林禾堃
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # Lab 1-3 [TOC] # Code ```python import os from collections import defaultdict import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline ``` ```python import warnings warnings.filterwarnings('ignore') ``` ## Reading and processing dataset ```python dataset_root = 'datasets/nsl-kdd' ``` ```python train_file = os.path.join(dataset_root, 'KDDTrain+.txt') test_file = os.path.join(dataset_root, 'KDDTest+.txt') ``` ```python # Original KDD dataset feature names obtained from # http://kdd.ics.uci.edu/databases/kddcup99/kddcup.names # http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html header_names = ['duration', 'protocol_type', 'service', 'flag', 'src_bytes', 'dst_bytes', 'land', 'wrong_fragment', 'urgent', 'hot', 'num_failed_logins', 'logged_in', 'num_compromised', 'root_shell', 'su_attempted', 'num_root', 'num_file_creations', 'num_shells', 'num_access_files', 'num_outbound_cmds', 'is_host_login', 'is_guest_login', 'count', 'srv_count', 'serror_rate', 'srv_serror_rate', 'rerror_rate', 'srv_rerror_rate', 'same_srv_rate', 'diff_srv_rate', 'srv_diff_host_rate', 'dst_host_count', 'dst_host_srv_count', 'dst_host_same_srv_rate', 'dst_host_diff_srv_rate', 'dst_host_same_src_port_rate', 'dst_host_srv_diff_host_rate', 'dst_host_serror_rate', 'dst_host_srv_serror_rate', 'dst_host_rerror_rate', 'dst_host_srv_rerror_rate', 'attack_type', 'success_pred'] ``` ```python # Differentiating between nominal, binary, and numeric features # root_shell is marked as a continuous feature in the kddcup.names # file, but it is supposed to be a binary feature according to the # dataset documentation col_names = np.array(header_names) nominal_idx = [1, 2, 3] binary_idx = [6, 11, 13, 14, 20, 21] numeric_idx = list(set(range(41)).difference(nominal_idx).difference(binary_idx)) nominal_cols = col_names[nominal_idx].tolist() binary_cols = col_names[binary_idx].tolist() numeric_cols = col_names[numeric_idx].tolist() ``` ```python # training_attack_types.txt maps each of the 22 different attacks to 1 of 4 categories # file obtained from http://kdd.ics.uci.edu/databases/kddcup99/training_attack_types category = defaultdict(list) category['benign'].append('normal') with open('datasets/training_attack_types.txt', 'r') as f: for line in f.readlines(): attack, cat = line.strip().split(' ') category[cat].append(attack) attack_mapping = dict((v,k) for k in category for v in category[k]) ``` ## Generating and analyzing train and test sets ```python train_df = pd.read_csv(train_file, names=header_names) train_df['attack_category'] = train_df['attack_type'] \ .map(lambda x: attack_mapping[x]) train_df.drop(['success_pred'], axis=1, inplace=True) test_df = pd.read_csv(test_file, names=header_names) test_df['attack_category'] = test_df['attack_type'] \ .map(lambda x: attack_mapping[x]) test_df.drop(['success_pred'], axis=1, inplace=True) ``` ```python train_attack_types = train_df['attack_type'].value_counts() train_attack_cats = train_df['attack_category'].value_counts() ``` ```python test_attack_types = test_df['attack_type'].value_counts() test_attack_cats = test_df['attack_category'].value_counts() ``` ```python train_attack_types.plot(kind='barh', figsize=(20,10), fontsize=20) ``` <matplotlib.axes._subplots.AxesSubplot at 0x7f18046419e8> ![](https://i.imgur.com/we8VaBH.png) ```python train_attack_cats.plot(kind='barh', figsize=(20,10), fontsize=30) ``` <matplotlib.axes._subplots.AxesSubplot at 0x7f1804550f60> ![](https://i.imgur.com/x1Lwu8H.png) ```python test_attack_types.plot(kind='barh', figsize=(20,10), fontsize=15) ``` <matplotlib.axes._subplots.AxesSubplot at 0x7f18044bf518> ![](https://i.imgur.com/D8hRTM2.png) ```python test_attack_cats.plot(kind='barh', figsize=(20,10), fontsize=30) ``` <matplotlib.axes._subplots.AxesSubplot at 0x7f1804527160> ![](https://i.imgur.com/OW7PKva.png) ```python # Let's take a look at the binary features # By definition, all of these features should have a min of 0.0 and a max of 1.0 train_df[binary_cols].describe().transpose() ``` <div> <style> .dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>count</th> <th>mean</th> <th>std</th> <th>min</th> <th>25%</th> <th>50%</th> <th>75%</th> <th>max</th> </tr> </thead> <tbody> <tr> <th>land</th> <td>125973.0</td> <td>0.000198</td> <td>0.014086</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>1.0</td> </tr> <tr> <th>logged_in</th> <td>125973.0</td> <td>0.395736</td> <td>0.489010</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>1.0</td> <td>1.0</td> </tr> <tr> <th>root_shell</th> <td>125973.0</td> <td>0.001342</td> <td>0.036603</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>1.0</td> </tr> <tr> <th>su_attempted</th> <td>125973.0</td> <td>0.001103</td> <td>0.045154</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>2.0</td> </tr> <tr> <th>is_host_login</th> <td>125973.0</td> <td>0.000008</td> <td>0.002817</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>1.0</td> </tr> <tr> <th>is_guest_login</th> <td>125973.0</td> <td>0.009423</td> <td>0.096612</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>1.0</td> </tr> </tbody> </table> </div> ```python # Wait a minute... the su_attempted column has a max value of 2.0? train_df.groupby(['su_attempted']).size() ``` su_attempted 0 125893 1 21 2 59 dtype: int64 ```python # Let's fix this discrepancy and assume that su_attempted=2 -> su_attempted=0 train_df['su_attempted'].replace(2, 0, inplace=True) # Q1: replace su_attempted value 2 to 0 in test data train_df.groupby(['su_attempted']).size() ``` su_attempted 0 125952 1 21 dtype: int64 ```python # Next, we notice that the num_outbound_cmds column only takes on one value! train_df.groupby(['num_outbound_cmds']).size() ``` num_outbound_cmds 0 125973 dtype: int64 ```python # Now, that's not a very useful feature - let's drop it from the dataset train_df.drop('num_outbound_cmds', axis = 1, inplace=True) test_df.drop('num_outbound_cmds', axis = 1, inplace=True) numeric_cols.remove('num_outbound_cmds') ``` ## Data preparation ```python train_Y = train_df['attack_category'] train_x_raw = train_df.drop(['attack_category','attack_type'], axis=1) test_Y = test_df['attack_category'] test_x_raw = test_df.drop(['attack_category','attack_type'], axis=1) ``` ```python combined_df_raw = pd.concat([train_x_raw, test_x_raw]) combined_df = pd.get_dummies(combined_df_raw, columns=nominal_cols, drop_first=True) train_x = combined_df[:len(train_x_raw)] test_x = combined_df[len(train_x_raw):] # Store dummy variable feature names dummy_variables = list(set(train_x)-set(combined_df_raw)) ``` ```python train_x.describe() ``` <div> <style> .dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>duration</th> <th>src_bytes</th> <th>dst_bytes</th> <th>land</th> <th>wrong_fragment</th> <th>urgent</th> <th>hot</th> <th>num_failed_logins</th> <th>logged_in</th> <th>num_compromised</th> <th>...</th> <th>flag_REJ</th> <th>flag_RSTO</th> <th>flag_RSTOS0</th> <th>flag_RSTR</th> <th>flag_S0</th> <th>flag_S1</th> <th>flag_S2</th> <th>flag_S3</th> <th>flag_SF</th> <th>flag_SH</th> </tr> </thead> <tbody> <tr> <th>count</th> <td>125973.00000</td> <td>1.259730e+05</td> <td>1.259730e+05</td> <td>125973.000000</td> <td>125973.000000</td> <td>125973.000000</td> <td>125973.000000</td> <td>125973.000000</td> <td>125973.000000</td> <td>125973.000000</td> <td>...</td> <td>125973.00000</td> <td>125973.000000</td> <td>125973.000000</td> <td>125973.000000</td> <td>125973.000000</td> <td>125973.000000</td> <td>125973.000000</td> <td>125973.000000</td> <td>125973.000000</td> <td>125973.000000</td> </tr> <tr> <th>mean</th> <td>287.14465</td> <td>4.556674e+04</td> <td>1.977911e+04</td> <td>0.000198</td> <td>0.022687</td> <td>0.000111</td> <td>0.204409</td> <td>0.001222</td> <td>0.395736</td> <td>0.279250</td> <td>...</td> <td>0.08917</td> <td>0.012399</td> <td>0.000818</td> <td>0.019218</td> <td>0.276655</td> <td>0.002897</td> <td>0.001008</td> <td>0.000389</td> <td>0.594929</td> <td>0.002151</td> </tr> <tr> <th>std</th> <td>2604.51531</td> <td>5.870331e+06</td> <td>4.021269e+06</td> <td>0.014086</td> <td>0.253530</td> <td>0.014366</td> <td>2.149968</td> <td>0.045239</td> <td>0.489010</td> <td>23.942042</td> <td>...</td> <td>0.28499</td> <td>0.110661</td> <td>0.028583</td> <td>0.137292</td> <td>0.447346</td> <td>0.053750</td> <td>0.031736</td> <td>0.019719</td> <td>0.490908</td> <td>0.046332</td> </tr> <tr> <th>min</th> <td>0.00000</td> <td>0.000000e+00</td> <td>0.000000e+00</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>...</td> <td>0.00000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> </tr> <tr> <th>25%</th> <td>0.00000</td> <td>0.000000e+00</td> <td>0.000000e+00</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>...</td> <td>0.00000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> </tr> <tr> <th>50%</th> <td>0.00000</td> <td>4.400000e+01</td> <td>0.000000e+00</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>...</td> <td>0.00000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>1.000000</td> <td>0.000000</td> </tr> <tr> <th>75%</th> <td>0.00000</td> <td>2.760000e+02</td> <td>5.160000e+02</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>1.000000</td> <td>0.000000</td> <td>...</td> <td>0.00000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>1.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>1.000000</td> <td>0.000000</td> </tr> <tr> <th>max</th> <td>42908.00000</td> <td>1.379964e+09</td> <td>1.309937e+09</td> <td>1.000000</td> <td>3.000000</td> <td>3.000000</td> <td>77.000000</td> <td>5.000000</td> <td>1.000000</td> <td>7479.000000</td> <td>...</td> <td>1.00000</td> <td>1.000000</td> <td>1.000000</td> <td>1.000000</td> <td>1.000000</td> <td>1.000000</td> <td>1.000000</td> <td>1.000000</td> <td>1.000000</td> <td>1.000000</td> </tr> </tbody> </table> <p>8 rows × 118 columns</p> </div> ```python # Example statistics for the 'duration' feature before scaling train_x['duration'].describe() ``` count 125973.00000 mean 287.14465 std 2604.51531 min 0.00000 25% 0.00000 50% 0.00000 75% 0.00000 max 42908.00000 Name: duration, dtype: float64 ```python # Experimenting with StandardScaler on the single 'duration' feature from sklearn.preprocessing import StandardScaler durations = train_x['duration'].values.reshape(-1, 1) standard_scaler = StandardScaler().fit(durations) scaled_durations = standard_scaler.transform(durations) pd.Series(scaled_durations.flatten()).describe() ``` count 1.259730e+05 mean 2.549477e-17 std 1.000004e+00 min -1.102492e-01 25% -1.102492e-01 50% -1.102492e-01 75% -1.102492e-01 max 1.636428e+01 dtype: float64 ```python # Experimenting with MinMaxScaler on the single 'duration' feature from sklearn.preprocessing import MinMaxScaler # Q2: Use MinMaxScaler, simaliar to standardscalar # Usage: fit, transform, descibe ``` count 125973.000000 mean 0.006692 std 0.060700 min 0.000000 25% 0.000000 50% 0.000000 75% 0.000000 max 1.000000 dtype: float64 ```python # Experimenting with RobustScaler on the single 'duration' feature from sklearn.preprocessing import RobustScaler min_max_scaler = RobustScaler().fit(durations) robust_scaled_durations = min_max_scaler.transform(durations) pd.Series(robust_scaled_durations.flatten()).describe() ``` count 125973.00000 mean 287.14465 std 2604.51531 min 0.00000 25% 0.00000 50% 0.00000 75% 0.00000 max 42908.00000 dtype: float64 ```python # Let's proceed with StandardScaler- Apply to all the numeric columns #Q3: Change to other scaler and test for it's effectness standard_scaler = StandardScaler().fit(train_x[numeric_cols]) train_x[numeric_cols] = \ standard_scaler.transform(train_x[numeric_cols]) test_x[numeric_cols] = \ standard_scaler.transform(test_x[numeric_cols]) ``` ```python train_x.describe() ``` <div> <style> .dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>duration</th> <th>src_bytes</th> <th>dst_bytes</th> <th>land</th> <th>wrong_fragment</th> <th>urgent</th> <th>hot</th> <th>num_failed_logins</th> <th>logged_in</th> <th>num_compromised</th> <th>...</th> <th>flag_REJ</th> <th>flag_RSTO</th> <th>flag_RSTOS0</th> <th>flag_RSTR</th> <th>flag_S0</th> <th>flag_S1</th> <th>flag_S2</th> <th>flag_S3</th> <th>flag_SF</th> <th>flag_SH</th> </tr> </thead> <tbody> <tr> <th>count</th> <td>1.259730e+05</td> <td>1.259730e+05</td> <td>1.259730e+05</td> <td>125973.000000</td> <td>1.259730e+05</td> <td>1.259730e+05</td> <td>1.259730e+05</td> <td>1.259730e+05</td> <td>125973.000000</td> <td>1.259730e+05</td> <td>...</td> <td>125973.00000</td> <td>125973.000000</td> <td>125973.000000</td> <td>125973.000000</td> <td>125973.000000</td> <td>125973.000000</td> <td>125973.000000</td> <td>125973.000000</td> <td>125973.000000</td> <td>125973.000000</td> </tr> <tr> <th>mean</th> <td>2.549477e-17</td> <td>-4.512349e-19</td> <td>7.614590e-19</td> <td>0.000198</td> <td>4.230328e-19</td> <td>4.455945e-18</td> <td>-2.244894e-17</td> <td>2.989431e-18</td> <td>0.395736</td> <td>-6.549957e-18</td> <td>...</td> <td>0.08917</td> <td>0.012399</td> <td>0.000818</td> <td>0.019218</td> <td>0.276655</td> <td>0.002897</td> <td>0.001008</td> <td>0.000389</td> <td>0.594929</td> <td>0.002151</td> </tr> <tr> <th>std</th> <td>1.000004e+00</td> <td>1.000004e+00</td> <td>1.000004e+00</td> <td>0.014086</td> <td>1.000004e+00</td> <td>1.000004e+00</td> <td>1.000004e+00</td> <td>1.000004e+00</td> <td>0.489010</td> <td>1.000004e+00</td> <td>...</td> <td>0.28499</td> <td>0.110661</td> <td>0.028583</td> <td>0.137292</td> <td>0.447346</td> <td>0.053750</td> <td>0.031736</td> <td>0.019719</td> <td>0.490908</td> <td>0.046332</td> </tr> <tr> <th>min</th> <td>-1.102492e-01</td> <td>-7.762241e-03</td> <td>-4.918644e-03</td> <td>0.000000</td> <td>-8.948642e-02</td> <td>-7.735985e-03</td> <td>-9.507567e-02</td> <td>-2.702282e-02</td> <td>0.000000</td> <td>-1.166364e-02</td> <td>...</td> <td>0.00000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> </tr> <tr> <th>25%</th> <td>-1.102492e-01</td> <td>-7.762241e-03</td> <td>-4.918644e-03</td> <td>0.000000</td> <td>-8.948642e-02</td> <td>-7.735985e-03</td> <td>-9.507567e-02</td> <td>-2.702282e-02</td> <td>0.000000</td> <td>-1.166364e-02</td> <td>...</td> <td>0.00000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> </tr> <tr> <th>50%</th> <td>-1.102492e-01</td> <td>-7.754745e-03</td> <td>-4.918644e-03</td> <td>0.000000</td> <td>-8.948642e-02</td> <td>-7.735985e-03</td> <td>-9.507567e-02</td> <td>-2.702282e-02</td> <td>0.000000</td> <td>-1.166364e-02</td> <td>...</td> <td>0.00000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>1.000000</td> <td>0.000000</td> </tr> <tr> <th>75%</th> <td>-1.102492e-01</td> <td>-7.715224e-03</td> <td>-4.790326e-03</td> <td>0.000000</td> <td>-8.948642e-02</td> <td>-7.735985e-03</td> <td>-9.507567e-02</td> <td>-2.702282e-02</td> <td>1.000000</td> <td>-1.166364e-02</td> <td>...</td> <td>0.00000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>1.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>1.000000</td> <td>0.000000</td> </tr> <tr> <th>max</th> <td>1.636428e+01</td> <td>2.350675e+02</td> <td>3.257486e+02</td> <td>1.000000</td> <td>1.174348e+01</td> <td>2.088191e+02</td> <td>3.571955e+01</td> <td>1.104972e+02</td> <td>1.000000</td> <td>3.123689e+02</td> <td>...</td> <td>1.00000</td> <td>1.000000</td> <td>1.000000</td> <td>1.000000</td> <td>1.000000</td> <td>1.000000</td> <td>1.000000</td> <td>1.000000</td> <td>1.000000</td> <td>1.000000</td> </tr> </tbody> </table> <p>8 rows × 118 columns</p> </div> ```python train_Y_bin = train_Y.apply(lambda x: 0 if x is 'benign' else 1) test_Y_bin = test_Y.apply(lambda x: 0 if x is 'benign' else 1) ``` ```python # 5-class classification version from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import confusion_matrix, zero_one_loss classifier = DecisionTreeClassifier(random_state=17) classifier.fit(train_x, train_Y) pred_y = classifier.predict(test_x) results = confusion_matrix(test_Y, pred_y) error = zero_one_loss(test_Y, pred_y) print(results) print(error) ``` [[9365 56 289 1 0] [1541 5998 97 0 0] [ 675 220 1528 0 0] [2278 1 14 277 4] [ 179 0 5 5 11]] 0.237979063165 ```python from sklearn.neighbors import KNeighborsClassifier # Q4: Implement KNeighborsClassifier print(results) print(error) ``` [[9457 57 193 2 2] [1675 5894 67 0 0] [ 670 156 1597 0 0] [2369 2 37 126 40] [ 176 0 4 7 13]] 0.242059971611 ```python from sklearn.svm import LinearSVC #Q5: Implement LinearSVC print(results) print(error) ``` [[9008 292 407 3 1] [1972 5654 10 0 0] [ 714 122 1500 87 0] [2472 1 1 100 0] [ 185 2 0 4 9]] 0.278255855216 ## Dealing with class imbalance ```python test_Y.value_counts().apply(lambda x: x/float(len(test_Y))) ``` benign 0.430758 dos 0.338715 r2l 0.114177 probe 0.107479 u2r 0.008872 Name: attack_category, dtype: float64 ```python train_Y.value_counts().apply(lambda x: x/float(len(train_Y))) ``` benign 0.534583 dos 0.364578 probe 0.092528 r2l 0.007899 u2r 0.000413 Name: attack_category, dtype: float64 ```python print(pd.Series(train_Y).value_counts()) ``` benign 67343 dos 45927 probe 11656 r2l 995 u2r 52 Name: attack_category, dtype: int64 ```python from imblearn.over_sampling import SMOTE sm = SMOTE(ratio='auto', random_state=0) train_x_sm, train_Y_sm = sm.fit_sample(train_x, train_Y) print(pd.Series(train_Y_sm).value_counts()) ``` probe 67343 dos 67343 r2l 67343 benign 67343 u2r 67343 dtype: int64 ```python from imblearn.under_sampling import RandomUnderSampler mean_class_size = int(pd.Series(train_Y).value_counts().sum()/5) ratio = {'benign': mean_class_size, 'dos': mean_class_size, 'probe': mean_class_size, 'r2l': mean_class_size, 'u2r': mean_class_size} rus = RandomUnderSampler(ratio=ratio, random_state=0, replacement=True) train_x_rus, train_Y_rus = rus.fit_sample(train_x_sm, train_Y_sm) print(pd.Series(train_Y_rus).value_counts()) ``` r2l 25194 benign 25194 u2r 25194 probe 25194 dos 25194 dtype: int64 ```python from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import confusion_matrix, zero_one_loss classifier = DecisionTreeClassifier(random_state=17) classifier.fit(train_x_rus, train_Y_rus) pred_y = classifier.predict(test_x) results = confusion_matrix(test_Y, pred_y) error = zero_one_loss(test_Y, pred_y) print(results) print(error) ``` [[9369 73 258 6 5] [1221 5768 647 0 0] [ 270 170 1980 1 2] [1829 2 369 369 5] [ 62 0 108 21 9]] 0.223962029808 ## Attempting unsupervised learning ```python # First, let's visualize the dataset (only numeric cols) from sklearn.decomposition import PCA # Use PCA to reduce dimensionality so we can visualize the dataset on a 2d plot pca = PCA(n_components=2) train_x_pca_cont = pca.fit_transform(train_x[numeric_cols]) plt.figure(figsize=(15,10)) colors = ['navy', 'turquoise', 'darkorange', 'red', 'purple'] for color, cat in zip(colors, category.keys()): plt.scatter(train_x_pca_cont[train_Y==cat, 0], train_x_pca_cont[train_Y==cat, 1], color=color, alpha=.8, lw=2, label=cat) plt.legend(loc='best', shadow=False, scatterpoints=1) plt.show() ``` ![](https://i.imgur.com/MfqU1gN.png) ```python # Apply k-means (k=5, only using numeric cols) + PCA + plot from sklearn.cluster import KMeans # Fit the training data to a k-means clustering estimator model kmeans = KMeans(n_clusters=5, random_state=17).fit(train_x[numeric_cols]) # Retrieve the labels assigned to each training sample kmeans_y = kmeans.labels_ # Plot in 2d with train_x_pca_cont plt.figure(figsize=(15,10)) colors = ['navy', 'turquoise', 'darkorange', 'red', 'purple'] for color, cat in zip(colors, range(5)): plt.scatter(train_x_pca_cont[kmeans_y==cat, 0], train_x_pca_cont[kmeans_y==cat, 1], color=color, alpha=.8, lw=2, label=cat) plt.legend(loc='best', shadow=False, scatterpoints=1) plt.show() ``` ![](https://i.imgur.com/izAvDgz.png) ```python print('Total number of features: {}'.format(len(train_x.columns))) print('Total number of continuous features: {}'.format(len(train_x[numeric_cols].columns))) ``` Total number of features: 118 Total number of continuous features: 31 ```python from sklearn.metrics import completeness_score,\ homogeneity_score, v_measure_score print('Completeness: {}'.format(completeness_score(test_Y, pred_y))) print('Homogeneity: {}'.format(homogeneity_score(test_Y, pred_y))) print('V-measure: {}'.format(v_measure_score(test_Y, pred_y))) ``` Completeness: 0.5313035431629083 Homogeneity: 0.4373279456197804 V-measure: 0.4797570380949557 ## Using "Attribute Ratio" (AR) feature selection ```python averages = train_df.loc[:, numeric_cols].mean() ``` ```python averages_per_class = train_df[numeric_cols+['attack_category']].groupby('attack_category').mean() ``` ```python AR = {} for col in numeric_cols: AR[col] = max(averages_per_class[col])/averages[col] ``` ```python AR ``` {'duration': 7.2258291572125568, 'src_bytes': 8.4640642049489454, 'dst_bytes': 9.1548543553434012, 'wrong_fragment': 2.7428963354889282, 'urgent': 173.03983516483518, 'hot': 40.774516817095183, 'num_failed_logins': 46.038556418455919, 'num_compromised': 4.3385392749839271, 'num_root': 2.6091432537726016, 'num_file_creations': 62.233624927703879, 'num_shells': 326.11353550295854, 'num_access_files': 4.6948792486583191, 'count': 2.1174082949142403, 'srv_count': 1.1773191099992069, 'serror_rate': 2.6310546426370025, 'srv_serror_rate': 2.6432463184901405, 'rerror_rate': 3.6455860878284372, 'srv_rerror_rate': 3.6677418023254122, 'same_srv_rate': 1.507961200604778, 'diff_srv_rate': 4.0690854850685172, 'srv_diff_host_rate': 3.0815657101101674, 'dst_host_count': 1.3428596865228266, 'dst_host_srv_count': 1.6453161847397422, 'dst_host_same_srv_rate': 1.5575788279744123, 'dst_host_diff_srv_rate': 4.8373418489732671, 'dst_host_same_src_port_rate': 4.3930803788834885, 'dst_host_srv_diff_host_rate': 5.7568806827546997, 'dst_host_serror_rate': 2.6293396511769247, 'dst_host_srv_serror_rate': 2.6731595957142456, 'dst_host_rerror_rate': 3.2795669242442695, 'dst_host_srv_rerror_rate': 3.667920527965804} ```python def binary_AR(df, col): series_zero = train_df[train_df[col] == 0].groupby('attack_category').size() series_one = train_df[train_df[col] == 1].groupby('attack_category').size() return max(series_one/series_zero) ``` ```python # Recreating dataframes with 2-class and 5-class labels labels2 = ['normal', 'attack'] labels5 = ['normal', 'dos', 'probe', 'r2l', 'u2r'] train_df = pd.read_csv(train_file, names=header_names) train_df['attack_category'] = train_df['attack_type'] \ .map(lambda x: attack_mapping[x]) train_df.drop(['success_pred'], axis=1, inplace=True) test_df = pd.read_csv(test_file, names=header_names) test_df['attack_category'] = test_df['attack_type'] \ .map(lambda x: attack_mapping[x]) test_df.drop(['success_pred'], axis=1, inplace=True) train_attack_types = train_df['attack_type'].value_counts() train_attack_cats = train_df['attack_category'].value_counts() test_attack_types = test_df['attack_type'].value_counts() test_attack_cats = test_df['attack_category'].value_counts() ``` ```python train_df['su_attempted'].replace(2, 0, inplace=True) test_df['su_attempted'].replace(2, 0, inplace=True) train_df.drop('num_outbound_cmds', axis = 1, inplace=True) test_df.drop('num_outbound_cmds', axis = 1, inplace=True) ``` ```python train_df['labels2'] = train_df.apply(lambda x: 'normal' if 'normal' in x['attack_type'] else 'attack', axis=1) test_df['labels2'] = test_df.apply(lambda x: 'normal' if 'normal' in x['attack_type'] else 'attack', axis=1) combined_df = pd.concat([train_df, test_df]) original_cols = combined_df.columns combined_df = pd.get_dummies(combined_df, columns=nominal_cols, drop_first=True) added_cols = set(combined_df.columns) - set(original_cols) added_cols= list(added_cols) ``` ```python combined_df.attack_category = pd.Categorical(combined_df.attack_category) combined_df.labels2 = pd.Categorical(combined_df.labels2) combined_df['labels5'] = combined_df['attack_category'].cat.codes combined_df['labels2'] = combined_df['labels2'].cat.codes ``` ```python train_df = combined_df[:len(train_df)] test_df = combined_df[len(train_df):] ``` ```python for col in binary_cols+dummy_variables: cur_AR = binary_AR(train_df, col) if cur_AR: AR[col] = cur_AR ``` ```python train_df[train_df.service_Z39_50 == 1].groupby('attack_category').size() ``` attack_category benign 0 dos 851 probe 11 r2l 0 u2r 0 dtype: int64 ```python len(binary_cols+added_cols) ``` 87 ```python import operator AR = dict((k, v) for k,v in AR.items() if not np.isnan(v)) sorted_AR = sorted(AR.items(), key=lambda x:x[1], reverse=True) ``` ```python sorted_AR ``` [('protocol_type_tcp', inf), ('num_shells', 326.11353550295854), ('urgent', 173.03983516483518), ('num_file_creations', 62.233624927703879), ('flag_SF', 51.0), ('num_failed_logins', 46.038556418455919), ('hot', 40.774516817095183), ('logged_in', 10.569767441860465), ('dst_bytes', 9.1548543553434012), ('src_bytes', 8.4640642049489454), ('duration', 7.2258291572125568), ('dst_host_srv_diff_host_rate', 5.7568806827546997), ('dst_host_diff_srv_rate', 4.8373418489732671), ('num_access_files', 4.6948792486583191), ('dst_host_same_src_port_rate', 4.3930803788834885), ('num_compromised', 4.3385392749839271), ('diff_srv_rate', 4.0690854850685172), ('dst_host_srv_rerror_rate', 3.667920527965804), ('srv_rerror_rate', 3.6677418023254122), ('rerror_rate', 3.6455860878284372), ('dst_host_rerror_rate', 3.2795669242442695), ('srv_diff_host_rate', 3.0815657101101674), ('flag_S0', 2.965034965034965), ('wrong_fragment', 2.7428963354889282), ('dst_host_srv_serror_rate', 2.6731595957142456), ('srv_serror_rate', 2.6432463184901405), ('serror_rate', 2.6310546426370025), ('dst_host_serror_rate', 2.6293396511769247), ('num_root', 2.6091432537726016), ('count', 2.1174082949142403), ('service_telnet', 1.8888888888888888), ('dst_host_srv_count', 1.6453161847397422), ('dst_host_same_srv_rate', 1.5575788279744123), ('service_ftp_data', 1.5447570332480818), ('same_srv_rate', 1.507961200604778), ('dst_host_count', 1.3428596865228266), ('service_http', 1.2988666621151088), ('srv_count', 1.1773191099992069), ('root_shell', 1.0), ('service_private', 0.72528123149792778), ('service_eco_i', 0.54037267080745344), ('is_guest_login', 0.45894428152492667), ('service_ftp', 0.45680819912152271), ('flag_REJ', 0.32650506429953341), ('flag_RSTR', 0.23005487547488393), ('protocol_type_udp', 0.22644739478045495), ('service_other', 0.16945921541085582), ('service_domain_u', 0.15493320070658045), ('service_smtp', 0.11654010677454654), ('service_ecr_i', 0.066012116147900562), ('flag_RSTO', 0.048472075869336141), ('service_finger', 0.026095310440358364), ('flag_SH', 0.023263980335352472), ('service_Z39_50', 0.018879226195758277), ('service_uucp', 0.017029097834270781), ('service_courier', 0.0160615915577089), ('service_auth', 0.015544843445957898), ('service_bgp', 0.015455027858848501), ('service_uucp_path', 0.014938896377980597), ('service_iso_tsap', 0.014916467780429593), ('service_whois', 0.014804339660163068), ('service_imap4', 0.013729168965897804), ('service_nnsp', 0.013729168965897804), ('service_vmnet', 0.013371284834844774), ('service_time', 0.012142983074753174), ('service_ctf', 0.011853092158893123), ('service_csnet_ns', 0.011741639864299247), ('service_supdup', 0.011630212119209674), ('service_http_443', 0.011518808915514052), ('service_discard', 0.011451978769793203), ('service_domain', 0.011184746471740902), ('service_daytime', 0.011073441352588941), ('service_gopher', 0.010672945733022314), ('service_efs', 0.010517283108539242), ('service_exec', 0.010228322555100963), ('service_systat', 0.010117227879561), ('service_link', 0.0099839465177138081), ('service_hostnames', 0.0098284960422163597), ('service_name', 0.0094068001494538346), ('service_klogin', 0.0093402487802733952), ('service_login', 0.0092293493308721729), ('service_mtp', 0.0091406473160334858), ('service_echo', 0.0091406473160334858), ('service_urp_i', 0.0089745894762075992), ('flag_RSTOS0', 0.0089154332208084483), ('service_ldap', 0.0088524734206133025), ('service_netbios_dgm', 0.0086087624903920055), ('service_sunrpc', 0.0080995653891742393), ('service_netbios_ssn', 0.0076572030365527231), ('service_netstat', 0.0075466731018142726), ('service_netbios_ns', 0.0073698756333486874), ('service_kshell', 0.0063985975676564043), ('service_ssh', 0.0061560706305043159), ('service_nntp', 0.0061560706305043159), ('flag_S1', 0.0053895076289152306), ('service_sql_net', 0.0050991377423731778), ('flag_S3', 0.0030241935483870967), ('service_pop_3', 0.0027696293759399615), ('service_ntp_u', 0.0025009304056568663), ('flag_S2', 0.0017702011186481019), ('service_rje', 0.0015466575012888812), ('service_remote_job', 0.0015466575012888812), ('service_pop_2', 0.0015264845061822622), ('service_printer', 0.0013517933064428214), ('service_shell', 0.0011553385359898854), ('su_attempted', 0.001006036217303823), ('service_X11', 0.00099589749687853022), ('service_pm_dump', 0.00042914771264269161), ('land', 0.00039207998431680063), ('service_aol', 0.00017161489617298782), ('service_http_8001', 0.00017161489617298782), ('service_harvest', 0.00017161489617298782), ('service_urh_i', 0.00014851558671082529), ('service_red_i', 0.00011880894037276305), ('service_http_2784', 8.5800085800085798e-05), ('service_tim_i', 7.4252279544982031e-05), ('service_tftp_u', 4.4550044550044547e-05), ('is_host_login', 1.4849573817231445e-05)] ```python # Only keep features with AR value >= 0.01 features_to_use = [] for x,y in sorted_AR: if y >= 0.01: features_to_use.append(x) features_to_use ``` ['protocol_type_tcp', 'num_shells', 'urgent', 'num_file_creations', 'flag_SF', 'num_failed_logins', 'hot', 'logged_in', 'dst_bytes', 'src_bytes', 'duration', 'dst_host_srv_diff_host_rate', 'dst_host_diff_srv_rate', 'num_access_files', 'dst_host_same_src_port_rate', 'num_compromised', 'diff_srv_rate', 'dst_host_srv_rerror_rate', 'srv_rerror_rate', 'rerror_rate', 'dst_host_rerror_rate', 'srv_diff_host_rate', 'flag_S0', 'wrong_fragment', 'dst_host_srv_serror_rate', 'srv_serror_rate', 'serror_rate', 'dst_host_serror_rate', 'num_root', 'count', 'service_telnet', 'dst_host_srv_count', 'dst_host_same_srv_rate', 'service_ftp_data', 'same_srv_rate', 'dst_host_count', 'service_http', 'srv_count', 'root_shell', 'service_private', 'service_eco_i', 'is_guest_login', 'service_ftp', 'flag_REJ', 'flag_RSTR', 'protocol_type_udp', 'service_other', 'service_domain_u', 'service_smtp', 'service_ecr_i', 'flag_RSTO', 'service_finger', 'flag_SH', 'service_Z39_50', 'service_uucp', 'service_courier', 'service_auth', 'service_bgp', 'service_uucp_path', 'service_iso_tsap', 'service_whois', 'service_imap4', 'service_nnsp', 'service_vmnet', 'service_time', 'service_ctf', 'service_csnet_ns', 'service_supdup', 'service_http_443', 'service_discard', 'service_domain', 'service_daytime', 'service_gopher', 'service_efs', 'service_exec', 'service_systat'] ```python len(features_to_use) ``` 76 ```python len(sorted_AR) - len(features_to_use) ``` 42 ```python train_df_trimmed = train_df[features_to_use] test_df_trimmed = test_df[features_to_use] ``` ```python numeric_cols_to_use = list(set(numeric_cols).intersection(features_to_use)) ``` ```python # Rescaling is necessary after reducing dimensions standard_scaler = StandardScaler() train_df_trimmed[numeric_cols_to_use] = standard_scaler.fit_transform(train_df_trimmed[numeric_cols_to_use]) test_df_trimmed[numeric_cols_to_use] = standard_scaler.transform(test_df_trimmed[numeric_cols_to_use]) ``` ## Applying advanced ensembling ```python kmeans = KMeans(n_clusters=8, random_state=17) kmeans.fit(train_df_trimmed[numeric_cols_to_use]) kmeans_train_y = kmeans.labels_ ``` ```python pd.crosstab(kmeans_train_y, train_Y_bin) ``` <div> <style> .dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th>attack_category</th> <th>0</th> <th>1</th> </tr> <tr> <th>row_0</th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>0</th> <td>63569</td> <td>6457</td> </tr> <tr> <th>1</th> <td>2784</td> <td>11443</td> </tr> <tr> <th>2</th> <td>126</td> <td>34700</td> </tr> <tr> <th>3</th> <td>1</td> <td>0</td> </tr> <tr> <th>4</th> <td>628</td> <td>4335</td> </tr> <tr> <th>5</th> <td>167</td> <td>757</td> </tr> <tr> <th>6</th> <td>0</td> <td>884</td> </tr> <tr> <th>7</th> <td>68</td> <td>54</td> </tr> </tbody> </table> </div> ```python train_df['kmeans_y'] = kmeans_train_y train_df_trimmed['kmeans_y'] = kmeans_train_y ``` ```python kmeans_test_y = kmeans.predict(test_df_trimmed[numeric_cols_to_use]) test_df['kmeans_y'] = kmeans_test_y ``` ```python pca8 = PCA(n_components=2) train_df_trimmed_pca8 = pca8.fit_transform(train_df_trimmed) plt.figure(figsize=(15,10)) colors8 = ['navy', 'turquoise', 'darkorange', 'red', 'purple', 'green', 'magenta', 'black'] labels8 = [0,1,2,3,4,5,6,7] for color, cat in zip(colors8, labels8): plt.scatter(train_df_trimmed_pca8[train_df.kmeans_y==cat, 0], train_df_trimmed_pca8[train_df.kmeans_y==cat, 1], color=color, alpha=.8, lw=2, label=cat) ``` ![](https://i.imgur.com/tgrbMPa.png) ```python pd.crosstab(test_df.kmeans_y, test_df.labels2) ``` <div> <style> .dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th>labels2</th> <th>0</th> <th>1</th> </tr> <tr> <th>kmeans_y</th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>0</th> <td>4795</td> <td>9515</td> </tr> <tr> <th>1</th> <td>5131</td> <td>87</td> </tr> <tr> <th>2</th> <td>1997</td> <td>6</td> </tr> <tr> <th>4</th> <td>427</td> <td>51</td> </tr> <tr> <th>5</th> <td>1</td> <td>10</td> </tr> <tr> <th>6</th> <td>8</td> <td>37</td> </tr> <tr> <th>7</th> <td>474</td> <td>5</td> </tr> </tbody> </table> </div> ```python # Ensembling strategy # 1. For clusters that have an aggregate size of fewer than 200 samples, we consider them outliers and assign them the attack label. # 2. For clusters with more than 95% of samples belonging to a single class, (either attack or benign) we assign the dominant label to the entire cluster. # 3. For each of the remaining clusters, we train a separate random forest classifier ``` ```python from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix ``` ### Cluster 0 - Random Forest Classifier (Strategy Option 3) ```python train_y0 = train_df[train_df.kmeans_y==0] test_y0 = test_df[test_df.kmeans_y==0] rfc = RandomForestClassifier(n_estimators=500, max_depth=20, random_state=17).fit(train_y0.drop(['labels2', 'labels5', 'kmeans_y', 'attack_category', 'attack_type'], axis=1), train_y0['labels2']) pred_y0 = rfc.predict(test_y0.drop(['labels2', 'labels5', 'kmeans_y', 'attack_category', 'attack_type'], axis=1)) print("cluster {} score is {}, {}".format(0, accuracy_score(pred_y0, test_y0['labels2']), accuracy_score(pred_y0, test_y0['labels2'], normalize=False))) print(confusion_matrix(test_y0['labels2'], pred_y0)) ``` cluster 0 score is 0.7673654786862334, 10981 [[1618 3177] [ 152 9363]] ### Cluster 1 - Dominant Label Zero (Strategy Option 2) ```python print(confusion_matrix(test_df[test_df.kmeans_y==1]['labels2'], np.zeros(len(test_df[test_df.kmeans_y==1])))) ``` [[5131 0] [ 87 0]] ### Cluster 2 - Dominant Label Zero (Strategy Option 2) ```python print(confusion_matrix(test_df[test_df.kmeans_y==2]['labels2'], np.zeros(len(test_df[test_df.kmeans_y==2])))) ``` [[1997 0] [ 6 0]] ### Cluster 3 - Empty Cluster ### Cluster 4 - Random Forest Classifier (Strategy Option 3) ```python train_y0 = train_df[train_df.kmeans_y==4] test_y0 = test_df[test_df.kmeans_y==4] rfc = RandomForestClassifier(n_estimators=500, max_depth=20, random_state=17).fit(train_y0.drop(['labels2', 'labels5', 'kmeans_y', 'attack_category', 'attack_type'], axis=1), train_y0['labels2']) pred_y0 = rfc.predict(test_y0.drop(['labels2', 'labels5', 'kmeans_y', 'attack_category', 'attack_type'], axis=1)) print("cluster {} score is {}, {}".format(4, accuracy_score(pred_y0, test_y0['labels2']), accuracy_score(pred_y0, test_y0['labels2'], normalize=False))) print(confusion_matrix(test_y0['labels2'], pred_y0)) ``` cluster 4 score is 0.9309623430962343, 445 [[405 22] [ 11 40]] ### Cluster 5 - Outlier/Attack (Strategy Option 1) ```python print(confusion_matrix(test_df[test_df.kmeans_y==5]['labels2'], np.ones(len(test_df[test_df.kmeans_y==5])))) ``` [[ 0 1] [ 0 10]] ### Cluster 6 - Outlier/Attack (Strategy Option 1) ```python print(confusion_matrix(test_df[test_df.kmeans_y==6]['labels2'], np.ones(len(test_df[test_df.kmeans_y==6])))) ``` [[ 0 8] [ 0 37]] ### Cluster 7 - Dominant Label Zero (Strategy Option 2) ```python print(confusion_matrix(test_df[test_df.kmeans_y==7]['labels2'], np.zeros(len(test_df[test_df.kmeans_y==7])))) ``` [[474 0] [ 5 0]] ### Combined Results: k-means + Random Forest Classifier ensembling with AR feature selection ```python # combined results: num_samples = 22544 false_pos = 3177 + 22 + 1 + 8 false_neg = 152 + 87 + 6 + 11 + 5 print('True positive %: {}'.format(1-(false_pos/num_samples))) print('True negative %: {}'.format(1-(false_neg/num_samples))) ``` True positive %: 0.8577004968062456 True negative %: 0.9884226401703335 <style> span.hidden-xs:after { content: ' × ML Security' !important; } </style> ###### tags: `ML Security`

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully