用在爬蟲 > 做data science的也大量再用jupyter喔~~~ > 話說~~ jupyter notebook就是ipython notebook ## Talk: 機器學習在搜尋排序上的應用 - Info: https://tw.pycon.org/2016/events/talk/62015679733170217/ - Speaker: Jiawei Chen - (請問沒有投影片嗎?)https://goo.gl/dt9Rii ### 共筆 搜尋引擎 1. indexing 2. 搜尋結果排序方式: - tf-idf term frequency–inverse document frequency - click model 點擊模型 - PageRank 3. 萬一搜尋結果不理想 - 初步想法就是去調特徵的權重 - 加入更多特徵值 - 訓練好主題模型,抽取出其特徵值再加入 * [RankBrain](https://en.wikipedia.org/wiki/RankBrain) * [Learning to rank with scikit-learn: the pairwise transform](http://fa.bianp.net/blog/2012/learning-to-rank-with-scikit-learn-the-pairwise-transform/) * [Letor Dataset](http://research.microsoft.com/en-us/um/beijing/projects/letor/) * [xgboost 模型](https://github.com/dmlc/xgboost) ## Talk: Write your own micro data processing framework in python - Info: https://tw.pycon.org/2016/events/talk/69113918303240246/ - Speaker: David Chen - [Slides]( https://github.com/lucemia/slides/blob/master/slides/micropipeline.md) * gliacloud.com * What is a data processing framework; what is a taskflow... * [TaskFlow (OpenStack)](https://wiki.openstack.org/wiki/TaskFlow) * [Luigi (Spotify)](https://github.com/spotify/luigi) * [DataFlow (Google)](https://cloud.google.com/dataflow/) * [Django-p](https://django-pipeline.readthedocs.io/en/latest/) * [Google Pipeline API](https://github.com/GoogleCloudPlatform/appengine-pipelines) #### Design of Django-P * pipe: abstraction of pipline * future: the return value from pipline would be given in the future * pipeline: store config to db * slot: store pipeline execution results * barrier: to prevent running before its dependent task completed Implemented by Python generator, thus, *asynchronous* programming can be achieved. ## Talk: Neural Art -- Become a Great Artist by Deep Learning Algorithm - Info: https://tw.pycon.org/2016/events/talk/27429730160476163/ - Speaker: Mark Chang - Slides: http://www.slideshare.net/ckmarkohchang/neural-art-english-version - Source Code of Neural Art: https://github.com/ckmarkoh/neuralart_tensorflow #### 人類藝術家是怎麼畫畫的 論文: [A Neural Algorithm of Artistic Style](http://arxiv.org/pdf/1508.06576v2.pdf) 1. 看到畫面然後變成訊號 2. 混上自己的風格特色 3. 畫出來 #### Visual Perception - 最小的單元 - Neuron 神經元 - Neuron 結合起來形成 visual pathway #### Visual Pathway - 視網膜接收到的訊號會透過相互連接的神經元所形成的 visual pathway 傳送到 visual area ##### Visual Area V1 這個部分只會感覺到線條 ##### Visual Area V4 這個部分能夠認知方形、三角形、圓形等幾何圖形 ##### Inferior Temporal Gyrus 這可以認知到更複雜的圖像 #### Misconception 錯覺 是這個演算法能成功很重要的一個環節 在例子當中,有兩個相同顏色的灰點,如果我們幫他們加上不同顏色的背景,那他們的顏色看起來就會不同。 如果有兩條平行的線,幫他加上同心圓,那看起來就會變得扭曲 如果有兩條一樣長的線,幫他們加上不同角度的兩側就會看起來不一樣長 > "misconception"?? <-- does he mean "false perception" or "illusion"?? > not sure about the differences between them > "misconception" = "誤解" #### Computer Vision - Neural Networks X: input signals w: weight of each input signals n: linear combination of input signals Sigmoid, Rectified Linear Function (non-linear function) sigmoid: 如果 input 趨近於零,那輸出就會是 0 Rectified Linear: 如果輸入小於 0,那輸出就會是零,如果大於零,則保持原輸出 > input layer > hidden layer > output layer #### Convolutional Neural Networks responsible for visual signals duplicate neuron with same weight in different position to sense the color, shape, ... - stride - padding - pooling: maximum/average pooling > Input layer > Convolutional layer > Pooling > ??? > Pooling > Output layer 在 Convolutional layer ,會辨識出線,在 Pooling ... 等三層,可以辨識出方形、圓形等形狀 #### VGG 19 (Convolutional Layer) [Very deep convolutional networks for large-scale image recognition](https://arxiv.org/pdf/1409.1556.pdf) 這個演算法在 ImageNet 2014 獲得冠軍的獎項 他有 19 + 5 個層 pre-trained parameter can be downloaded online 不用再自己訓練資料,訓練資料十分耗時 #### Neural Art 模仿人類藝術家畫畫 人類藝術家看到 101 -> 腦海生成畫面(不是真的 101,只是訊號,因為有錯覺,所以他不知道真實的樣子,只知道大概的樣子) -> 只能盡量把畫出來的和真實畫像的差異降低。 VGG 19 是一個商業化軟體,有很高的精確度去辨識出圖像來 第一層會記錄下 location, ##### Content Generation Input Photo P、Input Canvas x 各自丟入VGG19再minimize兩者的差利用backpropogation修正canvas的RGB value higher layer會讓圖的細節loss越多,因為neural network是模仿人類的visual path 你可以看到一次又一次的,畫出來的畫像和真實的照片越來越相近 ##### Style Generation "Style" is position-independent --> Gram Matrix 我們把有風格的圖畫餵給 VGG19,把他轉換成 Gram Matrix,產生出 Style Image 在第一層,我們只能看到有細碎的風格,隨著層數往後,我們能更清楚的看到風格的細節 ##### Artwork Generation Content vs Style 在創造結果時,我們不要原圖的細節,所以我們只取較後面的層, 在抽畫風的時候則要保留細節,可以把layer疊在一起 Initial State 對於最後的結果也有很重要的影響, 如果完全沒有對於產生的圖像有任何提示的話,那會和風格輸入的圖片很相近,如果有一些提示(大樓的陰影等),那就會和我們要的結果比較相近,如果把台北 101 的照片餵進去作為 Initial State 的話,那產生出來的就會是最精確的有畫作風格的圖片。 #### Recurrent Neural Network (RNN) language model for generating poet

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully