wa.__.wa
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 人臉辨識初體驗 opencv 原生是 C 語言影像處理函式庫 ## PIL 圖像讀取,旋轉 ```python= from PIL import Image with Image.open(r"../職訓所照片/07-xxx.jpg") as im: # im.rotate(45).show() print(type(im)) print(dir(im)) img = np.array(im) print(type(img)) # print(img) print(img.shape) ``` <!-- > 查看 ```python= # 移除魔法函式後的方法與屬性 <class 'http.client.HTTPResponse'> [ "begin", "chunk_left", "chunked", "close", "closed", "code", "debuglevel", "detach", "fileno", "flush", "fp", "getcode", "getheader", "getheaders", "geturl", "headers", "info", "isatty", "isclosed", "length", "msg", "peek", "read", "read1", "readable", "readinto", "readinto1", "readline", "readlines", "reason", "seek", "seekable", "status", "tell", "truncate", "url", "version", "will_close", "writable", "write", "writelines", ] <class 'PIL.JpegImagePlugin.JpegImageFile'> [ "alpha_composite", "app", "applist", "apply_transparency", "bits", "close", "convert", "copy", "crop", "custom_mimetype", "decoderconfig", "decodermaxblock", "draft", "effect_spread", "entropy", "filename", "filter", "format", "format_description", "fp", "frombytes", "get_child_images", "get_format_mimetype", "getbands", "getbbox", "getchannel", "getcolors", "getdata", "getexif", "getextrema", "getim", "getpalette", "getpixel", "getprojection", "getxmp", "has_transparency_data", "height", "histogram", "huffman_ac", "huffman_dc", "icclist", "im", "info", "layer", "layers", "load", "load_djpeg", "load_end", "load_prepare", "load_read", "map", "mode", "palette", "paste", "point", "putalpha", "putdata", "putpalette", "putpixel", "pyaccess", "quantization", "quantize", "readonly", "reduce", "remap_palette", "resize", "rotate", "save", "seek", "show", "size", "split", "tell", "thumbnail", "tile", "tobitmap", "tobytes", "toqimage", "toqpixmap", "transform", "transpose", "verify", "width", ] ``` --> ## Numpy 圖片裁切 為了讀取中文字體 open ---> numpy ndarray ---> 切片 ---> fromarray --> show Image 物件 ---> nd物件 ---> Image物件 影像物件的函式 https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.fromarray ```python= from PIL import Image with Image.open(r"../職訓所照片/07-xxx.jpg") as im: img = np.array(im) # 使用 numpy 切片來裁切臉部區域 # 300:1600 是 row 的範圍(Y 軸),700:2000 是 col 的範圍(X 軸) face_region = img[300:1700, 700:2000, :] # 將裁切後的圖像轉換回 PIL 影像並顯示或保存 face_image = Image.fromarray(face_region) print(type(face_image)) face_image.show() # 顯示裁切後的圖像 # face_image.save('face_cropped.jpg') # 選擇保存裁切後的圖像 ``` ## PIL 圖片合成,顯示字體 pillow 官方範例: https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image.convert https://pillow.readthedocs.io/en/stable/handbook/concepts.html#concept-modes https://pillow.readthedocs.io/en/stable/reference/ImageDraw.html#example-draw-partial-opacity-text Mode 模式 ## `Pillow` 模式 (Mode) 翻譯: 1. **1 (1位元像素,黑白)**: - 單位元(每個像素1位元),非彩色圖像,像素值為0或1。黑色為0,白色為1。 2. **L (8位元像素,灰度)**: - 每個像素8位元,範圍為0(黑色)到255(白色)。這是灰度圖像的模式。 4. **RGB (3x8位元像素,真彩色)**: - 每個像素由紅色、綠色、藍色三個通道組成,每個通道8位元。這是標準的真彩色模式。 5. **RGBA (4x8位元像素,真彩色 + Alpha)**: - 與 `RGB` 類似,但多了一個 Alpha 通道。Alpha 通道定義了像素的透明度,0 表示完全透明,255 表示完全不透明。 這些模式定義了圖像每個像素的結構和存儲方式,選擇適合的模式可以根據不同的應用需求進行圖像處理和顯示。 延伸閱讀: ```python= # https://pillow.readthedocs.io/en/stable/reference/ImageDraw.html#example-draw-partial-opacity-text from PIL import Image, ImageDraw, ImageFont # get an image with Image.open("../職訓所照片/07-xxx.jpg").convert("RGBA") as base: # make a blank image for the text, initialized to transparent text color txt = Image.new("RGBA", base.size, (255, 255, 255, 0)) # get a font fnt = ImageFont.truetype( r"/Users/larry/Library/CloudStorage/OneDrive-個人/新竹職訓所/補充講義/NotoSansTC-Medium.ttf", 80) # get a drawing context d = ImageDraw.Draw(txt) # draw text, half opacity d.text((1200, 1300), "原始照片", font=fnt, fill=(255, 255, 255, 128)) # draw text, full opacity d.text((1200, 1600), "01-王齡移.jpg", font=fnt, fill=(255, 255, 255, 255)) out = Image.alpha_composite(base, txt) out.show() ``` 另外一種方式用 numpy 用二進位讀圖片再用 cv2 解碼 https://vocus.cc/article/664fec0afd8978000149dcd6 老師提供方式: 用 Pillow 讀檔案為陣列形式,加上字體 # 學習資源 ## Opencv https://steam.oxxostudio.tw/category/python/ai/opencv.html ## urlib request https://docs.python.org/zh-tw/3/library/urllib.request.html#module-urllib.request # Pyhton Pillow 套件模組 https://pillow.readthedocs.io/en/stable/reference/Image.html 格式美化查看: https://codebeautify.org/python-formatter-beautifier# 人臉辨識完整程式碼: 課堂透過案例說明能夠這樣運用跟改參數,以下是使用 **小助理** 進行的文字解釋跟說明。 ``` import dlib import cv2 # 選擇第一隻攝影機 cap = cv2.VideoCapture(2) # cap = cv2.VideoCapture('index00.mp4') # 調整預設影像大小,預設值很大,很吃效能 cap.set(cv2. CAP_PROP_FRAME_WIDTH, 1000) cap.set(cv2. CAP_PROP_FRAME_HEIGHT, 1000) # 取得預設的臉部偵測器 detector = dlib.get_frontal_face_detector() # 根據shape_predictor方法載入68個特徵點模型,此方法為人臉表情識別的偵測器 predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat') # 當攝影機打開時,對每個frame進行偵測 while True: # 讀出frame資訊 # 真或假,1frame ndarray _, frame = cap.read() # frame = cv2.flip(frame,0) img_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) face_rects = detector(img_gray, 0) # 取出偵測的結果 for d in face_rects: x1 = d.left() y1 = d.top() x2 = d.right() y2 = d.bottom() # 繪製出偵測人臉的矩形範圍1 cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2, cv2.LINE_AA) # 找出特徵點位置 shape = predictor(img_gray, d) # 繪製68個特徵點 for i in range(68): cv2.circle(frame, (shape.part(i).x, shape.part(i).y), 2, (128, 128, 128), 2) # 輸出到畫面 cv2.namedWindow('Face Detection', 0) cv2.imshow("Face Detection", frame) # 如果按下ESC键,就退出 if cv2.waitKey(10) == 27: break # 釋放記憶體 cap.release() # 關閉所有視窗 cv2.destroyAllWindows() ``` ```python import os import numpy as np import cv2 # 影像處理模組 OpenCV import dlib # 人臉識別模組 dlib path = '/Users/larry/Library/CloudStorage/OneDrive-個人/新竹職訓所/Python/Python310/職訓所照片/' # 裁剪後儲存的目標資料夾 target_path = './裁剪後照片/' # 檢查資料夾是否存在,否則建立 if not os.path.exists(target_path): os.mkdir(target_path) name_list = [] for root, dirs, files in os.walk(path): for file in files: name_list.append(os.path.join(root, file)) # print(name_list) print(len(name_list)) # dlib detector = dlib.get_frontal_face_detector() # 使用dlib模組提供的人臉偵測函式,基於HOG特徵,建立找尋人臉的物件 predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat') # 人臉68個特徵形狀預測物件的產生,是基于 Ensemble of Regression Trees 理論 # cv2讀取影像 自寫函式 def cv2_imread(filePath): cv_img = cv2.imdecode(np.fromfile(filePath, dtype=np.uint8), cv2.IMREAD_UNCHANGED) return cv_img for name in name_list: img = cv2_imread(name) # 檢查影像是否成功讀取 if img is None: print(f"Failed to load image: {name}") continue # 跳過無法讀取的影像 # 過濾掉非圖片檔案,例如 .DS_Store if not name.lower().endswith(('.png', '.jpg', '.jpeg')): print(f"Skipping non-image file: {name}") continue # 取灰度 img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # 先看到人臉在甚麼地方 rects = detector(img_gray, 1) # 人臉方框的矩形左上右下座標 # print(dir(rects[0])) # <class '_dlib_pybind11.rectangle'> # 'area', 'bl_corner', 'bottom', 'br_corner', 'center', 'contains', 'dcenter', 'height', # 'intersect', 'is_empty', 'left', 'right', 'tl_corner', 'top', 'tr_corner', 'width' # 增加裁切範圍的邊界(例如增加 20 像素) padding = 20 # 計算擴大後的裁切範圍,並確保不超出影像的邊界 top = max(0, rects[0].top() - padding) bottom = min(img.shape[0], rects[0].bottom() + padding) left = max(0, rects[0].left() - padding) right = min(img.shape[1], rects[0].right() + padding) img1 = img[rects[0].top():rects[0].bottom(), rects[0].left():rects[0].right()] path = name[:-4] + '1.jpg' # 取得檔案名稱(不含路徑) filename = os.path.basename(name) filename_without_extension = os.path.splitext(filename)[0] + '1.jpg' # 正確拼接目標路徑 path2 = os.path.join(target_path, filename_without_extension) print(path) cv2.imencode('.jpg', img1)[1].tofile(path2) # a = "ABCDEFG" # # print(a[1:5:2]) # B, # 位置:0,1,2 # a[初始位置:最後位置+1:] ``` 辨識動態影片 ``` # 人臉辨識動態 import pickle import cv2 import dlib import numpy from PIL import Image, ImageDraw, ImageFont font_file = r"./NotoSansTC-Bold.ttf" _font = ImageFont.truetype(font_file, 12) # PIL def print_array_details(a): print('Dimensions: %d, shape: %s, dtype: %s' % (a.ndim, a.shape, a.dtype)) pickle_file1 = './裁剪後照片/staff_descriptors.pickle' pickle_file2 = './裁剪後照片/staff_candidate.pickle' with open(pickle_file1, 'rb') as f1: descriptors = pickle.load(f1) # 載入 30 個 基準人頭的特徵矩陣,每一個元素都是 numpy with open(pickle_file2, 'rb') as f2: candidate = pickle.load(f2) # 載入候選人姓名 predictor = "shape_predictor_68_face_landmarks.dat" # 人臉68特徵點模型 recogmodel = "dlib_face_recognition_resnet_model_v1.dat" # 人臉辨識模型 detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(predictor) facerec = dlib.face_recognition_model_v1(recogmodel) # 讀入人臉辨識模型 file = "./index00_smallv.mp4" cap = cv2.VideoCapture(file) # 讀取電腦攝影機鏡頭影像 width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # 取得影像寬度 height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 取得影像高度 # fourcc = cv2.VideoWriter_fourcc(*'XVID') # out = cv2.VideoWriter('output.avi', fourcc, 30.0, (width, height)) # 產生空的影片,fps=30 fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter(f'{file}_output.mp4', fourcc, 30.0, (width, height)) if not cap.isOpened(): print("Cannot open camera") exit() while True: ret, frame = cap.read() if not ret: print("Cannot receive frame") break imgObj = Image.fromarray(frame) # 產生一個 ImageObject # 檢查影像是否過於模糊,若模糊則跳過 # if cv2.Laplacian(frame, cv2.CV_64F).var() < 100: # print("Skipping blurred frame") # continue # 跳過過於模糊的幀 gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) rects = detector(frame, 1) # 讀到了一個畫面 dist = [] dict_face_dist = {} for n, d in enumerate(rects): shape = predictor(frame, d) # 特徵點偵測 feature = facerec.compute_face_descriptor(frame, shape) # 取得128維特徵向量 d_test = numpy.array(feature) # 128維特徵向量轉成 numpy # 計算歐式距離 for item in descriptors: dist_ = numpy.linalg.norm(item - d_test) dist.append(dist_) dict_face_dist[n] = [(d.left(), d.top(), d.right(), d.bottom()), dist] dist = [] draw = ImageDraw.Draw(imgObj) for n, key in enumerate(dict_face_dist): # 將比對人名和比對出來的歐式距離組成一個dict c_d = dict(zip(candidate, dict_face_dist[key][1])) # 根據歐式距離由小到大排序 cd_sorted = sorted(c_d.items(), key=lambda d: d[1]) # 取得最短距離就為辨識出的人名 # rec_name = cd_sorted[0][0] + str(n) rec_name = cd_sorted[0][0] + str(round(cd_sorted[0][1],2)) print(f'{str(key) + cd_sorted[0][0]:10s} {round(cd_sorted[0][1], 2)}') if round(cd_sorted[0][1], 2) <= 0.5: left = dict_face_dist[key][0][0] top = dict_face_dist[key][0][1] right = dict_face_dist[key][0][2] bottom = dict_face_dist[key][0][3] draw.rectangle(((left, top), (right, bottom)), outline='blue') # txt_w, txt_h = draw.textsize(rec_name, font=_font) draw.rectangle(((left, bottom), (right, bottom + 20 + 10)), fill='blue', outline='blue') draw.text((left + 8, bottom + 5), rec_name, fill='white', font=_font) img = numpy.array(imgObj) out.write(img) # 將取得的每一幀圖像寫入空的影片 cv2.imshow('image processing', img) if cv2.waitKey(int(1000 / 30)) == ord('q'): break # 按下 q 鍵停止 cap.release() out.release() # 釋放資源 cv2.destroyAllWindows() # Skipping invalid or failed to load image: .DS_Store ``` 提問給 AI 的回覆調整參數說明: 要修改 `faces = face_cascade.detectMultiScale(img, scaleFactor=1.03, minNeighbors=9, minSize=(55,55), maxSize=(80,80))` 這行程式碼,您可以調整以下參數來影響人臉偵測的結果: ### 可調參數說明: 1. **`scaleFactor`**: - 這個參數決定每次圖像尺寸縮小多少。較大的值會加速檢測過程,但可能會漏掉一些人臉。較小的值則會進行更細緻的檢測,但檢測時間也會增加。 - 修改範例:`scaleFactor=1.05` 或 `scaleFactor=1.1` 來加快偵測,或減少到 `scaleFactor=1.01` 提高精確度。 2. **`minNeighbors`**: - 這個參數決定每個候選區域需要多少個鄰居才能被保留。值越高,結果越精確,但可能會漏掉一些人臉。值越低,則可能會偵測到更多不真實的人臉。 - 修改範例:將 `minNeighbors=5` 來降低過濾條件,或將其增加到 `minNeighbors=10` 提高準確度。 3. **`minSize`** 和 **`maxSize`**: - 這些參數用來設置檢測框的最小和最大尺寸。這可以控制偵測到的臉部大小範圍。當圖像解析度較大時,您可以增加這些數值來避免檢測到過小的臉。 - 修改範例: - `minSize=(30,30)`, `maxSize=(100,100)`:用於偵測更小的臉。 - `minSize=(100,100)`, `maxSize=(300,300)`:用於高解析度圖像中更大的臉部。 ### 具體修改範例: 1. 偵測更大範圍的人臉,並提高偵測速度: ```python faces = face_cascade.detectMultiScale(img, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), maxSize=(200, 200)) ``` 2. 提高檢測的精確度,並且專注於較小的臉部: ```python faces = face_cascade.detectMultiScale(img, scaleFactor=1.02, minNeighbors=10, minSize=(20, 20), maxSize=(60, 60)) ``` ### 偵測過程的實驗: - **`scaleFactor`** 越接近 1,偵測越精確但越耗時;越大,則偵測速度較快,但可能忽略一些人臉。 - **`minNeighbors`** 越大,偵測到的臉越可靠;越小,偵測的結果會更多,但可能有更多的誤判。 - **`minSize`** 和 **`maxSize`** 可以根據圖像的解析度來設定,這樣可以防止偵測到過小或過大的無關區域。 這樣,您可以根據具體情況來調整這些參數,以最佳化人臉偵測的結果。

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully