Zheng-Liang Lu
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    1
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    --- tags: computer science, finance --- <center> # **Python Programming in Finance** :::info Location: TBA Time: TBA ::: </center> <img src = "https://i.imgur.com/3pCd7Hz.png" height = 200px style="float:left"/> <p style="text-align: right"> "All money is a matter of belief."<br>-- Adam Smith </p> <p style="text-align: right"> "Investing is simple, not easy."<br>-- Warren Buffett </p> <p style="text-align: right"> "In the business world, the rearview mirror<br>is always clearer than the windshield."<br>-- Warren Buffett </p> <p style="text-align: right"> "It's a Marathon, not a sprint."<br>-- Anonymous </p> <p style="text-align: right"> "Money often costs too much."<br>-- Ralph Waldo Emerson </p> ## **Class Information** ### Instructor - Name: 盧政良 (Zheng-Liang Lu, Arthur) - Email address: arthurzllu@gmail.com ### Objectives This course is an inter-disciplinary course in the fields of <b>computer science</b>, <b>finance</b>, and (a lot of) <b>math</b>: - Python programming - Debut of quantative research: data acquisition, visualization, strategy development, and backtesting - Selected math tools - Modern portfolio theory - Financial time series analysis - Pricing theory - Risk management - (Optional) Machine learning These techniques are essential both in <b><font color = "red">P</font></b> & <b><font color = "red">Q</font></b> quant. Just for the record, this course is not to teach you how to get rich in your life but get rich in knowledge (such that you may get rich in the future life). ### Prerequisites - Basic knowledge about [financial markets](https://en.wikipedia.org/wiki/Financial_market) - Basic level of Python programming - You may consider my [Python 101](https://hackmd.io/@arthurzllu/HJNXq84SO) course. ### Working Environment - Google Colab with Python 3.6 <font size = -1>[link](https://colab.research.google.com/)</font> - You need a Google account, of course. :::warning Recording of classroom lectures is <font color="red">**prohibited**</font> unless advance written permission is obtained from the class instructor and any guest presenter(s). ::: ## **Syllabus** - [Course overview](https://www.csie.ntu.edu.tw/~d00922011/python/slides/syllabus.pdf) - [2021 FRM Study Guide](https://www.csie.ntu.edu.tw/~d00922011/python/misc/FRM-StudyGuide-092520_annotated.pdf) - Preliminary knowledge about CS <font size = -1>[link](https://www.csie.ntu.edu.tw/~d00922011/python/slides/cs_preliminary_knowledge.pdf)</font> - (FYR) Kronos Research, [Kronos Webinar Trilogy #1 - Quant Trading 101](https://www.facebook.com/kronosresearch/videos/3280075665338110/), 2020.5.16 ### ++Python Crash Course++ - Variable <font size = -1>==[notebook](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_1_python_programming.ipynb)==</font> <font size = -1>==[pdf](https://www.csie.ntu.edu.tw/~d00922011/python/slides/lecture1.pdf)==</font> - Basic data types: int/float, str, bool - Assignment/arithmetic/rational/logical operators - List & slicing - Branching (if-elif-else) - Iterations (for/while loops) - Monte Carlo simulation - Bisection method for root-finding - Function & anonymous expression (lambda) :::success You may refer to my python course [here](https://hackmd.io/@arthurzllu/HJNXq84SO). ::: ### ++Debut of Quantitative Research++ - Data acquisition - Easy-to-use data collector: *ffn* <font size = -1>==[notebook](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_2_debut_of_quant.ipynb)==</font> - Another easy-to-use data collector: yfinance <font size = -1>==[notebook](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_2_yfinance.ipynb)==</font> - DataFrame of *pandas* <font size = -1>==[notebook](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_2_pandas.ipynb)==</font> - Data visualization: *matplotlib* <font size = -1>==[notebook](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_2_graphics.ipynb)==</font> - Strategy development - Technical analysis: *ta*/*talib* <font size = -1>==[notebook](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_2_technical_analysis.ipynb)==</font> - Rodolfo Toríbio Farias Nazário, Jéssica Lima e Silva, Vinicius Amorim Sobreiro, Herbert Kimura, [A literature review of technical analysis on stock markets](https://www.sciencedirect.com/science/article/pii/S1062976917300443), 2017 - Backtesting: *backtesting* <font size = -1>==[notebook](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_2_backtesting.ipynb)==</font> <center> ![](https://i.imgur.com/xuhbN4H.png =500x) <font size = -1>https://finviz.com/</font> </center> ### ++Selected Mathematical Tools++ - Package *numpy* <font size = -1>==[notebook](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_3_math_1.ipynb)==</font> - Vectorization - Matrix computation - Inner product - Inverse matrix - Package *scipy* - Interpolation - Linear interpolation - Cubic spline - Optimization - Gradient descent - Essentials of Statistics <font size = -1>==[notebook](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_3_math_2.ipynb)==</font> <font size = -1>==[pdf](https://www.csie.ntu.edu.tw/~d00922011/python/slides/statistics.pdf)==</font> - Probability models - You need to know at least the following four distribution: [normal distribution](https://en.wikipedia.org/wiki/Normal_distribution), [$\chi^2$ distribution](https://en.wikipedia.org/wiki/Chi-square_distribution), [Student's t-distribution](https://en.wikipedia.org/wiki/Student%27s_t-distribution), [F distribution](https://en.wikipedia.org/wiki/F-distribution). - Random variable & random number generator - Hypothesis testing - Null hypothesis, significant level $\alpha$ and $p$-value. - Parameter/interval estimation - Simple linear regression <font size = -1>==[pdf](https://www.csie.ntu.edu.tw/~d00922011/python/slides/linear_regression.pdf)==</font> :::success You may refer to my statistics course [here](https://hackmd.io/@arthurzllu/ByC0nhVkr). ::: ### ++Modern Portfolio Theory++ - Mean-variance framework and the efficient frontier <font size = -1>==[notebook](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_4_mean_variance_analysis.ipynb)==</font> - Capital asset pricing model (CAPM) <font size = -1>==[notebook](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_4_CAPM.ipynb)==</font> - Multi-factor models <font size = -1>==[notebook](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_4_factor_models.ipynb)==</font> - Arbitrage pricing theory (APT) - Fama-French 3-factor model - Barra risk factor analysis - AQR: Buffett's Alpha <!-- - Kelly formula for portfolio allocation <font size = -1>==[notebook]()==</font> --> ### ++Financial Time Series Analysis++ - Autocorrelation <font size = -1>==[notebook](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_5_time_series.ipynb)==</font> - Stationary process, order of integration, and the mean-reverting property - Autoregressive moving-average (ARMA) model - Generalized autoregressive conditional heteroskedasticity (GARCH) model <font size = -1>==[notebook](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_5_garch.ipynb)==</font> - Vector autoregression (VAR) model <font size = -1>==[notebook](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_5_var.ipynb)==</font> - Cointegration & vector error correction model (VECM) <font size = -1>==[notebook](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_5_cointegration.ipynb)==</font> - Granger causality <font size = -1>==[notebook](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_5_granger_causality.ipynb)==</font> - Structural break <font size = -1>==[notebook](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_5_structural_break.ipynb)==</font> ### ++Pricing Theory++ - Introduction to futures and options <font size = -1>==[pdf](https://www.csie.ntu.edu.tw/~d00922011/python/slides/options.pdf)==</font> <font size = -1>==[notebook](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_6_options.ipynb)==</font> - Arbitrage-free principle - Fundamental theorems of asset pricing - Binomial option pricing model (BOPM) - Risk-neutral valuation - Monte Carlo simulation for option pricing - Black-Scholes formula for European options - (FYR) Case study: Ai Jun Hou, Weining Wang, Cathy Y H Chen, Wolfgang Karl Härdle, [Pricing Cryptocurrency Options](https://academic.oup.com/jfec/article/18/2/250/5837734), 2020 - Model calibration: implied volatility - [CBOE VIX Index](https://www.cboe.com/tradable_products/vix/) - Simulation of financial models: geometric Brownian motion, mean-reverting process, stochastic volatility process, jump-diffusion process <!-- - Case study: Hawkes model & limit-order book (LOB) <font size = -1>==[notebook]()==</font> <font color = "red" size = -1>new</font> - QuantLib <font size = -1>==[notebook]()==</font> <font color = "red" size = -1>new</font> --> ### ++Risk Management++ - Value at risk (VaR) & expected shortfall (ES) <font size = -1>==[pdf](https://www.csie.ntu.edu.tw/~d00922011/python/slides/var.pdf)==</font> <font size = -1>==[notebook](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_7_VaR.ipynb)==</font> - Futures Hedging <font size = -1>==[notebook](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_7_futures_hedging.ipynb)==</font> <font color = "red" size = -1>new</font> - Sensitivity analysis: Greeks <font size = -1>==[pdf](https://www.csie.ntu.edu.tw/~d00922011/python/slides/greeks.pdf)==</font> <font size = -1>==[notebook](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_7_greeks.ipynb)==</font> - Delta hedging ### ++Machine Learning++ <font size = -1>[notebook1](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_8_machine_learning_tutorial_1.ipynb)</font> <font size = -1>[notebook2](https://www.csie.ntu.edu.tw/~d00922011/python/notebooks/pyf_8_machine_learning_tutorial_2.ipynb)</font> - Supervised learning - Ridge/LASSO regression <font size = -1>==[notebook]()==</font> - Logistic regression <font size = -1>==[notebook]()==</font> - Support vector machine (SVM) <font size = -1>==[notebook]()==</font> - Decision tree, random forest, AdaBoost <font size = -1>==[notebook]()==</font> - Unsupervised learning - K-means clustering <font size = -1>==[notebook]()==</font> - Principal component analysis (PCA) <font size = -1>==[notebook]()==</font> - Reinforcement learning - Q-learning <font size = -1>==[notebook]()==</font> - Deep learning - Recurrent net (RNN) <font size = -1>==[notebook]()==</font> - Long/Short-Term Memeory Model (LSTM) <font size = -1>==[notebook]()==</font> ## Programming Labs :::warning You can find the list of programming assignments here: https://hackmd.io/@arthurzllu/Hy9ana_iD ::: <center> <iframe src="" width = "700px" height = "200px"></iframe> </center> ## References ### ++Computer Science++ #### Python Programming - [CS41 happy code the python programming language](https://stanfordpython.com/archive/), Stanford University <font size = -1 color = "red">IN PROGRESS</font> - [Python Practice](http://python.berkeley.edu/resources/), University of California, Berkeley <font size = -1 color = "red">IN PROGRESS</font> - [CS 61A: Structure and Interpretation of Computer Programs](https://cs61a.org/), University of California, Berkeley <font size = -1 color = "red">IN PROGRESS</font> - [CMU 15-112: Fundamentals of Programming and Computer Science](https://www.cs.cmu.edu/~112/index.html), Carnegie Mellon University, 2021sp <font size = -1 color = "red">IN PROGRESS</font> #### Quantitative Finance by Python - https://python-advanced.quantecon.org/ #### Machine Learning for Finance - Marcos Lopez de Prado, [Advances in Financial Machine Learning](https://www.amazon.com/Linear-Algebra-5th-Stephen-Friedberg/dp/0134860241/), 2018 ![](https://i.imgur.com/d6H0MJh.png =100x) ### ++Mathematical Foundations++ #### Linear Algebra - Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, [Linear Algebra](https://www.amazon.com/Linear-Algebra-5th-Stephen-Friedberg/dp/0134860241/), 5/e, 2018 ![](https://i.imgur.com/Si0JvQb.png =100x) #### Probability Models - Sheldon Ross, [Introduction to Probability Models](https://www.elsevier.com/books/introduction-to-probability-models/ross/978-0-12-814346-9), 12/e, 2019 ![](https://i.imgur.com/57W4fGF.jpg =100x) #### Statistics - Svetlozar T. Rachev, Markus Hoechstoetter, Frank J. Fabozzi, and Sergio M. Focardi, [Probability and Statistics for Finance](https://www.wiley.com/en-us/Probability+and+Statistics+for+Finance-p-9780470400937), 2010 ![](https://i.imgur.com/UcAVVhr.png =100x) - Robert V. Hogg, Joseph W. McKean, and Allen T. Craig, [Introduction to Mathematical Statistics](https://www.amazon.com/-/zh_TW/dp/0134686993/), 8/e, 2019 ![](https://i.imgur.com/2juN4uq.png =100x) - George Casella and Roger L. Berger, [Statistical Inference](https://www.amazon.com/Statistical-Inference-George-Casella/dp/0534243126), 2/e, 2001 ![](https://i.imgur.com/D9fxPRb.png =100x) - 陳旭昇,[統計學:應用與進階](http://homepage.ntu.edu.tw/~sschen/Book/Book1.html),第三版 ![](https://i.imgur.com/SveUJDN.png =100x) - 陳旭昇,[時間序列分析 - 總體經濟與財務金融之應用](http://homepage.ntu.edu.tw/~sschen/Book/Book2.htm),第二版 ![](https://i.imgur.com/b2Ubehb.png =100x) #### Time Series - Kutner, Nachtsheim, Neter, and Li, [Applied Linear Statistical Models: Applied Linear Regression Models](https://www.amazon.com/Applied-Linear-Statistical-Models-Michael/dp/007310874X), 5/e, 2019 ![](https://i.imgur.com/m6wwNY4.png =100x) #### Numerical Methods - Paul Glasserman, [Monte Carlo Methods in Financial Engineering](https://www.springer.com/gp/book/9780387004518), 2003 ![](https://i.imgur.com/ekBWrHE.png =100x) ### ++Finance++ #### Financial Market - Frank J. Fabozzi, Frank J. Jones, Francesco A. Fabozzi, and Steven V. Mann, [Foundation of Global Financial Markets and Institutions](https://www.amazon.com/Foundations-Global-Financial-Markets-Institutions/dp/0262039540), 5/e, 2019 ![](https://i.imgur.com/4ixEBy1.png =100x) - Stanley Eakins Frederic Mishkin, [Financial Markets & Institutions](https://www.amazon.com/Financial-Markets-Institutions-Stanley-Frederic/dp/1292215003), 9/e, 2018 ![](https://i.imgur.com/GCnUWr7.png =100x) - Frank Fabozzi, [Bond Markets, Analysis, and Strategies](https://www.amazon.com/Bond-Markets-Analysis-Strategies-9th/dp/0133796779), 9/e, 2014 ![](https://i.imgur.com/r5yyYBt.png =100x) #### Investment - Zvi Bodie, Alex Kane, Alan J. Marcus, [Investments](https://www.amazon.com/ISE-Investments/dp/1260571157/), 12/e, 2020 ![](https://i.imgur.com/OJ0I6Zf.png =100x) #### Derivatives - John C. Hull, [Options, Futures, and Other Derivatives](https://www.amazon.com/Options-Futures-Other-Derivatives-10th/dp/013447208X), 10/e, 2017 ![](https://i.imgur.com/hO6Qq5e.png =100x) #### Portfolio Management - Frank J. Fabozzi, Sergio M. Focardi, and Petter N. Kolm, [Financial Modeling of the Equity Market: From CAPM to Cointegration](https://onlinelibrary.wiley.com/doi/book/10.1002/9781119201236), 2012 ![](https://i.imgur.com/rYjNdsx.png =100x) - 石川,[因子投資:方法與實踐](https://www.sanmin.com.tw/Product/index/007867990),2020 ![](https://i.imgur.com/fdoEKVz.png =100x) - Fischer Black and Robert Litterman, [Global Portfolio Optimization](https://www.jstor.org/stable/4479577), 1992: [pdf](http://www.sef.hku.hk/tpg/econ6017/2011/black-litterman-1992.pdf) - Heinz Zimmermann, Wolfgang Drobetz, Peter Oertmann, [Global Asset Allocation: New Methods and Applications](https://www.amazon.com/Global-Asset-Allocation-Methods-Applications/dp/0471264261), 2002 ![](https://i.imgur.com/QRyHY47.png =100x) - Bob Litterman and Quantitative Resources Group, [Modern Investment Management: An Equilibrium Approach](https://www.amazon.com/Modern-Investment-Management-Equilibrium-Approach/dp/0471124109), 2003 ![](https://i.imgur.com/iNHMQQP.png =100x) - Igor Tulchinsky, [Finding Alphas: A Quantitative Approach to Building Trading Strategies](https://www.amazon.com/-/zh_TW/dp/1119571219), 2019 ![](https://i.imgur.com/9OSTQOB.png =100x) #### Trading System - Perry J. Kaufman, [Trading Systems and Methods](https://www.amazon.com/Trading-Systems-Methods-Website-Wiley/dp/1118043561), 5/e, 2013 ![](https://i.imgur.com/fRQBwjE.png =100x) #### Risk Management - John C. Hull, [Risk Management and Financial Institutions](https://www.amazon.com/Management-Financial-Institutions-Wiley-Finance/dp/1119448115/), 5/e, 2018 ![](https://i.imgur.com/wJMVQtp.png =100x) - Emanuel Derman, Michael B. Miller, and David Park, [The Volatility Smile](https://www.amazon.com/Volatility-Smile-Wiley-Finance/dp/1118959167), 2016 ![](https://i.imgur.com/OsigTVf.png =100x) - Colin Bennett, [Trading Volatility: Trading Volatility, Correlation, Term Structure and Skew](https://www.amazon.com/Trading-Volatility-Correlation-Term-Structure/dp/1499206070), 2014 ![](https://i.imgur.com/kFuLglh.png =100x) - Dan Passarelli, [Trading Option Greeks: How Time, Volatility, and Other Pricing Factors Drive Profits](https://onlinelibrary.wiley.com/doi/book/10.1002/9781118531846), 2/e, 2012 ![](https://i.imgur.com/dlGi0qa.png =100x) - Rama Cont, [Frontiers in Quantitative Finance: Volatility and Credit Risk Modeling](https://onlinelibrary.wiley.com/doi/book/10.1002/9781118266915), 2012 ![](https://i.imgur.com/UX7Jw0C.png =100x) - Global Association of Risk Professionals, [Financial Risk Manager (FRM®)](https://www.garp.org/#!/frm) - You may refer to the official study guide: https://www.csie.ntu.edu.tw/~d00922011/python/misc/FRM-StudyGuide-092520_annotated.pdf #### Financial Engineering: Pricing Theory & Financial Mathematics - Tomas Björk, [Arbitrage Theory in Continuous Time](https://www.amazon.com/Arbitrage-Theory-Continuous-Oxford-Finance/dp/019957474X), 3/e, 2009 ![](https://i.imgur.com/883OCn4.png =100x) - Steven Shreve, [Stochastic Calculus for Finance I: The Binomial Asset Pricing Model](https://www.springer.com/gp/book/9780387401003), 2004 ![](https://i.imgur.com/wDR0bLU.png =100x) - Steven Shreve, [Stochastic Calculus for Finance II: Continuous-Time Models](https://www.springer.com/gp/book/9780387401010), 2004 ![](https://i.imgur.com/P64Gat4.png =100x) - Brigo, Damiano, Mercurio, Fabio, [Interest Rate Models Theory and Practice with Smile, Inflation and Credit](https://www.springer.com/it/book/9783540221494), 2/e, 2006 ![](https://i.imgur.com/s2ppFwP.png =100x) ### Additional Reading Materials - Burton G. Malkiel,漫步華爾街:超越股市漲跌的成功投資策略 ![](https://i.imgur.com/5xUY7Vo.png =110x) - James Owen Weatherall,華爾街的物理學 ![](https://i.imgur.com/0CKILZG.png =100x) - Nassim Nicholas Taleb,隨機騙局 ![](https://i.imgur.com/u7wdcRU.png =100x) ### MISC - https://personal.ntu.edu.sg/nprivault/indext.html

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully