owned this note
owned this note
Published
Linked with GitHub
# INBO CODING CLUB
28 May 2024
Welcome!
## Share your code snippet
If you want to share your code snippet, copy paste your snippet within a section of three backticks (```):
As an **example**:
```
library(tidyverse)
```
(*you can copy paste this example and add your code further down*)
## Yellow sticky notes
No yellow sticky notes online. Put your name + " | " and add a "*" each time you solve a challenge (see below).
## Participants
Name | Challenges
--- | ---
Damiano Oldoni | ***
Raïsa Carmen |***
Rhea Maesele | *
Adriaan Seynaeve |**
Lies Teunen |*
Sanne govaert | ***
Suzanna Lettens |**
Lotte Pohl | ***
Siebe Indestege | ***
Jo-Hannes Nowé | ***
Soria Delva| ***
## Challenge 1
### Damiano's solution (example)
Copy paste this section to show your solutions.
```r
# dummy code
print("This is how to insert code.")
```
### Sanne's solution
```r
### 1.1
lepidoptera <- st_as_sf(
lepidoptera_df,
coords = c("decimalLongitude", "decimalLatitude"),
crs = 4326
)
### 1.2
st_layers(pa_filepath)
### 1.3
pa <- st_read(pa_filepath, layer = "NaturaSite_polygon")
### 1.4
pa_bioregion <- st_read(pa_filepath, layer = "BIOREGION")
pa_habitats <- st_read(pa_filepath, layer = "HABITATS")
class(pa_bioregion)
class(pa_habitats)
### 1.5
st_crs(pa)
### 1.6
utm_10 <- st_read(utm_10_filepath)
### 1.7
st_crs(pa) == st_crs(lepidoptera)
st_crs(pa) == st_crs(utm_10)
### 1.8
pa_b <- pa %>%
filter(SITETYPE == "B")
unique(pa_b$SITETYPE)
```
### Siebe's Solution
```r
# 1.1
lepidoptera_sf <- st_as_sf(lepidoptera_df,
coords = c("decimalLongitude", "decimalLatitude"),
crs = 4326)
# 1.2
st_layers(pa_filepath) # First has a geometry_type and specified CRS
# 1.3
pa <- st_read(dsn = pa_filepath, layer = "NaturaSite_polygon")
# 1.4
pa_bioregion <- st_read(dsn = pa_filepath, layer = "BIOREGION")
pa_habitats <- st_read(dsn = pa_filepath, layer = "HABITATS")
# 1.5
st_crs(pa)
# 1.6
utm_10 <- st_read(dsn = utm_10_filepath, layer = "20240528_utm10_belgium")
# 1.7
st_crs(pa) == st_crs(lepidoptera_sf)
st_crs(pa) == st_crs(utm_10)
# 1.8
pa_b <- pa %>% filter(SITETYPE == "B")
```
### Lotte's solution
```r
# 1. geospatial_df
lepidoptera <-
lepidoptera_df %>%
sf::st_as_sf(coords = c('decimalLongitude', 'decimalLatitude'), crs = 'EPSG:4326')
# 2. layers
pa_layers <- sf::st_layers(dsn = pa_filepath)
pa_layers
# 3. load layer NaturaSite_polygon
pa <- sf::st_read(dsn = pa_filepath, layer = 'NaturaSite_polygon')
# 4. other layers
pa_bioregion <- sf::st_read(dsn = pa_filepath, layer = 'BIOREGION')
pa_habitats <- sf::st_read(dsn = pa_filepath, layer = 'HABITATS')
# 5. CRS of pa
pa_crs <- sf::st_crs(pa)
pa_crs
# 6. import EEA reference grid
utm_10 <- sf::st_read(dsn = utm_10_filepath)
# 7. check CRS
sf::st_crs(pa) == sf::st_crs(lepidoptera)
sf::st_crs(pa) == sf::st_crs(utm_10)
# 8. extract pa_b
pa_b <-
pa %>%
dplyr::filter(SITETYPE == 'B')
```
### Jo-Hannes' solution
```r
#1.
lepidoptera <- st_as_sf(lepidoptera_df, coords=c("decimalLongitude","decimalLatitude"),crs=4326)
#2.
layers <- st_layers(pa_filepath)
pa_layer1 <- st_read(pa_filepath,layer=layers[[1]][1])
pa_layer2 <- st_read(pa_filepath,layer=layers[[1]][2])
pa_layer2 <- st_read(pa_filepath,layer=layers[[1]][3])
#Only the first layer contains geometry
#3.
pa <- st_read(pa_filepath,layer="NaturaSite_polygon")
#4.
pa_bioregion <- st_read(pa_filepath,layer="BIOREGION")
pa_habitats <- st_read(pa_filepath,layer="HABITATS")
#These are not spatial dataframes
#5.
crs <- st_crs(pa)
#6.
utm_10 <- st_read(utm_10_filepath)
#7.
st_crs(pa)[1]
st_crs(lepidoptera)[1]
st_crs(utm_10)[1]
#pa and utm_10 have the same crs, but lepidoptera has a different one
#8.
pa_b <- pa[pa$SITETYPE == "B",]
```
## Challenge 2
### Soria's solution
```r
#2.1
lepidoptera_3035<-st_transform(lepidoptera, crs=3035)
#2.2
st_write(pa,"./data/20240528/pa_and_lepidoptera_3035.gpkg", "pa")
st_write(lepidoptera_3035, "./data/20240528/pa_and_lepidoptera_3035.gpkg", "lepidoptera_obs", append = TRUE)
#2.3
lepidoptera_3035_circles<-st_buffer(lepidoptera_3035, dist=lepidoptera_3035$coordinateUncertaintyInMeters)
plot(lepidoptera_3035_circles)
```
### Jo-Hannes' solution
```r
#1.
lepidoptera_3035 <- st_transform(lepidoptera,crs="EPSG:3035")
#2.
st_write(pa, dsn="data/pa_and_lepidoptera_3035.gpkg", layer='pa')
st_write(lepidoptera_3035, dsn="data/pa_and_lepidoptera_3035.gpkg", layer='lepidoptera_obs')
#3.
lepidoptera_3035_circles <- st_buffer(lepidoptera_3035$geometry,dist = lepidoptera$coordinateUncertaintyInMeters)
```
### Siebe's solution
```r
### 2.1
lepidoptera_3035 <- st_transform(lepidoptera_sf, crs = 3035)
### 2.2
st_write(pa, "./data/20240528/pa_and_lepidoptera_3035.gpkg", "pa")
st_write(lepidoptera_3035, "./data/20240528/pa_and_lepidoptera_3035.gpkg", "lepidoptera_obs", append = TRUE)
st_layers("./data/20240528/pa_and_lepidoptera_3035.gpkg")
### 2.3
lepidoptera_3035_circles <- st_buffer(lepidoptera_3035,
dist = lepidoptera_3035$coordinateUncertaintyInMeters)
```
### Sanne's solution
```r
### 2.1
lepidoptera_3035 <- st_transform(lepidoptera,ncrs = 3035)
### 2.2
st_write(pa, dsn = "./data/20240528/pa_and_lepidoptera_3035.gpkg", layer = "pa")
st_write(lepidoptera_3035, dsn = "./data/20240528/pa_and_lepidoptera_3035.gpkg", layer = "lepidoptera_obs")
### 2.3
lepidoptera_3035_circles <-
st_buffer(
lepidoptera_3035,
dist = lepidoptera_3035$coordinateUncertaintyInMeters
)
```
### Lotte's solution
```r
# 1. transform crs of df
lepidoptera_3035 <- lepidoptera %>% sf::st_transform(crs = 'EPSG: 3035')
# 2. write pa_and_lepidoptera_3035.gpkg
pa_lep_path <- "./data/20240528/pa_and_lepidoptera_3035.gpkg"
sf::st_write(obj = pa, dsn = pa_lep_path, layer = 'pa')
sf::st_write(obj = lepidoptera_3035, dsn = pa_lep_path, layer = 'lepidoptera_obs', append = T)
# 3. make circles of observations
lepidoptera_3035_circles <- sf::st_buffer(x = lepidoptera_3035, dist = lepidoptera_3035$coordinateUncertaintyInMeters)
lepidoptera_3035_circles %>% mapview()
```
## Challenge 3
### Sanne's solution
```r
### 3.1
st_contains(pa, lepidoptera_3035)
### 3.2
st_intersects(pa, lepidoptera_3035_circles)
### 3.3
st_centroid(pa)
st_area(pa)
### 3.4
st_covered_by(pa, lepidoptera_3035_circles)
### 3.5
union_pa <- st_union(pa)
class(union_pa)
### 3.6
st_intersects(pa, utm_10)
```
### Jo-Hannes' solution
```r
#1.
contain <-st_contains(pa,lepidoptera_3035)
contained_area <-cbind(pa$SITENAME,contain)
#2.
intersects <- st_intersects(pa,lepidoptera_3035_circles)
intersect_area <- cbind(pa$SITENAME,intersects)
#3.
pa_centroid <- st_centroid(pa)
mapview(pa_centroid)
pa_area <- st_area(pa)
#4.
covered <- st_covered_by(lepidoptera_3035_circles,pa)
lepidoptera_covered <- cbind(pa$SITENAME,covered)
#5.
pa_union <- st_union(pa)
mapview(pa_union)
pa_union
#6.
intersect_utm_pa <- st_intersects(pa,utm_10)
intersection_utm_pa <- cbind(pa$SITENAME,covered)
```
### Lotte's solution
```r
# 1. which obs in lep_3035 are CONTAINED in which protected area?
lep_3035_contains_pa <- sf::st_contains(pa, lepidoptera_3035)
## question: how to transform it into a df or tibble nicely, to be able to access the rownum of the points that are within each pa?
# 2. intersection
lep_3035_intersection_pa <- sf::st_intersects(pa, lepidoptera_3035_circles)
# 3. centroids and areas
pa_centroids <- sf::st_centroid(pa)
pa_area <- sf::st_area(pa) %>% units::set_units(km^2)
pa_area
# 4. totally contained circles
lep_3035_covered_by_pa <- sf::st_covered_by(pa, lepidoptera_3035_circles)
## question: the dfs 'lep_3035_covered_by_pa' and 'lep_3035_contains_pa' differ a lot. I would have expected that the df 'lep_3035_covered_by_pa' is
## basically the same as 'lep_3035_contains_pa' with a few less entries since not all big circles are fully within a pa.
# 5. union
pa_union <- sf::st_union(pa)
class(pa_union)
## weird, viz works in leaflet but not in mapview (even not when crs is transformed before plotting)
pa_union %>% sf::st_transform(crs = 4326) %>% mapview()
leaflet() %>%
addTiles %>%
addPolygons(data = pa_union %>% sf::st_transform(crs = 4326))
# 6. utm_10 grid cells intersect pa
utm_10_intersects_pa <- sf::st_intersects(pa, utm_10)
```
### Siebe's solution
```r
### 3.1
contain <- st_contains(pa,lepidoptera_3035)
contained_pa <- cbind(pa$SITENAME,cont)
### 3.2
intersect <- st_intersects(pa,lepidoptera_3035_circles)
intersect_pa <- cbind(pa$SITENAME,intersect)
### 3.3
st_centroid(pa)
st_area(pa)
### 3.4
contain_prop <- st_contains_properly(pa,lepidoptera_3035_circles)
contained_prop_pa <- cbind(pa$SITENAME,contain_prop)
### 3.5
union_pa <- st_union(pa)
class(union_pa)
### 3.6
intersect_utm <- st_intersects(pa,utm_10)
intersect_utm_pa <- cbind(pa$SITENAME,intersect_utm)
```