tonmoregulus
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

Your note will be visible on your profile and discoverable by anyone.
Your note is now live.
This note is visible on your profile and discoverable online.
Everyone on the web can find and read all notes of this public team.
See published notes
Unpublish note
Please check the box to agree to the Community Guidelines.
View profile
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
# Newton for KimCNN [toc] ## Members Yun-Ang Wu,YuMeng Tang ## 6.8-6.14 ### Loss Convergence (Tang) ##### Summary We want to test the correctness of our optimizer. We use a small portion of the SMSspam dataset $|D| = 10,30,50$ for training, and observe the loss. If our optimizer is correct, it should converges to $0$ after some training. ##### Results - loss converges to $0$ after some epochs. - $|D| = 10$: ![](https://hackmd.io/_uploads/HktKLSwD3.png) - $|D| = 30$: ![](https://hackmd.io/_uploads/r1Os8Svvn.png) | epoch | loss | | ----- | --------- | | 0 | 0.0335 | | 1 | 0.0180 | | 2 | 0.0105 | | 3 | 0.0065 | | 4 | 0.0042 | | 5 | 0.0028 | | 6 | 0.0019 | | 7 | 0.0013 | | 8 | 0.0009 | | 9 | 0.0007 | - $|D| = 50$: ![](https://hackmd.io/_uploads/H1tnUBvv3.png) | epoch | loss | | ----- | --------- | | 0 | 0.1159 | | 1 | 0.0628 | | 2 | 0.0445 | | 3 | 0.0359 | | 4 | 0.0306 | | 5 | 0.0264 | | 6 | 0.0224 | | 7 | 0.0179 | | 8 | 0.0131 | | 9 | 0.0082 | ### Matlab jvp and vjp (Wu) ##### summary We already know that `Jv` is much more expensive in PyTorch due to the double reverse mode trick. We want to confirm this by running the SimpleNN-MATLAB, since SimpleNN-MATLAB supports forward mode for `Jv`. ##### Results - Time of `Jv` and `JTv` is similar in MATLAB ``` profile on sample("-max_iter 100 -Jacobian 0"); profile viewer ``` ![](https://hackmd.io/_uploads/Sy5IFKFP3.png) ### Forward mode AD in PyTorch (Wu) ##### Summary Forward mode AD is available in PyTorch>=1.11. We figured out - How to use forward mode AD in PyTorch. Suppose we have a model $f(x, \theta)$ with $\theta$ as parameter and $x$ as input. We conducted some experiment: - $J_{\theta}v$ ($\theta$ : parameter) is faster using forward mode AD - $J_{x}v$ ($x$ : input) is somehow slower using forward mode AD (need more experiment) ##### Dual Number Dual number is a number system, their expression is $$ a + b\epsilon\qquad(a,b\in\mathbb{R}) $$ Where $\epsilon$ is a symbol taken to satisfy $\epsilon^2 = 0$ with $\epsilon \neq 0$. For example $$ (a+b\epsilon)(c+d\epsilon) = ac + (ad+bc)\epsilon $$ This number system is widely used in forward mode AD. consider a polynomial $$ P(x) = qx^2 + rx + s $$ If we plug $a+ b\epsilon$ into $P(x)$, we get $$ P(a+b\epsilon) = q(a^2+2ab\epsilon) + r(a + b\epsilon) + s = P(a) + P^{\prime}(a)b\epsilon $$ For convenience, we use pair notation $\langle a,b \rangle$ to represent $a + b\epsilon$ . In general, for any (analytic) real function $f:\mathbb{R} \to \mathbb{R}$, we can get the product of derivative at point a $f^{\prime}(a)$ and $b$ by forwarding $\langle a,b \rangle$ into this function: $$ f(\langle a,b \rangle) = \langle f(a),f^{\prime}(a)b \rangle $$ We can expand this to multivariate function $f:\mathbb{R}^{n} \to \mathbb{R}^{m}$. for a point $x \in \mathbb{R}^{n}$ and a direction $v \in \mathbb{R}^{n}$, we can calculate the Jacobian vector product $J_{f}(x)v$ by $$ f(\langle x_{1},v_{1} \rangle, \langle x_{2},v_{2} \rangle, \ldots ,\langle x_{n},v_{n} \rangle) = (\langle y_{1},y^{\prime}_{1} \rangle, \langle y_{2},y^{\prime}_{2} \rangle, \ldots ,\langle y_{m},y^{\prime}_{m} \rangle) $$ Where $$ (y_1, \ldots, y_m) = y = f(x) \\ (y^{\prime}_1, \ldots, y^{\prime}_m) = y^{\prime} = J_{f}(x)v $$ ##### PyTorch implementation of dual number We use `torch.autograd.forward_ad` to do forward mode AD in PyTorch. The following are the two main resources on this topic. The first one is the official documentation on forward mode, the second one is the github issue related to forward mode AD. - [Forward-mode Automatic Differentiation (Beta)](https://pytorch.org/tutorials/intermediate/forward_ad_usage.html) - [[feature request] Forward-mode automatic differentiation#10223](https://github.com/pytorch/pytorch/issues/10223) Let's look at a simple example: ```python import torch import torch.autograd.forward_ad as fwAD primal = torch.tensor([2,5], dtype=float) tangent = torch.tensor([1,0], dtype=float) def fn(x): return torch.log(x[0]) + x[0]*x[1] - torch.sin(x[1]) with fwAD.dual_level(): #context manager for forward mode dual_input = fwAD.make_dual(primal, tangent) #make dual number dual_output = fn(dual_input) #forward mode pass jvp = fwAD.unpack_dual(dual_output) #unpack dual number print(jvp.primal) print(jvp.tangent) ``` This returns ```python tensor(11.6521, dtype=torch.float64) tensor(5.5000, dtype=torch.float64) ``` ##### PyTorch forward mode AD profiling Suppose we have a model $f(\theta, x) = z$ where $\theta$ is the parameter and $x, z$ is the input and output. In our PyTorch implementation, we use reverse mode AD twice to calculate $J_{\theta}v$. We want to know whether forward mode AD is faster. Luckily, this issue was already discussed in the original issue. Link: https://github.com/pytorch/pytorch/issues/10223#issuecomment-950213842 > [@albanD](https://github.com/albanD) Thanks for the wonderful work of forward-mode AD! > > As mentioned in the [first comment of this issue](https://github.com/pytorch/pytorch/issues/10223#issue-347538989), I think the main use case of the forward-mode AD is computing JVP for the Jacobian of the model outputs **w.r.t. model parameters** (not w.r.t. model input). It appears our use case aligns perfectly with the intended use of `torch.autograd.forward_ad`. They also provides some profiling results. I will first show how to do forward mode AD on PyTorch: ```python from torch.nn.utils._stateless import functional_call dim = 1024 n_layers = 100 model = Sequential().to(device) for i in range(n_layers): model.add_module(f'fc{i}', Linear(dim, dim).to(device)) x = torch.randn(batch_size, dim).to(device) # model input v = [torch.randn_like(p) for p in model.parameters()] # v of JVP def jvp_by_forward_ad_2(): with torch.no_grad(): with forward_ad.dual_level(): #enable fwad context manager params = {} for i, (name, p) in enumerate(model.named_parameters()): params[name] = forward_ad.make_dual(p, v[i]) #dual number for params rst = functional_call(model, params, x) #forawrd pass w.r.t. params _, jvp = forward_ad.unpack_dual(rst) #unpack dual number return jvp ``` This code is written by the author of `torch.autograd.forward_ad` **[@albanD](https://github.com/albanD)**. The result provided by the author is ``` batch_size: 8 dim: 1024 n_layers: 100 device: cpu ------------- jvp_by_reverse_ad: 0.651s jvp_by_forward_ad_2: 0.208s ``` I have also ran the code on my computer, the results are similar, about 2x faster. ``` batch_size: 8 dim: 1024 n_layers: 100 device: cpu ------------- jvp_by_reverse_ad: 0.054228s (max memory allocated: 0.00GB) jvp_by_forward_ad_2: 0.022454s (max memory allocated: 0.00GB) ``` ``` batch_size: 8 dim: 1024 n_layers: 100 device: cuda cuda device: NVIDIA GeForce RTX 4080 ------------- jvp_by_reverse_ad: 0.007386s (max memory allocated: 2.37GB) jvp_by_forward_ad_2: 0.004058s (max memory allocated: 1.97GB) ``` ``` batch_size: 64 dim: 1024 n_layers: 4 device: cuda cuda device: NVIDIA GeForce RTX 4080 ------------- jvp_by_reverse_ad: 0.000390s (max memory allocated: 0.11GB) jvp_by_forward_ad_2: 0.000221s (max memory allocated: 0.10GB) ``` ``` batch_size: 64 dim: 1024 n_layers: 64 device: cuda cuda device: NVIDIA GeForce RTX 4080 ------------- jvp_by_reverse_ad: 0.006047s (max memory allocated: 1.55GB) jvp_by_forward_ad_2: 0.003298s (max memory allocated: 1.27GB) ``` ``` batch_size: 64 dim: 1024 n_layers: 256 device: cuda cuda device: NVIDIA GeForce RTX 4080 ------------- jvp_by_reverse_ad: 0.022146s (max memory allocated: 6.15GB) jvp_by_forward_ad_2: 0.012105s (max memory allocated: 5.02GB) ``` ##### forward mode AD w.r.t. input Somehow forward mode AD is slower w.r.t. input. > `autograd.functional.jvp` computes the jvp by using the backward of the backward (sometimes called the double backwards trick). This is not the most performant way of computing the jvp. Please consider using [`torch.func.jvp()`](https://pytorch.org/docs/stable/generated/torch.func.jvp.html#torch.func.jvp) or the [low-level forward-mode AD API](https://pytorch.org/docs/stable/autograd.html#forward-mode-ad) instead. I have done some experiment on `autograd.functional.jvp` and `torch.func.jvp` (high-level API for the method we introduced in the previous chapter). but `torch.func.jvp` is always slower when doing jvp w.r.t. the input. why? ## Meeting 6.16 ### summary 現在forward mode AD不需要做太深 重點是要先證明newton在text classification task上的有用性 如果真的有用的話去optimize forward mode AD才會有意義 所以現在的重點應該擺在證明newton的有效性這件事上 第一個goal: 證明newton在text classification是competitive的 ### next goal - 在現在的code上加上forward mode AD,看看performance有沒有變好 - 完善我們現在的code,讓他可以跑一些大一點的實驗 - sub gradient - more dataset - some refactoring ## 6.19-6.27 ### Summary - Implemented forward mode AD for gauss-newton matrix vector product - About 2 times faster than reverse mode AD - Implemented subgradient, can run LEDGAR and other dataset now - Some experiment on dataset other than spam ### Implement forward mode AD in Gv (Wu) ##### Implementation In our original code, we calculate `BJv` and `Jv` together. ```python def Gv_legacy(loss, outputs, v, damping, model): grads_outputs = torch.autograd.grad(loss, outputs, create_graph=True) BJv = Rop(grads_outputs, model.parameters(), v) JBJv = torch.autograd.grad( outputs, model.parameters(), grad_outputs=BJv.reshape_as(outputs), retain_graph=True) return parameters_to_vector(JBJv).detach() + damping * v ``` The problem is, this trick will not work in forward mode. When using forward mode AD, we need to first calculate `Jv`, then `BJv`. Splitting the `BJv` calculation into two part is also doable in reverse mode AD. ```python def Gv_reverse(outputs, v, damping, model): Jv = Rop2(outputs, model.parameters(), v) BJv = 2 * Jv / outputs.numel() JBJv = torch.autograd.grad( outputs, model.parameters(), grad_outputs=BJv.reshape_as(outputs), retain_graph=True) return parameters_to_vector(JBJv).detach() + damping * v ``` We take a closer look at this line: ```python BJv = 2 * Jv / outputs.numel() ``` This is equal to ```python BJv = 2 * Jv / (batch_size * num_labels) ``` In the original paper, the loss $$ \lVert z^{L-1} - y \rVert^{2} $$ Is used. The hessian matrix of this loss function is $$ 2I = \begin{bmatrix}    2 & \dots & 0\\    \vdots & \ddots & \vdots\\   0 & \dots & 2    \end{bmatrix} $$ The pytorch implementation of this loss function is: $$ \frac{1}{M} \lVert z^{L-1} - y \rVert^{2} $$ Where $M$ is the dimension of $y$ and $z^{L-1}$. The hessian matrix will be $$ \frac{2}{M}I = \begin{bmatrix} \frac{2}{M} & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & \frac{2}{M} \end{bmatrix} $$ Since we are taking average over every data point inside that batch, the hessian matrix should be $$ \frac{2}{Ml}I = \begin{bmatrix} \frac{2}{Ml} & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & \frac{2}{Ml} \end{bmatrix} $$ Where $l$ is the size of the batch. We only need to change the calculation of `Jv` into forward mode: ```python def Gv_forward(x, outputs, v, damping, model): _, Jv = Jv_forward(x, v, model) BJv = 2 * Jv / outputs.numel() JBJv = torch.autograd.grad( outputs, model.parameters(), grad_outputs=BJv.reshape_as(outputs), retain_graph=True) return parameters_to_vector(JBJv).detach() + damping * v ``` ```python def Jv_forward(x, v, model): with torch.no_grad(): with forward_ad.dual_level(): #enable fwad context manager params = {} pos = 0 for i, (name, p) in enumerate(model.named_parameters()): num_elems = p.numel() v_part = v[pos:pos+num_elems] v_part = v_part.view(p.shape) params[name] = forward_ad.make_dual(p, v_part) #dual number for params pos += num_elems rst = functional_call(model, params, x) #forawrd pass w.r.t. params opts, Jv = forward_ad.unpack_dual(rst) #unpack dual number return opts, parameters_to_vector(Jv) ``` We ran the experiment and recorded the runtime of different implementation on `spam` using `RTX4080`: - Three experiment on each subsampling rate (`Gv_forward`, `Gv_reverse`, `Gv_legacy`) - The range of the bar is $[\mu - \sigma, \mu + \sigma]$ ![](https://hackmd.io/_uploads/ry6giVvdn.png) We get similar results on `CPU` (forward mode 1~2x faster). ![](https://hackmd.io/_uploads/SyBLrz_u3.png) ##### Implementation: Cross Entropy Loss In the original paper and our current code, we use `MSELoss` as our loss function. We might also want to use `CrossEntropyLoss`. The problem is, the hessian matrix of `CrossEntropyLoss` is not diagonal. Luckily, the hessian matrix still has some nice structure that allow us to avoid the matrix-matrix product when calculating `BJv`. ![](https://hackmd.io/_uploads/ryp-oNwdh.png) If we set $\hat{y} = Softmax(z^{L+1})$, the hessian matrix of `CrossEntropyLoss` is $$ diag(\hat{y}) - \hat{y}\hat{y}^{\intercal} $$ This is essentially a diagonal-matrix matrix product and two vector matrix product, way cheaper than a matrix-matrix product. ##### Numerical differences We created a small model and run some experiment on it to ensure these three methods are the same: ```python class SimpleModel(nn.Module): def __init__(self): super(SimpleModel, self).__init__() self.fc1 = nn.Linear(in_features=4, out_features=4) self.relu = nn.ReLU() self.fc2 = nn.Linear(in_features=4, out_features=4) def forward(self, x): x = self.relu(self.fc1(x)) x = self.fc2(x) return x ``` ```python #Gv1: legacy, Gv2: reverse, Gv3: forward print(Gv1 - Gv3) print(Gv2 - Gv3) print(Gv1 - Gv2) tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], grad_fn=<SubBackward0>) tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], grad_fn=<SubBackward0>) tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) ``` The output of these three method is also the same when running on spam. ### Implement subgradient (Wu) In order to run huge dataset like LEDGAR, subsample hessian method is not enough. Function evaluation and gradient evaluation consumes a lot of memory if we use the full batch. If we split the dataset into small batches and add the result together, we can cut off a lot of memory consumption. We can now run LEDGAR on our code: ``` python main.py -ep 50 -mb 0.02 -cg 50 -ls 10 -gv forward -ds LEDGAR -bs 32 -nf 256 -fs 2 4 6 [*] evaluation Test Accuracy: 83.9100% Test Micro F1: 83.9100% Test Macro F1: 72.4343% ``` This runs on `A100` for about 40min. (~40Gs VRAM) The Micro-F1 of BERT from [Chalkidis et al. (2022)]() is 87.6%. If we train longer and try out more model sizes, this score might be reachable. Also Macro-F1 is much lower. Why? ### Add dataset + run some experiment (Tang) ##### Summary We make DataLoader not limited to the original data set, but generic. We add early-stopping method. We added 3 new datasets: `Trec`, `Ecomm` and `20news`. Here are some experiment results based on forward mode. - ecomm ``` Newton: Test Accuracy: 93.4259% Test Micro F1: 93.4259% Test Macro F1: 93.5371% ``` - spam(less than 30 mins) ``` sgd: Test Accuracy: 91.2029% Test Micro F1: 91.2029% Test Macro F1: 73.7902% Adam: Test Accuracy: 98.7433% Test Micro F1: 98.7433% Test Macro F1: 97.1751% Newton: Test Accuracy: 98.0251% Test Micro F1: 98.0251% Test Macro F1: 95.4791% ``` - trec(less than 1 hour) ``` sgd: Test Accuracy: 62.4750% Test Micro F1: 62.4750% Test Macro F1: 24.8341% Adam: Test Accuracy: 79.6407% Test Micro F1: 79.6407% Test Macro F1: 59.9765% Newton: Test Accuracy: 76.4471% Test Micro F1: 76.4471% Test Macro F1: 47.6093% ``` - 20news running(too much time : 3 epoch per hour) ## meeting 7.1 ### summary - 数据集不能随便使用,要有正确对照(news20按照YuChen的分割法才有对照性) ### next goal - prepare code review - 和YuChen一共在其类LibMultiLabel framework上加入KimCNN,尝试运行sgd with momentum,adam...并draw validation accuracy curve - 在上一条基础上加入newton法从而比较找到newton法的优点 - 远期:newton on Bert not KimCNN accumulae_grad_batches ## meeting 7.5 (discuss experiment settings) ### Plans - **Target:** [Text Classification Baseline Table 1 (Yu-Chen, et al.)](https://www.csie.ntu.edu.tw/~cjlin/papers/text_classification_baseline/text_classification_baseline.pdf) ![](https://hackmd.io/_uploads/ryzBJvzF2.png) - **Datasets & Configuration Files**: [SCOTUS](https://github.com/JamesLYC88/long_documents_project/blob/main/config/scotus/bert_tune.yml), [20News](https://github.com/JamesLYC88/long_documents_project/blob/main/config/20news/bert_tune.yml), [LEDGAR](https://github.com/JamesLYC88/long_documents_project/blob/main/config/ledgar/bert_tune.yml) - **Action items** - check if accum_grad can be used in pl.lightening: Yun-An - set configuration file (SCOTUS): Tonmo - learning rate scheduler: 紹軒 - run exp on SCOTUS using the config - config, full batch (GPU?, test memory usage) ... ## 7.5-7.15 ### Cross entropy loss is better? (Yun-An) ![](https://hackmd.io/_uploads/HyTRmmSK2.png) ![](https://hackmd.io/_uploads/SkmkNXHFh.png) ![](https://hackmd.io/_uploads/Skd14mHK3.png) ### set configuration file for SCOTUS (Tonmo) initial configuration: - max seq length : 512 - learning_rate : 0.1 0.03 0.01 0.003 0.001 - weight_decay : 0 - val_metric : Micro-F1 - batch_size : 16 - loss function : cross entropy - optimizer : adam - network_config:reference example_config/EUR-Lex/kim_cnn_tune.yml - grid search about 100 - lr_scheduler: ReduceLROnPlateau scheduler_config: factor: 0.9 patience: 9 min_lr: 0.0001 - network_config: activation: relu embed_dropout: [0, 0.2, 0.4] encoder_dropout: [0, 0.2, 0.4] filter_sizes: [2, 4, 8] num_filter_per_size: [128, 256, 384, 512, 1024] ### SCOTUS results | Model + Optimizer/Loss | Macro-F1 | Micro-F1 | | ----------------------- | ---------------- | --------------- | | **KimCNN + SGD/MSE loss** | (best val) | 0.5426 | 0.6750 | | (test) | 0.4608 | **0.6407** | | **KimCNN + Adam/Cross Entropy loss** | (best val) | 0.6637 | 0.7407 | | (test) | 0.5919 | **0.6864** | | **KimCNN + Newton/MSE loss (our code)** | 0.4101| 0.6429| | **KimCNN + Adam/MSE loss (our code)** | 0.4834|0.6657| | **BERT (tuned) + Adam/Cross Entropy loss** | 0.559 | 0.671 | | **Linear** | 0.689 | **0.781** | increasing the subsampling rate doesn't necessarily yield better results. ### End goal (11 ??) ![](https://hackmd.io/_uploads/ryU_eMwYh.png) ### meeting 7.15 - check if the gradient norm goes to zero when running Newton - run more datasets ### Check Gradient (Wu) ![](https://hackmd.io/_uploads/SyaP-b9sh.png) ![](https://hackmd.io/_uploads/BJg6wWW5sh.png) ![](https://hackmd.io/_uploads/HyPO-b5ih.png) ![](https://hackmd.io/_uploads/rywO--cj2.png) ![](https://hackmd.io/_uploads/BJ2dW-ci3.png) ![](https://hackmd.io/_uploads/Bkhd-b9s3.png) ## 7.15-8.15 ### news20 results <!-- ``` newton Test Accuracy: 82.7934% Test Micro F1: 82.7934% Test Macro F1: 82.1395% newton with early stopping Test Accuracy: 82.3022% Test Micro F1: 82.3022% Test Macro F1: 81.6102% adam Test Accuracy: 85.3691% Test Micro F1: 85.3691% Test Macro F1: 84.6662% ``` --> | Model + Optimizer/Loss | Macro-F1 | Micro-F1 | | ----------------------- | ---------------- | --------------- | | **KimCNN + SGD/MSE loss**| 0.7962 | 0.8035 | | **KimCNN + Adam/Cross Entropy loss**| 0.8381 | 0.8435 | | **KimCNN + Newton/MSE loss (our code)** | 0.8214 | 0.8279 | | **KimCNN + Adam/MSE loss (our code)** | **0.8467** | **0.8537** | | **BERT (tuned) + Adam/Cross Entropy loss** | **0.849** | **0.856** | | **Linear** | 0.846 | 0.853 | ### LEDGAR results <!-- ``` newton Test Accuracy: 82.3300% Test Micro F1: 82.3300% Test Macro F1: 69.8297% newton 100 epoch Test Accuracy: 83.7800% Test Micro F1: 83.7800% Test Macro F1: 72.0632% adam Test Accuracy: 85.1900% Test Micro F1: 85.1900% Test Macro F1: 78.0785% ``` --> | Model + Optimizer/Loss | Macro-F1 | Micro-F1 | | ----------------------- | ---------------- | --------------- | | **KimCNN + SGD/MSE loss**| **0.8128** | **0.8702** | | **KimCNN + Adam/Cross Entropy loss**| 0.7705 | 0.8409 | | **KimCNN + Newton/MSE loss (our code)** | 0.7206 | 0.8378 | | **KimCNN + Adam/MSE loss (our code)** | 0.7808 | 0.8519 | | **BERT (tuned) + Adam/Cross Entropy loss** | **0.807** | **0.870** | | **Linear** | 0.800 | 0.864 | ### SCOTUS results | Model + Optimizer/Loss | Macro-F1 | Micro-F1 | | ----------------------- | ---------------- | --------------- | | **KimCNN + SGD/MSE loss**| 0.4608 | 0.6407 | | **KimCNN + Adam/Cross Entropy loss**| 0.5919 | **0.6864** | | **KimCNN + Newton/MSE loss (our code)** | 0.4101| 0.6429| | **KimCNN + Adam/MSE loss (our code)** | 0.4834|0.6657| | **BERT (tuned) + Adam/Cross Entropy loss** | 0.559 | 0.671 | | **Linear** | 0.689 | **0.781** | ## 8.16-完结撒花! Add Regularization parameter for KimCNN ``` ssh tonmoregulus@peanuts.csie.ntu.edu.tw mlgroup cd KimCNN cd KimCNN-regularization source KimCNN/bin/activate python main.py -ds news20 -cg 50 -ls 10 -mb 0.05 -bs 256 -ep 100 -gv forward -nf 256 -fs 2 4 8 -reg 100 ``` ![](https://hackmd.io/_uploads/rJ-dOgD16.png) ### news20 results | lg( C ) | Macro-F1 | Micro-F1 | loss(Gv) | loss(reg) | loss(reg)/loss(Gv)量级 | | ----------------------- | ---------------- | --------------- | - | - | - | | **None**| **0.8117** | **0.8184** | —— | —— | —— | | 0 | 0.0050 | 0.0527 | 0.0472 | 0.0002 | e-2 | | 1 | 0.0050 | 0.0527 | 0.0458 | 0.0006 | e-2 | | 2 | 0.0050 | 0.0527 | 0.0452 | 0.0002 | e-2 | | 3 | 0.1216 | 0.1922 | 0.0421 | 0.0029 | e-1 | | 4 | 0.0177 | 0.0584 | 0.7959 | 57.6422 | e2 | | 5 | 0.7879 | 0.7848 | 0.0123 | 10.4114 | e3 | | 6 | 0.8103 | 0.8161 | 0.0006 | 1.1359 | e4 | | 7 | 0.8131 | 0.8194 | 0.0017 | 0.1142 | e2 | | 8 | 0.8103 | 0.8176 | 0.0016 | 0.0114 | e1 | | 9 | 0.8134 | 0.8198 | 0.0021 | 0.0011 | e0 | | 10 | 0.8088 | 0.8156 | 0.0017 | 0.0001 | e-1 | | 11 | 0.8155 | 0.8228 | 0.0020 | 1.1426e-5 | e-2 | | 12 | 0.8124 | 0.8194 | 0.0023 | 1.1426e-6 | e-3 | | 13 | 0.8150 | 0.8222 | 0.0016 | 1.1426e-7 | e-4 | | 14 | 0.8120 | 0.8186 | 0.0018 | 1.1426e-8 | e-5 | | 15 | 0.8163 | 0.8229 | 0.0018 | 1.1426e-9 | e-6 | #### 对于loss(reg)/loss(Gv)在10e2~10e-2间重复三次实验取均值 | lg( C ) | Macro-F1(avg) | Micro-F1(avg) | loss(Gv)(avg) | loss(reg)(avg) | | ----------------------- | ---------------- | --------------- | - | - | | 7 | 0.8144 | **0.8212** | 0.0017 | 0.1142 | | 8 | 0.8116 | 0.8189 | 0.0020 | 0.0114 | | 9 | 0.8133 | 0.8204 | 0.0018 | 0.0011 | | 10 | 0.8138 | 0.8204 | 0.0018 | 0.0001 | | 11 | 0.8142 | **0.8212** | 0.0018 | 1.1426e−5 | | 15(近似无正则项参数情形) | 0.8117 | **0.8184** | 0.0019 | 1.1426e−9 | #### 具体实验数据 attempt 1 (stored in `results_1`) | lg( C ) | Micro-F1 | Macro-F1 | loss(Gv) | loss(reg) | loss(reg)/loss(Gv) | | ----------------------- | ---------------- | --------------- | - | - | - | | 7 | 0.8200 | 0.8126 | 0.0015 | 0.1142 | | | 8 | 0.8172 | 0.8096 | 0.0021 | 0.0114 | | | 9 | 0.8177 | 0.8108 | 0.0018 | 0.0011 | | | 10 | 0.8176 | 0.8115 | 0.0017 | 0.0001 | | | 11 | 0.8214 | 0.8139 | 0.0018| 1.1426e-5 | || | 15 | 0.8153 | 0.8082 | 0.0021 | 1.1426e-9 | | attempt 2 (stored in `results_2`) | lg( C ) | Micro-F1 | Macro-F1 | loss(Gv) | loss(reg) | loss(reg)/loss(Gv) | | ----------------------- | ---------------- | --------------- | - | - | - | | 7 | 0.8230 | 0.8168 | 0.0018 | 0.1142 | | | 8 | 0.8210 | 0.8140 | 0.0020 | 0.0114 | | | 9 | 0.8214 | 0.8144 | 0.0019 | 0.0011 | | | 10 | 0.8186 | 0.8118 | 0.0016 | 0.0001 | | | 11 | 0.8213 | 0.8141 | 0.0018| 1.1426e-5 | || | 15 | 0.8213 | 0.8149 | 0.0018 | 1.1426e-9 | | attempt 3 (stored in `results_3`) | lg( C ) | Micro-F1 | Macro-F1 | loss(Gv) | loss(reg) | loss(reg)/loss(Gv) | | ----------------------- | ---------------- | --------------- | - | - | - | | 7 | 0.8206 | 0.8137 | 0.0017 | 0.1142 | | | 8 | 0.8185 | 0.8111 | 0.0018 | 0.0114 | | | 9 | 0.8220 | 0.8148 | 0.0016 | 0.0011 | | | 10 | 0.8249 | 0.8182 | 0.0022 | 0.0001 | | | 11 | 0.8208 | 0.8145 | 0.0020| 1.1426e-5 | || | 15 | 0.8186 | 0.8121 | 0.0017 | 1.1426e-9 | | ![](https://hackmd.io/_uploads/SJtS-vuy6.png)

Import from clipboard

Paste your markdown or webpage here...

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template has been removed or transferred.
Upgrade
All
  • All
  • Team
No template.

Create a template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

Slide Example

API Docs

Edit in VSCode

Install browser extension

Contacts

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

Note content is identical to the latest version.
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully