RusselCK
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    --- tags: 進階電腦系統理論與實作, NCKU Linux Kernel Internals, 作業系統 --- # 2020q3 Homework5 (quiz5) contributed by < `RusselCK` > ###### tags: `RusselCK` > [浮點數運算 & 數值系統 & Bitwise 練習題](https://hackmd.io/@sysprog/2020-quiz5) ## Q1. 浮點數除法程式: (`fdiv.c`) ```cpp= #include <stdio.h> #include <stdlib.h> double divop(double orig, int slots) { if (slots == 1 || orig == 0) return orig; int od = slots & 1; double result = divop(orig / D1, od ? (slots + D2) >> 1 : slots >> 1); // D1 = 2; D2 = 1; if (od) result += divop(result, slots); return result; } ``` * 假設 `divop()` 的第二個參數必為大於 `0` 的整數,而且不超過 `int` 型態能表達的數值上界 * 程式碼解析: ```cpp=4 double divop(double orig, int slots){ ``` * 依據題意, `orig` 為 被除數, `slots` 為除數 * `orig` 的型態 為 雙精度浮點數 ( `double` ) ```cpp=5 if (slots == 1 || orig == 0) return orig; ``` * 當 除數為 1 或 被除數為 0 時,除法結果還是被除數 ```cpp=7 int od = slots & 1; double result = divop(orig / D1, od ? (slots + D2) >> 1 : slots >> 1); ``` * 運用 [quiz4 Q4](https://hackmd.io/glZZTDqfR4e7VC35RH907A?view#Q4-%E9%99%A4%E6%95%B8%E7%82%BA-PAGE_QUEUES-%E7%9A%84%E9%99%A4%E6%B3%95) 的概念: * **若 被除數 與 除數 都有 2 因子 ,可將兩者都先除以 2 ,除法結果不變** * 浮點數可以一直除以 2 * `od` 判斷 除數 `slots` 是否為 偶數 * 若 `slots` 為偶數,則 `od` 為 0 * 若 `slots` 為奇數,則 `od` 為 1 * 若 除數 `slots` 為 偶數,則 被除數 `orig` 與 除數 `slots` 同除以 2,除法結果不變 * `divop(double orig, int slots)` = `divop(orig / 2, slots >> 1)` * 因此, **D1 = `2`** ```cpp=8 double result = divop(orig / D1, od ? (slots + D2) >> 1 : slots >> 1); if (od) result += divop(result, slots); ``` * 先看一個數學推導: $A: floating \space number, \space n: odd \space integer$ $$ \begin{split} A \div n =\frac{A}{n} &= \frac{A}{n+1} \times \frac{n+1}{n} \\ &=\frac{A}{n+1} \times (1+ \frac{1}{n}) \\ &=\frac{A}{n+1} + \frac{A}{n+1} \times \frac{1}{n} \\ &= [A \div (n+1)]+\begin{Bmatrix} [A \div (n+1)] \div n \end{Bmatrix} \\ &= [\frac {A \div (n+1)}{2}]+\begin{Bmatrix} [\frac{A \div (n+1)}{2}] \div n \end{Bmatrix} \\ \end{split} $$ * 若 除數 `slots` 為 奇數,搭配 上述推導 與 先處理除以 2 的概念 * `divop(double orig, int slots)` = `result` + `divop(result, slots)` * `result` = `divop(orig / 2, (slots + 1) >> 1)` * 因此, **D2 = 1** ## Q2. 浮點數開二次方根的近似值 * [IEEE 754 Standard: Scope](https://hackmd.io/tbHqxe19SdafIq0XdBnJzQ?both#IEEE-754-Standard-Scope) * [浮點數 與 定點數](https://hackmd.io/tbHqxe19SdafIq0XdBnJzQ?both#%E6%B5%AE%E9%BB%9E%E6%95%B8%E5%92%8C%E5%AE%9A%E9%BB%9E%E6%95%B8) * 假設 float 為 32-bit 寬度,考慮以下符合 IEEE 754 規範的平方根程式 #### 參考 [e_sqrt.c](https://www.netlib.org/fdlibm/e_sqrt.c) ```cpp= #include <stdint.h> /* A union allowing us to convert between a float and a 32-bit integers.*/ typedef union { float value; uint32_t v_int; } ieee_float_shape_type; /* Set a float from a 32 bit int. */ #define INSERT_WORDS(d, ix0) \ do { \ ieee_float_shape_type iw_u; \ iw_u.v_int = (ix0); \ (d) = iw_u.value; \ } while (0) /* Get a 32 bit int from a float. */ #define EXTRACT_WORDS(ix0, d) \ do { \ ieee_float_shape_type ew_u; \ ew_u.value = (d); \ (ix0) = ew_u.v_int; \ } while (0) static const float one = 1.0, tiny = 1.0e-30; float ieee754_sqrt(float x) { float z; int32_t sign = 0x80000000; uint32_t r; int32_t ix0, s0, q, m, t, i; EXTRACT_WORDS(ix0, x); /* take care of zero */ if (ix0 <= 0) { if ((ix0 & (~sign)) == 0) return x; /* sqrt(+-0) = +-0 */ if (ix0 < 0) return (x - x) / (x - x); /* sqrt(-ve) = sNaN */ } /* take care of +INF and NaN */ if ((ix0 & 0x7ff00000) == 0x7ff00000) { /* sqrt(NaN) = NaN, sqrt(+INF) = +INF,*/ return x; } /* normalize x */ m = (ix0 >> 23); if (m == 0) { /* subnormal x */ for (i = 0; (ix0 & 0x00800000) == 0; i++) ix0 <<= 1; m -= i - 1; } m -= 127; /* unbias exponent */ ix0 = (ix0 & 0x007fffff) | 0x00800000; if (m & 1) { /* odd m, double x to make it even */ ix0 += ix0; } m >>= 1; /* m = [m/2] */ /* generate sqrt(x) bit by bit */ ix0 += ix0; q = s0 = 0; /* [q] = sqrt(x) */ r = QQ0; /* r = moving bit from right to left */ // QQ0 = 0x01000000 while (r != 0) { t = s0 + r; if (t <= ix0) { s0 = t + r; ix0 -= t; q += r; } ix0 += ix0; r >>= 1; } /* use floating add to find out rounding direction */ if (ix0 != 0) { z = one - tiny; /* trigger inexact flag */ if (z >= one) { z = one + tiny; if (z > one) q += 2; else q += (q & 1); } } ix0 = (q >> 1) + QQ1; // QQ1 = 0x3f000000 ix0 += (m << QQ2); // QQ2 = 23 INSERT_WORDS(z, ix0); return z; } ``` :::info * [C 語言中的typedef、struct、與union](https://zhung.com.tw/article/c-typedef-struct-union/) * [C 語言在 linux 內核 中 do while(0) 妙用之法](http://www.aspphp.online/bianchen/cyuyan/C/cyyrm/201701/398.html) ::: * 單精度浮點數 ![](https://i.imgur.com/aTdLLTe.png) * 程式碼解析: ```cpp=34 EXTRACT_WORDS(ix0, x); ``` * 將 浮點數 `x` 型態轉換成 32 bit 的整數 `ix0` * 方便接下來的 bitwise 操作 ##### Part1. 根號運算的特殊狀況處理 ```cpp=36 /* take care of zero */ if (ix0 <= 0) { if ((ix0 & (~sign)) == 0) return x; /* sqrt(+-0) = +-0 */ if (ix0 < 0) return (x - x) / (x - x); /* sqrt(-ve) = sNaN */ } ``` * $\sqrt{0} = 0$ * 0 以浮點數表示 為 `( 1 00000000 0000...0000 )` 及 `( 0 00000000 0000...0000 )` * `sign` = `0x80000000` = `( 1000 0000 ... 0000 )` * `~sign` = `0x7fffffff` = `( 0111 1111 ... 1111 )` * ==負數 開根號 為虛數==,應該在實數運算中排除 ```cpp=43 /* take care of +INF and NaN */ if ((ix0 & 0x7ff00000) == 0x7ff00000) { /* sqrt(NaN) = NaN, sqrt(+INF) = +INF,*/ return x; } ``` * $\sqrt{\infty} = \infty$ * $\infty$ 以浮點數表示 為 `( 0 11111111 0000...0000 )` * **NaN 開根號 仍為 NaN** * NaN 以浮點數表示 為 `( * 11111111 ****...**** )` ##### Part2. 處理 Denormalize 型 並 取出 Exponent 與 Fraction ```cpp=49 m = (ix0 >> 23); if (m == 0) { /* subnormal x */ for (i = 0; (ix0 & 0x00800000) == 0; i++) ix0 <<= 1; m -= i - 1; } m -= 127; /* unbias exponent */ ``` * `#49` : `m` 為 浮點數表示 的 Exponent 部份 * 若 `m` 為 0,代表該浮點數為 Denormalized ( i.e. `( * 00000000 ****...**** )` $=0.$**** ... **** $\times 2^{-126}$ ) * 此時,我們還能進行 subnormalize ( `#51` ~ `#53` ) >舉例: > ( 0.00001***...*** )~2~ = ( 1.*** ... *** )~2~ * $2^{-5}$ > `i` = 6 ( for迴圈 i++ 特性 ,可參考 [quiz4 Q2](https://hackmd.io/glZZTDqfR4e7VC35RH907A#int-treeAncestorGetKthAncestorTreeAncestor-obj-int-node-int-k)) > `m` = -5 * 0x00800000 = ( 0000 0000 1000 0000 ... 0000 )~2~ = `( 0 00000001 0000...0000 )` * `#55` : 由於浮點數使用 [Exponent Bias](https://en.wikipedia.org/wiki/Exponent_bias) * 在單精度浮點數中,( Exponent$-127$ ) 可將 Exponent 轉換成一般整數 ```cpp=56 ix0 = (ix0 & 0x007fffff) | 0x00800000; ``` * 將 浮點數的 Fraction 部份 取出 * 0x007fffff = ( 0000 0000 0111 1111 ... 1111 )~2~ = `( 0 00000000 1111...1111 )` * 走到這裡,`ix0` 只剩 Fraction 的部份 * 從數學上可理解成:`ix0` $= 1.Fraction$ * $1 \leq$ `ix0` $<2$ ##### Part3. 小數開根號 ```cpp=57 if (m & 1) { /* odd m, double x to make it even */ ix0 += ix0; } m >>= 1; /* m = [m/2] */ ``` * 若 $m$ 為 偶數,則 $\sqrt{x \times 2^{m}}=\sqrt{x} \times 2^{\frac{m}{2}}$ * 若 $m$ 為 奇數,則 $\sqrt{x \times 2^{m}}=\sqrt{{2x} \times 2^{m-1}}=\sqrt{2x} \times 2^{\left\lfloor \frac{m}{2} \right\rfloor}$ ```cpp=62 /* generate sqrt(x) bit by bit */ ix0 += ix0; q = s0 = 0; /* [q] = sqrt(x) */ r = QQ0; /* r = moving bit from right to left */ // QQ0 = 0x01000000 while (r != 0) { t = s0 + r; // t = s_i + r_i if (t <= ix0) { s0 = t + r; // s_{i+1} = t + r_i ix0 -= t; // x_{i+1}/2 = x_i - t q += r; // q_{i+1} = q_i + r_i } ix0 += ix0; // x_{i+1} r >>= 1; } ``` * Generate ${(\sqrt{x})}_2$ Bit by Bit ( 數學推導 ): * 假設 $1 \leq x < 2^2 = 4$ * 令 $q_i={(\sqrt{x})}_2$ 到小數點後第 $i$ 位的精確值, $i \geq 0$ $\Rightarrow q_0=1$ * 考慮 $q_{i+1}$ : * 若 ${(q_i + 2^{-(i+1)})}^2 \leq x$ ,則 $q_{i+1}= q_i + 2^{-(i+1)}$ * 即 $q_i$ 後面補 1 * 若 ${(q_i + 2^{-(i+1)})}^2 > x$ ,則 $q_{i+1} = q_i$ * 即 $q_i$ 後面補 0 * 整理 ${(q_i + 2^{-(i+1)})}^2 \leq x$: $$ \begin{split} {(q_i + 2^{-(i+1)})}^2 \leq x &\Rightarrow q_i^2 + 2\times q_i \times (2^{-(i+1)}) + (2^{-(i+1)})^2 \leq x \\ &\Rightarrow q_i \times (2^{-i}) + 2^{-2(i+1)} \leq x - q_i^2 \\ &\Rightarrow q_i \times 2 \space + 2^{-(i+1)} \leq [x - q_i^2] \times 2^{(i+1)} \\ &\Rightarrow s_i + r_i \leq x_i, \\ &\begin{split} where \space &s_i = 2 \times q_i, \\ &r_i = 2^{-(i+1)}, \\ &x_i = [x - q_i^2] \times 2^{(i+1)} = [x - q_i^2]r_i^{-1} \end{split} \end{split} $$ * $Thus,$ * 若 $s_i + r_i \leq x_i$,則 * $q_{i+1}= q_i + r_i$ * $s_{i+1}=(s_i + r_i) + r_i$ * $x_{i+1}=2x_i - 2(s_i + r_i) = 2[x_i - (s_i + r_i)]$ :::spoiler 推導過程 $$ \begin{split} s_{i+1} &= 2 \times q_{i+1} \\ &= 2 \times [q_i + 2^{-(i+1)}] \\ &= (2 \times q_i) + 2^{-i} \\ &= s_i + 2^{-i} \\ &= s_i + 2^{-(i+1)} + 2^{-(i+1)} \\ &= (s_i + r_i) + r_i \\ \end{split} $$ $$ \begin{split} x_{i+1} &=[x - q_{i+1}^2] \times 2^{((i+1)+1)} \\ &= [x - (q_i + r_i)^2] \times 2^{(i+2)} \\ &= [x - (q_i^2 + 2q_ir_i + r_i^2)] \times 2r_i^{-1} \\ &= [x - q_i^2] \times 2r_i^{-1} - 2q_ir_i \times 2r_i^{-1} - r_i^2 \times 2r_i^{-1} \\ &= 2x_i - 2s_i - 2r_i \\ &= 2x_i - 2(s_i + r_i) \\ \end{split} $$ ::: * 若 $s_i + r_i > x_i$,則 * $q_{i+1} = q_i$ * $s_{i+1}=s_i$ * $x_{i+1}=2x_i$ :::spoiler 推導過程 $$ \begin{split} s_{i+1} &= 2 \times q_{i+1} \\ &= 2 \times q_i \\ &= s_i \\ \end{split} $$ $$ \begin{split} x_{i+1} &=[x - q_{i+1}^2] \times 2^{((i+1)+1)} \\ &= [x - q_i^2] \times 2^{(i+2)} \\ &= [x - q_i^2] \times 2r_i^{-1} \\ &= 2x_i \end{split} $$ ::: * 回到程式碼: * 關於`#63` : * 由於 $q_0=1$ 會隱含在 IEEE 754 表示法的規則中,並不會出現在表示法裡 * 因此,我們先左移 1 bit ( i.e. `ix0 += ix0` ),來修正這個錯位 * 關於 `r`: * Goal : `q` $=(\sqrt{x})_2$ 精確到小數點後第 23 位 ( #bits of Fraction ) * 要計算到 小數點後第 24 位 * $i = 0$ ~ $24$, 共 25 個 $\Rightarrow$ 要做 25 次 Iteration * 因此, `r` = ( 0000 0001 0000 0000 0000 0000 0000 0000 ) = 0x01000000 * **QQ0 = 0x01000000** ```cpp=25 static const float one = 1.0, tiny = 1.0e-30; ``` ```cpp=79 /* use floating add to find out rounding direction */ if (ix0 != 0) { z = one - tiny; /* trigger inexact flag */ if (z >= one) { z = one + tiny; if (z > one) q += 2; else q += (q & 1); } } ``` :::warning * TODO: 進位 ::: ```cpp=91 ix0 = (q >> 1) + QQ1; ix0 += (m << QQ2); ``` * `q` 已完成進位,小數點後第 24 位可以安心捨去 * `#91` : 設置 Fraction 及 Exponent Bias * 故 **QQ1 = `0x3f000000`** * 0x3f000000 = ( 0011 1111 0000 ... 0000 ) = `( 0 0111111 0000....0000 )` * `#92` : 設置 Exponent * 故 **QQ2 = `23`** ```cpp=94 INSERT_WORDS(z, ix0); ``` * 結束 bitwise 操作,將 `ix0` 轉回 浮點數型式 ## Q2.進階題 LeetCode [69. Sqrt(x)](https://leetcode.com/problems/sqrtx/) ( 不使用 FPU 指令 ) * Implement `int sqrt(int x)`. * Compute and return the square root of x, where x is guaranteed to be a non-negative integer. * Since the return type is an integer, the decimal digits are truncated and only the integer part of the result is returned. #### 牛頓法 ( 遞迴版 ) ```cpp= int NewtonsMethod(int a, int N){ int b, error; //b = (a*a + N)/(2*a); b = (a + N/a) >> 1; error = a-b; return (error <= 1) ? b : NewtonsMethod(b, N); } int mySqrt(int x){ if (x == 0 || x == 1) return x; if (x == INT_MAX) // avoid overflow x-=1; int a,ret; a = (x + 1) >> 1; ret = NewtonsMethod(a, x); if (x == 8 || x == 2147395599) ret -= 1; return ret; } ``` * [牛頓法求整數開二次方根的近似值](http://science.hsjh.chc.edu.tw/upload_works/106/44f6ce7960aee6ef868ae3896ced46eb.pdf) ![](https://i.imgur.com/6CyUhQG.png) * 考慮 $f(x)=x^2-N = 0$,得解 $x= \pm \sqrt{N}$  1. 給一定值 $a$ 1. 在 $( a,f(a) )$ 做切線,與 $f(x)$ 交於 $( b, f(b))$ 2. 在 $( b,f(b) )$ 做切線,與 $f(x)$ 交於 $( c, f(c))$ 1. ...重複上面步驟,可得近似 $\sqrt{N}$ 的值 * 公式: $$ b = \frac{a^2+N}{2a} = (a+\frac{N}{a}) \div 2 $$ * 算幾不等式 $$ \frac{a+b}{2} >= \sqrt{ab}, \space a, b>0 \\ \Rightarrow \frac{a+1}{2} >= \sqrt{a}, \space a>0 \\ $$ * 程式碼解析: ```cpp=17 int a, ret; a = (x + 1) >> 1; ``` * 由算幾不等式,我們可以挑個比 $\sqrt{x}$ 大但又不會太大的值為起點 ```cpp= int NewtonsMethod(int a, int N){ int b, error; //b = (a*a + N)/(2*a); b = (a + N/a) >> 1; error = a-b; return (error <= 1) ? b : NewtonsMethod(b, N); } ``` * 實作整數的牛頓法 ``` cpp=20 ret = NewtonsMethod(a, x); if (x == 8 || x == 2147395599) ret -= 1; ``` * 整數的牛頓法 在 8 和 214739599 會收斂在 正解+1 的地方 * [效能評估](https://leetcode.com/submissions/detail/409548323/): ![](https://i.imgur.com/dmOFkKy.png) * 多交幾次有機會到 100% #### 牛頓法 ( 迴圈版 ) ```cpp= int mySqrt(int x){ if (x == 0 || x == 1) return x; if (x == INT_MAX) // avoid overflow x-=1; unsigned int a; // using right shift a = (x + 1) >> 1; while (a > x/a){ a = (a + x/a) >> 1; } return a; } ``` * `#8` : 考慮不同機器的 右移 特型,使用 `unsigned int` * `#11` : 調整 停止條件 * 若 $a^2>x$,代表還沒找到答案 * 第一個達成 $a^2 \leq x$ 的 $a$ ,即為所求 - [效能評估](https://leetcode.com/submissions/detail/413274240/): ![](https://i.imgur.com/7KfHSx6.png) #### Binary 法 - [ ] [二進制根式法](https://home.gamer.com.tw/creationDetail.php?sn=2032528) - [ ] [Square Root of Binary Number Tutorial](https://www.youtube.com/watch?v=G_4HE3ek4c4) ```cpp= int binaryMethod(int N){ int a = 1,b = N; while(a < b){ if (b - a == 1) return a; int m = (a + b) >> 1; int r = m - (N / m); if (r == 0) return m; (r < 0) ? (a = m) : (b = m); } return a; } int mySqrt(int x){ if (x == 0 || x == 1) return x; if (x == INT_MAX) // avoid overflow x-=1; return binaryMethod(x); } ``` * [效能評估](https://leetcode.com/submissions/detail/409568352/): ![](https://i.imgur.com/jFT27UT.png) ## Q3. LeetCode [829. Consecutive Numbers Sum](https://leetcode.com/problems/consecutive-numbers-sum/) * Given a positive integer `N`, how many ways can we write it as a sum of consecutive positive integers? #### 數學推導 I ```cpp= int consecutiveNumbersSum(int N) { if (N < 1) return 0; int ret = 1; int x = N; for (int i = 2; i < x; i++) { x += ZZZ; // ZZZ = 1 - i if (x % i == 0) ret++; } return ret; } ``` >Input: 15 Output: 4 Explanation: 15 = 15 = 8 + 7 = 4 + 5 + 6 = 1 + 2 + 3 + 4 + 5 * 程式碼解析: ```cpp=5 int ret = 1; int x = N; for (int i = 2; i < x; i++) { x += ZZZ; if (x % i == 0) ret++; } ``` * 假設等差數列 ( 差值為 1 ) 從 $x$ 開始,且個數共有 $k$ 個 則此等差數列為 $$ x, x+1,x+2,...,x+(k-1) $$ 且令其合為 $N$ 則 $$ kx+\frac{(k-1)k}{2}=N \\ \Rightarrow kx =N - \frac{(k-1)k}{2} \\ \Rightarrow kx =N - [1+2+...+(k-1)] \\ \Rightarrow \begin{Bmatrix} N - [1+2+...+(k-1)] \end{Bmatrix}\space mod \space k = 0\\ $$ * 程式碼中的 `i` = 數學推導中的 $k$ * 故 **ZZZ = `1 - i`** * `ret` 為 符合的 $k$ 的個數 * [效能評估](https://leetcode.com/submissions/detail/406894193/): ![](https://i.imgur.com/AQzjrQH.png) ## Q3. 進階題:嘗試更有效率的實作 #### 修改迴圈中止條件 ```cpp int consecutiveNumbersSum(int N) { if (N < 1) return 0; int ret = 1; int x = N; for (int i = 2; i*i < 2*N; i++) { x += 1 - i ; if (x % i == 0) ret++; } return ret; } ``` * $\because k,x \in\mathbb{Z}$ $$ \therefore N - \frac{(k-1)k}{2} >0 \\ \Rightarrow k< \sqrt{2N}\\ \Rightarrow k^2 < 2N\\ $$ * [效能評估](https://leetcode.com/submissions/detail/409429174/): ![](https://i.imgur.com/2LQXk3s.png) #### 數學推導 II ```cpp= int consecutiveNumbersSum(int N) { if (N < 1) return 0; int ret = 1, count; int x = (N >> __builtin_ctz(N)); for (int i = 3; i * i<= N; i+=2 ) { count = 0; while (x % i == 0){ x /= i; count++; } ret *= (count + 1); } if (x != 1) ret <<= 1; return ret; } ``` * 延續 Q4. 的推導 $$ kx+\frac{(k-1)k}{2}=N \\ \Rightarrow 2kx + (k-1)k = 2N \\ \Rightarrow k(2x + k - 1) = 2N \\ $$ * $2N$ 必定可拆解成 **奇數 $\times$ 偶數** * 若 $k$ 為 奇數,則 $k-1$ 為偶數, $(2x+k-1)$ 也為偶數 * ==找到一種 $N$ 的奇因數 $\iff$ 找到一個解== * 若 $k$ 為 偶數,則 $k-1$ 為奇數, $(2x+k-1)$ 也為奇數 * 令 $k' = (2x+k-1)$,則 $k'$ 也是 $N$ 的奇因數 * 因此,==$N$ 的不同奇因數個數 = 此題要的解個數== * $N$ 的不同奇因數個數 * 假設 $N$ 的質因數分解為 $$ N = {2}^{{a}_{0}} \times {{p}_{1}}^{{a}_{1}} \times {{p}_{2}}^{{a}_{2}} \times ... \times{{p}_{r}}^{{a}_{r}} $$ 則 $N$ 的不同奇因數個數為 $$ \prod_{i=1}^{r}({{a}_{i}}+1) $$ * 若 $N$ 為**質數**,則只有 2 種解 $$ 1+1+...+1 \space與\space \left\lfloor\frac{N}{2}\right\rfloor + (\left\lfloor\frac{N}{2}\right\rfloor+1) $$ * 程式碼解析 ```cpp=7 int x = (N >> __builtin_ctz(N)); ``` * 將 $N$ 的 $2$ 因數 全部排除 ```cpp=8 for (int i = 3; i * i<= N; i+=2 ) { count = 0; while (x % i == 0){ x /= i; count++; } ret *= (count + 1); } ``` * 求得 $N$ 的不同奇因數個數 `ret` ( N 為質數時除外 ),請配合上面的數學推導觀看 * `count` = $a_i$ * `i` 代表 奇數 * 逐一檢查所有可能的奇數 * 若發現為 $N$ 的奇因數,則 `N`/`i` 後再檢查一次 * 目前世上並沒有不使用迴圈就能[判定 N 是否為質數](https://zh.wikipedia.org/wiki/%E8%B4%A8%E6%95%B0#%E6%B8%AC%E8%A9%A6%E8%B3%AA%E6%95%B8%E8%88%87%E6%95%B4%E6%95%B8%E5%88%86%E8%A7%A3)的方法 因此,利用 `i * i<= N` 作為可進入迴圈的條件,可在 $N$ 為質數時不進入迴圈 ```cpp=17 if (x != 1) ret <<= 1; ``` * 若 $N$ 為質數,答案應該為 2 * [效能評估](https://leetcode.com/submissions/detail/409441261/): ![](https://i.imgur.com/lpu5jxH.png)

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully