C.A.Lee
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

Your note will be visible on your profile and discoverable by anyone.
Your note is now live.
This note is visible on your profile and discoverable online.
Everyone on the web can find and read all notes of this public team.
See published notes
Unpublish note
Please check the box to agree to the Community Guidelines.
View profile
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
1
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
--- robots: index, follow tags: NCTU, CS, 共筆, 密碼學, 陳榮傑 description: 交大資工課程學習筆記 lang: zh-tw dir: ltr breaks: true disqus: calee GA: UA-100433652-1 --- 密碼學概論--陳榮傑 ===== `NCTU` `CS` [回主頁](https://hackmd.io/s/ByOm-sFue) # Syllabus - Course Site: http://people.cs.nctu.edu.tw/~rjchen/Crypto2017/ - Book: Cryptography and Network Security - principles and pracice (5th edition by William Stallings) - Score - HW (25%) - Midterm (35%) - Final (40%) # Course ## Ch0 3 related research areas in CS and EE 1. Information Theory 2. Coding Theory 3. Cryptography Why encode data? 1. efficiency (*ex. Hoffman Code*) 2. error detection / correction (*ex. binary [5,3]-code -> codewords*) 3. secrecy / authentitation (*ex. DES*) ![](https://i.imgur.com/tVHAsXW.png) - Cryptology (保密學) - Cryptography - Cryptanalysis - Cryptography (密碼學) - study and allpicaty of secure - Cryptanalysis (破密學) two types of Cryptosystems - symmetric-key (ency-key = dency-key) - block cipher (塊狀加密) key 針對 分塊的 text 分別加密 e.g. AES, DES - stream cipher (串流加密) key 以某方法(ex. 除質數,找小數)產生無窮字串,利用字串直接對整串 text 加密 e.g. RC4 - asymmetric-key (public key != private key) ![](https://i.imgur.com/fV0NL9D.png) - ciphertext (密文) $c = m^e \mod n$ - plaintext (明文) $m = c^d \mod n$ $d = e^{-1} mod \phi(n)$ $\phi(n) = (p-1)(q-1)$ **A public-key cryptosystem is usually based on a hard math problem!** 3 hard math problems 1. Factorigation $n = p * q$ 2. Discrete log $g^x$ 3. Closest vector of a **lattice** (最接近格子點) 給 n 個 vector 代表座標軸及其單位座標,給 P(a,b),求最接近的格子點 ex. $$ base= \begin{bmatrix} 3 & 0\\ 0 & 2 \end{bmatrix} $$ and $$P = (100,210)$$ Find closest point $Q$ (lattice) ## Ch1 Classical Cryptography ### Introduction: Simple Cryptosystems ![](https://i.imgur.com/DaBm7iY.png) :::info A cryptosystem is a five-tuple (P,C,K,E,D) satisfies ::: - P: finite set of possible *plaintexts (明文)* - C finite set of possible *ciphertexts (密文)* - K: *keyspace*, finite **set** of possible keys - for each K, ther is an *encryption (加密)* rule $e_k$ and corresponding *decryption (解密)* rule $d_k$ :::info a and b are integers, m is a positive integer congruece: $a \equiv b \mod m$ if m divides $b - a$ ::: :::info $Z_m = set of \{0, 1, ..., m-1\}$ ::: - with 2 operations + and * - $10 + 20 = 4 \ in \ Z_{26} (10+20\mod26=4)$ - $10*20 = 18 \ in \ Z_{26} (10*20\mod26=18)$ --- #### Shift Cipher (平移) - $P = C = K = Z_{26}$ - $K,x,y \in Z_{26}$ - $e_k(x) = (x + K) \mod 26$ - $d_k(y) = (y - K) \mod 26$ Suppose $K=11$ - Plaintext: student - Ciphertext: DEFOPZE #### Subsititution (取代) $e_{\pi}(x) function$ ![](https://i.imgur.com/0SXmvh5.png) #### Affine Cipher 模函式 affine function $f(x) = (ax + b) \mod m$ ($\gcd(a,m) = 1$) - $\phi(m)$: 小於 m 中與 m 互質的個數 - $\phi(m) = p^e - p^{e-1}$ - $\phi(mn) = \phi(m)\phi(n)$ - e.g. $e_K(x) = (7x+3)\mod26$ #### Vigenere Cipher eg. $key = (2,8,15,7)$ 加一個固定的質(序列),加完後重頭加 ![](https://i.imgur.com/AozKuWv.png) #### [Hill Cipher](https://zh.wikipedia.org/wiki/%E5%B8%8C%E5%B0%94%E5%AF%86%E7%A0%81) key=可逆矩陣 $e_k(x)=xk$ $c_k(y)=yk^{-1}$ #### Permutation Cipher 字串中的相對位置改變 ![](https://i.imgur.com/sn07vye.png) 第一個跑到第三個 第二個跑到第五個 ... ![](https://i.imgur.com/INcot6D.png) --- ### Cryptanalysis (密碼破密) Kerckhoffs' principle 你一定要告訴我你怎們加密,你一定要告歲我 key ### Attech module - [ciphertext only attack](https://zh.wikipedia.org/wiki/%E5%94%AF%E5%AF%86%E6%96%87%E6%94%BB%E5%87%BB) (最難的,僅知已加密文字(即密文)的情況下進行攻擊) - [known plaintext attack](https://zh.wikipedia.org/wiki/%E5%B7%B2%E7%9F%A5%E6%98%8E%E6%96%87%E6%94%BB%E5%87%BB) (攻擊者掌握了 "某段" 明文 x 和對應密文 y) - chosen plaintext attack (指定的明文要他加密,我再回推 => 可以指定任意明文) - chosen ciphertext attack (給密文,請他給相對的明文) ### 解密: 1. 暴力找 $$ y = ax + b \\ x = a^{-1}y - b $$ 2. 用經驗找常見的字母或字串先 try (做字典) 3. find m - Index of coincidence of x (Friedman) - 先檢查 m=? (用 x 算出來大概接近 0.06) - 每 m 個抓出來,可算出 swift 了多少格 - 找出 block shift 了多少 - Kasaski - 找出類似字串的距離,m 可能等於其距離的公因數 - 找 swift 4. Hill Cipher - $\phi(n)$ 1~n 間跟 n 互質的個數 - $\phi(p) = p-1$ - $\phi(p^2) = p^2 - p$ - $\phi(p^k) = p^k - p^{k=1}$ - $\phi(pq) = (p-1)(q-1)$ $(\gcd(m,n) = 1)$ - $\phi(26) = \phi(2) * \phi(13) = 12$ - $3^{-1} = 9 (mod 26)$ - $m \geq 2$ is an integer - $P = C = (Z_{26})^m$ - k = {m*m invertible matrices over Z_26} - for a key K - $e_k(x) = xK$ - $d_k(y) = yK^{-1}$ - Hill Cipher is difficult to break with a ciphertext-only attack - known plaintext attack - 需有曾經看過的加密 (知道明文a與加密後的密文b) - 用反舉證的概念 - $a = b * k$ $$ \begin{bmatrix} \end{bmatrix} $$ ### DES Keysize: 56 blocksize: 64 **Feistel cipher:** 1. 分一半(32 + 32) 2. 每一次 round 用原來的 key (56 bit) 產生 subkey (4 8bit) 3. IP($IP(x) = L_0R_0$): initial permutation 4. 位置調動 - $L_{new} = R_{old}$ - $R_{new} = L_{old} \oplus f(R_{old}\& key)$ ![](https://andynor.net/media/large_2012-09-18_171715_kgu9dm9z0fey8art.png) 5. function (bent functions) $$f: \{0,1\}^{32} * \{1,0\}\&{48} → \{0,1\}^{32}$$ ![](http://people.eku.edu/styere/Encrypt/DES-f.GIF) 2-DES Meet in the middle attack 可解 DES ## Asymmetric key (public key) DES (Secret key) RSA (public/private key) - function - authentication - confidentiatiality - Used - Asymmetric - Certificate - PKI (public key infrastructure) - Secret - Authentication 確實是某人送出的 - Key exchange - Digital signature - encryption/decryption - Encryption - with public - with private key - term - plaintext: 明文 - encryption algo: 加密 algo - cyphertext - decryption algo - msg -> your private en -> his public en -> his private de -> your public de -> msg ### RSA Select p, q (big prime, p != q) n = p * q $\phi(n)=(p-1)(q-1)$ select e s.t. $gcd(\phi(n),e)=1, 1<e<\phi(n)$ $d==e^{-1}(mod\phi(n))$ Public: {e,n} Private: {d,n} - encryption - Plaintext M - Ciphertext: $C = M^e \mod n$ - decryption - Ciphertext: C - Plaintext: $M = C^d \mod n$ ### 群環體 Group - +, \* - +, \* 單位元素 - +, \* 反元素 - 封閉性 - 交換律, 結合律... 四元數 (Quarternion) - a + bi + cj + dk - $-1 = i^2 = j^2 = k^2$ - 沒有交換性 (i \* j = -j \* i) - 八元數 (Octonion) // ...數學家真的太無聊了吧 XD 1. (G, \*) is a group - $Z_p^* = Z_p - 0 = \{1,2,3,...,p-1\}$ - \* is closed - \* is associative - $\exists$ identity $e \in G$ - $\exists a^{-1} \in G$ for any $a \in G$, s.t. $a*a^{-1} = a^{-1}*a = e$ - if G is commutative, G is called a commutative group(abelian group) 2. (G, +, \*) is a ring - (G, +) is [abelian group](https://zh.wikipedia.org/wiki/%E9%98%BF%E8%B4%9D%E5%B0%94%E7%BE%A4) - \* is closed - \* is associative - 分配律: (a+b)\*c = (a\*c) + (b\*c) 3. (G, +, \*) is a field - (G, +, \*) is a ring - (G\\\{0\}, \*) is a abelian group, where 0 is 加法單位元素 - finite / infinite Why $Z_p$ is a field - because $\forall{a} \in Z_p, \exists{a^{-1}}$ - how to find $a^{-a}$ => 輾轉相除法 ### Finite Field - Example - Z5 - $2/4 = 2/4^{-1}=2\times 4 = 3$ - $(x+1)/(x^2+x+1) = (x+1)\times (x^2+x+1)^{-1}$ - e.g. $Z_{2^2}, x^2+1=(x+1)^2$ - $Z_4$ is not a field (4 is not prime) (乘法沒封閉性) - $F_8$ is a field (but ring) ### Fermat's and Euler's Theorems [Carmichael function](https://zh.wikipedia.org/wiki/%E5%8D%A1%E9%82%81%E5%85%8B%E7%88%BE%E5%87%BD%E6%95%B8) [Fermat Theorems](https://zh.wikipedia.org/wiki/%E8%B4%B9%E9%A9%AC%E5%B0%8F%E5%AE%9A%E7%90%86) $$a^{p-1}\equiv1\pmod p$$ pf: [Euler Theorems](https://zh.wikipedia.org/wiki/%E6%AC%A7%E6%8B%89%E5%AE%9A%E7%90%86_(%E6%95%B0%E8%AE%BA)) $$a^{\phi(n)}\equiv1\pmod n (\phi(n): 與n互質的數)$$ e.g. $747^100802 \bmod1000 =?$ ``` ϕ(1000)=ϕ(2^3 5^3)=ϕ(2^3)ϕ(5^3)=4*100=400 ``` How to get ϕ 1. if p is prime: $\phi(p^n)=p^n-p^{n-1}$ 2. if gcd(m,n) = 1: $\phi(mn)=\phi(m)\phi(n)$ ### CRT 中國餘數定理 $x\equiv a_1\pmod{m_1}$ $x\equiv a_2\pmod{m_2}$ ... $x\equiv a_n\pmod{m_n}$ if $m_i$ 兩兩互質 => $\exists!x\bmod M=m_1m_2...m_n$ $$x=(\sum a_iM_i(M_i^{-1}\bmod m_i)) \pmod M$$ $$M_i=\frac{M}{m_i}$$ pf: 若 m 沒有互質, 將 m 質因數分解即可 ### RSA proof M -> (e_A, n_A) C = M^e \mod n M = C^d \mod n Why works By Eulers If gdc(a,n) = 1, htena=1 Imod n) ................ 漏掉好多多多多多.............. ## SHA-X ### BirthDay paradox n 個人中,有人同一天生日的機率是多少? 都在不同天生日:$1\times(1-\frac{1}{365})\times(1-\frac{2}{365})\times...$ 有衝突的:$1-[1\times(1-\frac{1}{365})\times(1-\frac{2}{365})\times...]=1-e^{\frac{-r^2}{2N}}$ - 生日攻擊法 - 要幾次 hashes 可以得到 collision ### SHA-1 - Preimage(one-way property) - 給 h(x) 找一個 x 都很難(x 會有無限多個) - Second preimage(weak collision resistant) - **給定 x**,找到 y != x, s.t. h(x) == h(y) 很難 - Collision(strong collision resistant) - 隨便要找出 x, y 使得 h(x) == h(y) - 難度 ![](https://i.imgur.com/wAnvHkO.png) ### 訊息傳遞驗證 1. 明文 M 及 Hash(M) 一起加密傳送 2. M 及 加密後的 Hash(M) 一起傳送 3. M 及 Hash(共有secart) 後再一起 Hash 後傳送 4. M 及 Hash(secart) 一起 Hash 後,再加密傳送 - 加密通常都對 hash 完的值做,以減少複雜度 ### 數位簽章 1. ### Compression function ![](https://i.imgur.com/L2LmHzz.png) - IV: 一開始給的,例如 前 n 個質數的 sqrt - $CV_i = f(Y_{i-1},CV_{i-1})$ - 只要 f() 可以打亂即可,例如:一開始 f() 是用 DES - 執行: 1. 原值 + padding + length => 1024bit 的倍數 - padding: 100000....0 - length: 原值的長度 2. 進 function 3. 得到 hash(msg) ## Primality test - $Z_n^*$:所有跟 n 互質的數的集合 - $\phi(n) = N(n) = \Pi(質因數次方-1)$ - 費馬小定理 - 尤拉定理 - order: (?) 1. ord(n): $n^o = 1 \mod k$ 中最小的 o - generator - 中國餘數定理 - Square-and-Multipl ### Quadratic Residue a 是 quadratic residue modulo n,代表 $a\in Z_n^*$ 而且 a 的開根號也是 $Z_n^*$ - $Z_n=Q_n U \overline{Q_n}$ - p > 2 is prime and $α$ is a generator of $Z_p^*$ - $\alpha$ 的偶數次方會是 $Q_p$,$\alpha$的奇數次方會是 $\overline{Q_p}$ - $N(Q_p) = N(\bar{Q_p})=\frac1 2$ - 如果 $a\in Q_p$,則 $x^2=a$ 會有兩個解(一正一負) - **$a^\frac{p-1}{2}=-1\mod p$** - 定義 Legendre symbol:$\begin{pmatrix}\frac{a}{p}\end{pmatrix}$ - Euler's criterion: - $(\frac{a}{p})=a^{\frac{p-1}{2}}\mod p$ - e.g. $(\frac{3}{23})=\frac{23-1}{2}=1011_2$ - Jacobi symbol$(\frac{a}{n})$: - n > 2 is an odd integer, $p_i$ is prime and $n=p_1^{e_1}p_2^{e_2}...p_n^{e_n}$ ... ### Prime numbers - 如何產生質數 1. 隨機產生奇數,prime test 2. 質數離散性:$\Pi(x)~\frac{x}{\ln(x)}$ ($\Pi$:質數個數) - Solovay-Strassen primality test 1. 原始方法:測 $[2,\sqrt n]$ 有沒有 n 的因數 ### Miller-Rabin - Fact - P: odd prime - p-1 = 2^sr, where r is odd - For all $a\in N$ & $gcd(a,p)=1$ - then $a^r=1\mod n$ - or $a^{2^j r}=-1\mod n$ ## SHA3 ![](https://i.imgur.com/ok9pvvU.png) - 2006, NIST - 作法 1. 將 msg 用 10\* 的 padding 方式 - padding - simple: $10*0$ - multirate: $10*1$ ... ## MAC Message authentication code 有 key 的 hash - M || H(M) => M' || H(M') => 一般的 hash 無法認證 - 專詞 - Disclosure: 資料洩漏 - Traffic analysis: 分析資料送出頻率 - Masquerade: 資料認證 (防止第三者串改package) - Content modification: 內容竄改 - Sequence modification: 順序竄改 - Timing modification: Delay - Source repudiation: 寄件者拒絕承認(數位簽章) - Destination repudiation: 接收方確認收到 - 認證作法 - Hash function - Message encryption - Message authentication code(MAC) - MAC - Confidentiality: 機密信 - Authentication: 確認信 ![](https://i.imgur.com/DCCVLbg.png) ![](https://i.imgur.com/zQvOz28.png) - 對稱式:加密 + 認證 - 公鑰:加密 - 私鑰:認證 - 公私鑰:加密 + 認證 ![](https://i.imgur.com/5PEM3RQ.png) - HMAC - Base on Hash - ... - CMAC - 用 block cypher ## 數位簽章 - 用私鑰對 hash(msg) 簽章 => S - 用公鑰確認 public_key(S) 產生的值是否與 hash(msg) 相同 - 可是要如何確認某人的 pub_key 確實是他的? => 第三方公證人 - Attack: - (public)Key-only attack - 攻擊者只有 pub_key 卻可以產生 msg & Sign(msg) - known message attack - chosen message attack - C 把 msg 拿去請 A 簽章 - Adaptive chosen message attack - Forgeries(M 和 簽章後的 M) - Existential forgery - Selective forgery ## Secret Sharing Schemes n 個人或以上才能開鎖 - Secret Splitting - 將秘密分為 k 份,每人持一份 - 用 mod 分 - Threshold Schemes - 兩點決定一條線 - 把秘密放在線上 (ex. 某個係數上) - e.g. 兩人各持有一點 (x,y),key 就是 斜率 - Vandermonde matrix - alternative approach - 利用 拉格朗日插值法 快速找到 threshold schemes - 階乘 - 權限不同 - e.g. 一個 A == 兩個 B - 多給幾把 key to 比較有權的人 - or say 小於一定程度的 key count 就不能有權限 - VSS (Verifiable Secret Sharing) - 參加者可以驗證 - PVSS (publicly verifiable secret sharing) - 外面的人可以驗證 - i.g. e-Vote, e-Cash ## Blind Signature 第三者做簽章 (不是 sender) - i.g. 網路投票,不是選民簽章,而是選委會簽章 - 簽章的人不知道她在幫誰簽章 ![](https://i.imgur.com/W9Omzq3.png) ![](https://i.imgur.com/Yiz1WkV.png) 1. blinding: $H(m)\times r^e$ (r 是 random value, e 是選委會的 public key) 2. Singing: 選委會用自己的 private key 簽章 $(H(m)\times r^e)^d = H(m)^d\times r$ 3. Unblinding: 選民把傳回來的值再除以 r => $H(m)^d$ 也就是有簽章的 $H(m)$ 4. 最後投票,機器可以認出簽章 :::info r 的用意是為了讓選委會不知道你投給誰 ::: ## BitCoin # HW # Exam 作業跟考試有 8成 一樣,再加一兩題額外的題目

Import from clipboard

Paste your markdown or webpage here...

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template has been removed or transferred.
Upgrade
All
  • All
  • Team
No template.

Create a template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

Slide Example

API Docs

Edit in VSCode

Install browser extension

Contacts

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

Note content is identical to the latest version.
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully