or
or
By clicking below, you agree to our terms of service.
New to HackMD? Sign up
Syntax | Example | Reference | |
---|---|---|---|
# Header | Header | 基本排版 | |
- Unordered List |
|
||
1. Ordered List |
|
||
- [ ] Todo List |
|
||
> Blockquote | Blockquote |
||
**Bold font** | Bold font | ||
*Italics font* | Italics font | ||
~~Strikethrough~~ | |||
19^th^ | 19th | ||
H~2~O | H2O | ||
++Inserted text++ | Inserted text | ||
==Marked text== | Marked text | ||
[link text](https:// "title") | Link | ||
 | Image | ||
`Code` | Code |
在筆記中貼入程式碼 | |
```javascript var i = 0; ``` |
|
||
:smile: | ![]() |
Emoji list | |
{%youtube youtube_id %} | Externals | ||
$L^aT_eX$ | LaTeX | ||
:::info This is a alert area. ::: |
This is a alert area. |
On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?
Please give us some advice and help us improve HackMD.
Syncing
xxxxxxxxxx
高一用淺薄偏微分
作者:TudoHuang
Tudohuang的奇妙課業
從一年前,為了了解AI,我去學習了偏微分這個概念。
我對了偏微分的了解就是"多元微分"。
恩,沒了
- The image file may be corrupted
- The server hosting the image is unavailable
- The image path is incorrect
- The image format is not supported
Learn More →高一數學科的單元如下:
以上都跟微積分的關係(至少就高中來看)沒什麼關係。最有關係的可能是高次方程式,但那也不用用到多元,所以偏微分一直沒什麼實際的應用。
直到…
二維數據分析
我在這一個章節,找到了高一中能夠玩偏微分的機會了!
而這個機會就是: 最小平方法
最小平方法
我們想要找到一條直線

\(y = ax+b\)
可以最為擬合所有的數據點
EX: \((0,0),(1,1),(2,2),(3,3),(4,4)\)
最為擬合這些數據點的直線方程式就是
\(y=1x+0\) Easy as a pie
那…如果數據點是
\((1,1),(1,2),(2,2),(2,3)\)
你要怎麼做呢?
可以使用最小平方法! SSE(Sum Square Error)!
那如何做呢?
課本做法
設直線\(f(x) = y=ax+b\)
把各個\(x\)代入,得出:
\(y_1=a+b\)
\(y_2=a+b\)
\(y_3=2a+b\)
\(y_4=2a+b\)
那\(SSE=\sum_{i=1}^4(y_i)^2\)
看不懂?
\(SSE = (a+b-1)^2+(a+b-2)^2+(2a+b-2)^2+(2a+b-3)^2\)
乘開!
\(SSE = a^2 + 2ab - 2a + b^2 - 2b + 1 + a^2 + 2ab - 2a + b^2 - 2b + 4 + 4a^2 + 4ab - 8a + b^2 - 4b + 4 + 4a^2 + 4ab - 12a + b^2 - 6b + 9\)
x!這是什麼???
把它簡化:
\(SSE = 10a^2 + 12ab - 26a + 4b^2 - 16b + 18\)
然後經過一些神奇的配方(有點詭異)
\(SSE= 10a^2 + 12ab - 26a + 4b^2 - 16b + 18\)
\(SSE =4b^2 +4(3a-4)b+10a^2-26a+18\)
\(SSE =[2b+(3a-4)]^2-(3a-4)^2+10a^2-26a+18\)
\(SSE = (2b+3a-4)^2+a^2-2a+2\)
\(SSE = (3a+2b-4)^2+(a-1)^2+1\)
\[\left\{ \begin{aligned} 3a + 2b -4&= 0 \\ a -1&= 0 \end{aligned} \right. \]
得出\(a=1,b=\frac{1}{2}\)
wow~~ finally! 好累~
偏微分
偏微分就是多元微分。
how to use?
\(f(x,y)=x^2+y^2+2xy+2x+2y+1\)
如何導數?
BTW,導數是啥?
定義:\(f'(a)=\lim_{{h \to 0}} \frac{f(a + h) - f(a)}{h}\)
導數代表了一個函數在某一點上的瞬間變化率
恩,我知道看起來很詭異,所以更好算的算法就是
\(f(x)= kx^i\)
\(f'(x)=k\times ix^{i-1}\)
EX:
\(f(x)=x^2, g(x)=2x\)
\(f'(x)=2x, g(x)=2\)
OK,那多元呢?
回到剛剛那一題,多元微分就是要運用到偏微分\(\frac{\partial f}{\partial x}(a, b)\)
cool~
來試著看看剛剛那題:
\(f(x,y)=x^2+y^2+2xy+2x+2y+1\)
要微分它,首先要先拆分成微分x及微分y兩部分
\(\frac{\partial f}{\partial x} = 2x+0+2y+2+0+0\)(在這裡,y會視作常數)
\(\frac{\partial f}{\partial y} = 0+2y+2x+0+2+0\)(同理,x會視作常數)
終於回到剛剛那一題最小平方法,直接到簡化後的算式:
\(SSE=10a^2 + 12ab - 26a + 4b^2 - 16b + 18\)
來吧!召喚偏微分!
\(\frac{\partial SSE}{\partial a} = 20a+12b-26+0-0+0\)
\(\frac{\partial SSE}{\partial b} = 0+12a-0+8b-16+0\)
\[\left\{ \begin{aligned} 20a + 12b -26&= 0 \\ 12a+8b-16&= 0 \end{aligned} \right. \]
整理一波~
\[\left\{ \begin{aligned} 40a + 24b &= 52 \\ 36a+24b&= 48 \end{aligned} \right. \]
\(a=1\)
\(b=\frac{1}{2}\)
秒殺~