Omer Shlomovits
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    5
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # FS-DKR: One Round Distributed Key Rotation ## Intro In this note we aim to re-purpose the [Fouque-Stern](https://hal.inria.fr/inria-00565274/document) Distributed Key Generation (DKG) to support a secure Distributed Key Refresh (DKR). As we claim, FS-DKR is well suited for rotation of [threshold ECDSA](https://eprint.iacr.org/2020/540.pdf) keys. ## Background The FS-DKG protocol is a one round DKG based on Publicly Verifiable Secret Sharing (PVSS) and the [Paillier cryptosystem](https://en.wikipedia.org/wiki/Paillier_cryptosystem). There are two major security shortcomings to FS-DKG: 1. It introduces a factoring assumptions (DCRA) 2. it is insecure against rushing adversary Rushing adversary is a common assumption in Multiparty Computation (MPC). In FS-DKG, an adversary waiting to receive messages from all other parties will be able to decide on the final public key. In the worst case it can lead to a rouge-key attack, giving full control of the secret key to the attacker. This is the main reason, in our opinion, why FS-DKG, altough with prominent features, was over-looked for the past 20 years. in this write-up we show how by adjusting FS-DKG to key rotation for threshold ecdsa the above shortcomings are avoided. ## Our Model We use standard proactive security assumptions. The protocol will be run by $n$ parties. We assume honest majority, that is, number of corruptions is $t<n/2$. The adversary is malicious, and rushing. For communication, the parties have access to a broadcast channel (can be implemented via a bulletin board). For threshold ECDSA, we focus on [GG20](https://eprint.iacr.org/2020/540.pdf) protocol, currently considered state of the art and most widely deployed threshold ecdsa scheme (e.g. [multi-party-ecdsa](https://github.com/ZenGo-X/multi-party-ecdsa), [tss-lib](https://github.com/binance-chain/tss-lib)). ## High-level Description of FS-DKG Here we give a short description of the FS-DKG protocol. FS-DKG works in one round. This round includes a single broadcast message from each party $P_j$. For Setup, we assume every party in the system has a public/private key pair for Paillier encryption scheme. At first, $P_j$ picks a random secret $s$ and secret shares it. $P_j$ publishes one set of size $t$ of commitment points $\textbf{A}$ corresponding to the polynomial coefficients: $A_i = a_iG$, and one set of $n$ commitment points $\textbf{S}$ corresponding to $n$ points on the polynomial: $S_i = \sigma_i G$. The points on the polynomial are also encrypted using the paillier keys of the receiving parties: $Enc_{pk_i}(\sigma_i)$. Finally, $P_j$ computes zero knowledge proofs $\pi_i$ to show that the paillier encryption for $P_i$ encrypts the same value commited in $S_i$. The ZK proof is a sigma protocol (can be made non-interactive using Fiat-Shamir) given in the original FS paper under the name proof of fairness. We [implemented it](https://github.com/ZenGo-X/fs-dkr/blob/main/src/proof_of_fairness.rs) under the same name. Verification proceeds as follows. Each party $P_j$ verifies: 1. all broadcasted proofs of fairness 2. all secret sharing schemes - computing the polynomial points "at the exponent" The parties define the set $\mathcal{Q}$ to be the set of the first $t+1$ parties for which all checks passed. we now show a simple optimization on how each party computes its local secret key: Each party [maps its encrypted shares](https://github.com/ZenGo-X/fs-dkr/blob/main/src/lib.rs#L181) from $\{t,n\}$ to $\{\mathcal{Q},\mathcal{Q}\}$. It then homomorphically adds all the paillier ciphertext (which is an additive homomorphic scheme) and decrypts to get the local secret key. ## Adjusting FS-DKG to DKR and threshold ECDSA We will now highlight the adjustments required for FS-DKR. In a key refresh protocol the parties start with their inputs equal to the outputs of a DKG done in the past or the output of previous DKR. Meaning, as opposed to FS-DKG protocol in which the inputs are pseudorandom such that the attacker can bias the output, for example in a rushing adversary attack, FS-DKR avoids this potential attack on FS-DKG because of the added restriction over the inputs of the attacker. Concretely, in the case the parties must reshare their DKG/DKR output secret share, all other parties already know a public commitment to the attacker secret share and can check for it. Recall that FS-DKG is secure assuming Paillier is secure (what we called DCRA assumption). Moreover, we assumed a setup phase in which all parties generate paillier keys and share them. This fits well with threshold ECDSA: First, GG20 already requires us to assume Paillier security, therefore in this particular case, no new assumption is needed. The setup phase actually happens as part of GG20 DKG. We will use this to our advantage, running the FS-DKR using the GG20-DKG paillier keys. Obviously because we need to refresh the paillier keys as well we will also add a step to FS-DKR to generate new paillier keys and prove they were generated correctly. This is a standard proof, that can be made non-interactive. See the [zk-paillier lib](https://github.com/ZenGo-X/zk-paillier/blob/master/src/zkproofs/correct_key_ni.rs) for an implementation. **Adding/Removing parties:** There is a clear distinction between parties with secret shares (”Senders”) and new parties (”Receivers”). The FS-DKR protocol therefore supports adding and removing parties in a natural way: Define $\mathcal{J}>t+1$ the subset of parties participating in the protocol. To remove an existing party $P_i$, other parties exclude it from the subset $\mathcal{J}$. To add a new party, we assume the parties in $\mathcal{J}$ are aware of the new party' paillier key. In that case, the parties in $\mathcal{J}$ assign an index $i$ to the new party and broadcast the PVSS messages to it. Removal of a party is simply done by not broadcasting the encrypted messages to it. If enough parties decide on that for a party index, they will not be able to reconstruct a rotated key. **Identifiable Abort:** A nice property of FS-DKR is that if a party misbehaves all honest parties learn about it. This is due to the nature of PVSS used in the protocol. As GG20, our reference threshold ECDSA protocol, also have this property, it is important that identifiable abort can be guaranteed throughout the DKR as well. For completeness, Below is the FS-DKR protocol, written as FS-DKG with changes in red for DKR. ![](https://i.imgur.com/V50DfBz.png) The protocol is implemented in the [ZenGo-X/fs-dkr repo](https://github.com/ZenGo-X/fs-dkr) (warning, the code is not audited yet). ## Related Work Our main requirement from FS-DKR is minimal round-count. In FS-DKR the parties can pre-process all the data they need to send. Our main bottleneck is $\mathcal{O}(n^2)$ communication, which seems a standard cost in our context: It is the same asymptotic complexity as we have in GG20-DKG and GG20-Signing. In this section we focus on alternative protocols for DKR. Three recent results come to mind. The first one, [CGGMP20](https://eprint.iacr.org/2021/060.pdf), is another threshold ECDSA protocol with a companion refresh protocol, see figure 6 in the paper. Their protocol has the most resemblance to FS-DKR, with few notable differences. First, while FS-DKR is publicly verifiable, CGGMP20-DKR current [version](https://eprint.iacr.org/2021/060/20210118:082423) suffers from a technichal issue with its Identifiable Abort (acknowledged by the authors). Second, the paillier keys used in the CGGMP20-DKR are the new ones, while in FS-DKR, we use the old ones, already known to all, which helps us save a round of communication. Finally, CGMMP20-DKR key refresh is done by adding shares of zero while in FS-DKR we re-share existing shares. Overall we treat the similarities between the protocols as a positive signal of validation for FS-DKR. A second protocol, by [Gurkan et. al.](https://eprint.iacr.org/2021/005), uses gossip for aggregating transcripts from the parties. However, their DKG is generating group elements secret shares and we need field elements secret shares for our threshold ECDSA. The third relevant work is Jens Groth' [Non interactive DKG and DKR](https://eprint.iacr.org/2021/339). There, instead of paillier encryption, they use El-Gamal based encryption scheme that offers forward security. Their DKR makes the assumption that the El-Gamal decryption keys are long-term and not rotated. This assumption seems crucial for the Groth-DKG construction. In our context it means that we need to let the parties generate, store and use a new set of keypair,in addition to the Paillier keypair, and that this new keypair poses a security risk against the classical mobile adversary, which our model does not allow. As opposed to Groth-DKR, FS-DKR is reusing the existing paillier keypair and rotate it as well. In terms of efficiency - there is no complexity analysis given in the paper, however, from inspection we estimate the asymptotic complexity is comparable to FS-DKR (quadratic in the number of parties). ## Acknowledgments We thank Claudio Orlandi, Kobi Gurkan and Nikolaos Makriyannis for reviewing the note

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully